Electrical Conductivity as an Informative Factor of the Properties of Liposomal Systems with Naproxen Sodium for Transdermal Application
<p>The influence of concentration on the recorded specific conductivity of evaluated systems: physical mixtures in absence of naproxen sodium (<b>A</b>), physical mixtures in the presence of naproxen sodium (<b>B</b>), and liposomal formulations with and without naproxen sodium (<b>C</b>). Composition details and abbreviations are outlined in <a href="#materials-17-05666-t001" class="html-table">Table 1</a>.</p> "> Figure 2
<p>The influence of naproxen sodium molar concentration on the recorded molar conductivities of evaluated systems, calculated according to the API concentration in physical mixtures (<b>A</b>) and liposomal formulations (<b>B</b>). Composition details and abbreviations are outlined in <a href="#materials-17-05666-t001" class="html-table">Table 1</a>.</p> "> Figure 3
<p>The limiting molar conductivity of naproxen sodium of evaluated systems. Composition details and abbreviations are outlined in <a href="#materials-17-05666-t001" class="html-table">Table 1</a>.</p> "> Figure 4
<p>The influence of the concentration of the assessed system on the relative viscosity: the physical mixtures in absence of naproxen sodium (<b>A</b>), the physical mixtures in the presence of naproxen sodium (<b>B</b>), and the liposomal formulations with and without naproxen sodium (<b>C</b>). Composition details and abbreviations are outlined in <a href="#materials-17-05666-t001" class="html-table">Table 1</a>.</p> "> Figure 4 Cont.
<p>The influence of the concentration of the assessed system on the relative viscosity: the physical mixtures in absence of naproxen sodium (<b>A</b>), the physical mixtures in the presence of naproxen sodium (<b>B</b>), and the liposomal formulations with and without naproxen sodium (<b>C</b>). Composition details and abbreviations are outlined in <a href="#materials-17-05666-t001" class="html-table">Table 1</a>.</p> "> Figure 5
<p>The relation of viscosity and the specific conductivity of evaluated systems in physical mixtures (<b>A</b>) and liposomal formulations (<b>B</b>). Composition details and abbreviations are outlined in <a href="#materials-17-05666-t001" class="html-table">Table 1</a>.</p> "> Figure 5 Cont.
<p>The relation of viscosity and the specific conductivity of evaluated systems in physical mixtures (<b>A</b>) and liposomal formulations (<b>B</b>). Composition details and abbreviations are outlined in <a href="#materials-17-05666-t001" class="html-table">Table 1</a>.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Liposomes
2.3. Preparation of Hydrophilic Gels and Physical Mixtures
2.4. Measurements of the Conductivity
2.5. Evaluation of the Viscosity of Assessed Samples
2.6. Evaluation of Model Plots, Standard Deviation, and Determination Coefficients
3. Results
3.1. The Specific Conductivity
3.2. The Molar Conductivity
3.3. The Limiting Molar Conductivity
3.4. Dynamic Viscosity
4. Discussion
4.1. Specific Conductivity and Equations
4.2. Molar Conductivity and Equations
4.3. Limiting Molar Conductivity
4.4. Dynamic Viscosity
4.5. Dynamic Viscosity and Specific Conductivity
4.6. Applicative Importance of the Conductometric Evaluations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ha, M.-W.; Paek, S.-M. Recent Advances in the Synthesis of Ibuprofen and Naproxen. Molecules 2021, 26, 4792. [Google Scholar] [CrossRef] [PubMed]
- Puglia, C.; Bonina, F.; Rizza, L.; Cortesi, R.; Merlotti, E.; Drechsler, M.; Mariani, P.; Contado, C.; Ravani, L.; Esposito, E. Evaluation of Percutaneous Absorption of Naproxen from Different Liposomal Formulations. J. Pharm. Sci. 2010, 99, 2819–2829. [Google Scholar] [CrossRef] [PubMed]
- Rahimpour, Y.; Hamishehkar, H. Liposomes in Cosmeceutics. Expert Opin. Drug Deliv. 2012, 9, 443–455. [Google Scholar] [CrossRef] [PubMed]
- Sacha, M.; Faucon, L.; Hamon, E.; Ly, I.; Haltner-Ukomadu, E. Ex Vivo Transdermal Absorption of a Liposome Formulation of Diclofenac. Biomed. Pharmacother. 2019, 111, 785–790. [Google Scholar] [CrossRef]
- Kuznetsova, D.A.; Vasilieva, E.A.; Kuznetsov, D.M.; Lenina, O.A.; Filippov, S.K.; Petrov, K.A.; Zakharova, L.Y.; Sinyashin, O.G. Enhancement of the Transdermal Delivery of Nonsteroidal Anti-Inflammatory Drugs Using Liposomes Containing Cationic Surfactants. ACS Omega 2022, 7, 25741–25750. [Google Scholar] [CrossRef]
- Kumar, L.; Verma, S.; Singh, M.; Chalotra, T.; Utreja, P. Advanced drug delivery systems for transdermal delivery of non-steroidal anti-inflammatory drugs: A review. Curr. Drug Deliv. 2018, 15, 1087–1099. [Google Scholar] [CrossRef]
- Zhang, G.; Li, X.; Huang, C.; Jiang, Y.; Su, J.; Hu, Y. Preparation of the Levo-Tetrahydropalmatine Liposome Gel and Its Transdermal Study. Int. J. Nanomed. 2023, 18, 4617–4632. [Google Scholar] [CrossRef]
- Cheng, Y.-C.; Li, T.S.; Su, H.L.; Lee, P.C.; Wang, H.-M.D. Transdermal Delivery Systems of Natural Products Applied to Skin Therapy and Care. Molecules 2020, 25, 5051. [Google Scholar] [CrossRef]
- Szura, D.; Ozimek, Ł.; Przybyło, M.; Karłowicz-Bodalska, K.; Jaźwińska-Tarnawska, E.; Wiela-Hojeńska, A.; Han, S. The Impact of Liposomes on Transdermal Permeation of Naproxen--In Vitro Studies. Acta Pol. Pharm. 2014, 71, 145–151. [Google Scholar]
- Sapkota, R.; Dash, A.K. Liposomes and Transferosomes: A Breakthrough in Topical and Transdermal Delivery. Ther. Deliv. 2021, 12, 145–158. [Google Scholar] [CrossRef]
- Zhang, Z.J.; Michniak-Kohn, B. Flavosomes, Novel Deformable Liposomes for the Co-Delivery of Anti-Inflammatory Compounds to Skin. Int. J. Pharm. 2020, 585, 119500. [Google Scholar] [CrossRef] [PubMed]
- Kalave, S.; Chatterjee, B.; Shah, P.; Misra, A. Transdermal Delivery of Macromolecules Using Nano Lipid Carriers. Curr. Pharm. Des. 2021, 27, 4330–4340. [Google Scholar] [CrossRef] [PubMed]
- Zauška, Ľ.; Beňová, E.; Urbanová, M.; Brus, J.; Zeleňák, V.; Hornebecq, V.; Almáši, M. Adsorption and release properties of drug delivery system naproxen-SBA-15: Effect of surface polarity, sodium/acid drug form and pH. J. Funct. Biomater. 2022, 13, 275. [Google Scholar] [CrossRef] [PubMed]
- Balmanno, A.; Falconer, J.R.; Ravuri, H.G.; Mills, P.C. Strategies to Improve the Transdermal Delivery of Poorly Water-Soluble Non-Steroidal Anti-Inflammatory Drugs. Pharmaceutics 2024, 16, 675. [Google Scholar] [CrossRef]
- Merclin, N.; Beronius, P. Transport properties and association behaviour of the zwitterionic drug 5-aminolevulinic acid in water: A precision conductometric study. Eur. J. Pharm. Sci. 2004, 21, 347–350. [Google Scholar] [CrossRef] [PubMed]
- Lisik, A.; Musiał, W. Conductomeric evaluation of the release kinetics of active substances from pharmaceutical preparations containing iron ions. Materials 2019, 12, 730. [Google Scholar] [CrossRef]
- Pereira, T.M.; Bonatto, C.C.; Silva, L.P. Rapid and Versatile Biosensing of Liposome Encapsulation Efficiency Using Electrical Conductivity Sensor. Biosensors 2023, 13, 878. [Google Scholar] [CrossRef]
- Atta, N.F.; Galal, A.; Ahmed, Y.M.; Ekram, H. Design strategy and preparation of a conductive layered electrochemical sensor for simultaneous determination of ascorbic acid, dobutamine, acetaminophen and amlodipine. Sens. Actuators B Chem. 2019, 297, 126648. [Google Scholar] [CrossRef]
- Alam, A.U.; Qin, Y.; Howlader, M.M.; Hu, N.X.; Deen, M.J. Electrochemical sensing of acetaminophen using multi-walled carbon nanotube and β-cyclodextrin. Sens. Actuators B Chem. 2018, 254, 896–909. [Google Scholar] [CrossRef]
- Pilch, E.; Lisik, A.; Słowiak, L.; Musiał, W. The Influence of Non-Unified Liposomal Fraction on the Release Kinetics of Calcium Dobesilate from Hydrophilic Gel. Am. J. Pharm. 2017, 36, 2241–2250. [Google Scholar]
- Luo, Z.; Li, P.; Zhang, D.; Zhu, J.; Wang, W.; Zhao, W.; Li, P.; Yuan, G. A Novel Antimicrobial Mechanism of Azalomycin F Acting on Lipoteichoic Acid Synthase and Cell Envelope. Molecules 2024, 29, 856. [Google Scholar] [CrossRef] [PubMed]
- Alhajj, M.J.; Montero, N.; Yarce, C.J.; Salamanca, C.H. Lecithins from vegetable, land, and marine animal sources and their potential applications for cosmetic, food, and pharmaceutical sectors. Cosmetics 2020, 7, 87. [Google Scholar] [CrossRef]
- Yarce, C.J.; Alhajj, M.J.; Sanchez, J.D.; Oñate-Garzón, J.; Salamanca, C.H. Development of antioxidant-loaded nanoliposomes employing lecithins with different purity grades. Molecules 2020, 25, 5344. [Google Scholar] [CrossRef] [PubMed]
- Pokhrel, D.R.; Sah, M.K.; Gautam, B.; Basak, H.K.; Bhattarai, A.; Chatterjee, A. A recent overview of surfactant–drug interactions and their importance. RSC Adv. 2023, 13, 17685–17704. [Google Scholar] [CrossRef]
- Rahim, M.A.; Mahbub, S.; Ahsan, S.M.A.; Alam, M.; Saha, M.; Shahriar, I.; Rana, S.; Halim, M.A.; Hoque, M.A.; Kumar, D.; et al. Conductivity, cloud point and molecular dynamics investigations of the interaction of surfactants with ciprofloxacin hydrochloride drug: Effect of electrolytes. J. Mol. Liq. 2021, 322, 114683. [Google Scholar] [CrossRef]
- Racovita, R.C.; Ciuca, M.D.; Catana, D.; Comanescu, C.; Ciocirlan, O. Microemulsions of nonionic surfactant with water and various homologous esters: Preparation, phase transitions, physical property measurements, and application for extraction of tricyclic antidepressant drugs from aqueous media. Nanomaterials 2023, 13, 2311. [Google Scholar] [CrossRef]
- Anderko, A.; Lencka, M.M. Computation of electrical conductivity of multicomponent aqueous systems in wide concentration and temperature ranges. Ind. Eng. Chem. Res. 1997, 36, 1932–1943. [Google Scholar] [CrossRef]
- Naseri Boroujeni, S.; Maribo-Mogensen, B.; Liang, X.; Kontogeorgis, G.M. Novel model for predicting the electrical conductivity of multisalt electrolyte solutions. J. Phys. Chem. B. 2024, 128, 536–550. [Google Scholar] [CrossRef]
- Bešter-Rogač, M. Nonsteroidal Anti-Inflammatory Drugs Ion Mobility: A Conductometric Study of Salicylate, Naproxen, Diclofenac and Ibuprofen Dilute Aqueous Solutions. Acta Chim. Slov. 2009, 56, 70–77. [Google Scholar]
- Landfield, H.; Kalamaris, N.; Wang, M. Extreme dependence of dynamics on concentration in highly crowded polyelectrolyte solutions. Sci. Adv. 2024, 10, eado4976. [Google Scholar] [CrossRef]
- Wu, Z.; Collins, A.M.; Jayaraman, A. Understanding Self-Assembly and Molecular Packing in Methylcellulose Aqueous Solutions Using Multiscale Modeling and Simulations. Biomacromolecules 2024, 25, 1682–1695. [Google Scholar] [CrossRef] [PubMed]
- Moreira, R.; Chenlo, F.; Silva, C.; Torres, M.D. Rheological behaviour of aqueous methylcellulose systems: Effect of concentration, temperature and presence of tragacanth. LWT 2017, 84, 764–770. [Google Scholar] [CrossRef]
- Mishra, B.; Jena, S.S. Transition in solution dynamics of polyacrylic acid: An interplay between nonergodicity and triple mode relaxation. J. Polym. Sci. 2024, 62, 1394–1410. [Google Scholar] [CrossRef]
- Brambilla, E.; Locarno, S.; Gallo, S.; Orsini, F.; Pini, C.; Farronato, M.; Thomaz, D.V.; Lenardi, C.; Piazzoni, M.; Tartaglia, G. Poloxamer-based hydrogel as drug delivery system: How polymeric excipients influence the chemical-physical properties. Polymers 2022, 14, 3624. [Google Scholar] [CrossRef]
- Pang, Z.; Li, M.; Tong, F.; McClements, D.J.; Tan, W.; Chen, C.; Liu, X. Impact of lecithin on the lubrication properties of konjac glucomannan gels. Int. J. Biol. Macromol. 2024, 279, 135582. [Google Scholar] [CrossRef] [PubMed]
- Menon, P.; Teo, Y.Y.; Misran, M. Development and evaluation of dipalmitoyl phosphatidylcholine (DPPC) liposomal gel: Rheology and in vitro drug release properties. Korea-Aust. Rheol. J. 2024, 36, 45–54. [Google Scholar] [CrossRef]
- Ise, N.; Sogami, I.S. Viscometric Properties of Dilute Ionic Polymer Solutions and Colloidal Dispersions. In Structure Formation in Solution: Ionic Polymers and Colloidal Particles, 1st ed.; Springer: Berlin/Heidelberg, Germany, 2005; pp. 279–295. [Google Scholar]
- Raicu, V.; BÎran, A.; Iovescu, A.; Anghel, D.F.; Saito, S. Electrical conductivity of aqueous polymer solutions: 1. Theory and experimental verification. Colloid Polym. Sci. 1997, 275, 372–377. [Google Scholar] [CrossRef]
Formulation Type | Acronym | Naproxen Sodium [mol/L] | Lecithin [%] | Methylcellulose [%] | Water [%] | Evaluated Dilutions of Prepared Formulations | Mark | Line | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Physical mixture | Lec | - | 1.00 | - | 99.00 | 1 | 1:2 | 1:4 | 1:8 | 1:16 | 1:32 | 1:64 | ○ | - . - |
Physical mixture | MC * | - | - | 0.25 | 99.75 | 1 | 1:2 | 1:4 | 1:8 | 1:16 | 1:32 | 1:64 | ◊ | - . - |
Physical mixture | Lec-MC * | - | 1.00 | 0.25 | 98.75 | 1 | 1:2 | 1:4 | 1:8 | 1:16 | 1:32 | 1:64 | □ | - . - |
Physical mixture | Nap | 0.095 | - | - | 99.00 | 1 | 1:2 | 1:4 | 1:8 | 1:16 | 1:32 | 1:64 | ▲ | - . - |
Physical mixture | Nap-Lec | 0.095 | 1.00 | - | 98.00 | 1 | 1:2 | 1:4 | 1:8 | 1:16 | 1:32 | 1:64 | ● | - . - |
Physical mixture | Nap-MC * | 0.095 | - | 0.25 | 98.75 | 1 | 1:2 | 1:4 | 1:8 | 1:16 | 1:32 | 1:64 | ♦ | - . - |
Physical mixture | Nap-Lec-MC * | 0.095 | 1.00 | 0.25 | 97.75 | 1 | 1:2 | 1:4 | 1:8 | 1:16 | 1:32 | 1:64 | ■ | - . - |
Liposomal composition | Lec (lipo) | - | 1.00 | - | 99.00 | 1 | 1:2 | 1:4 | 1:8 | 1:16 | 1:32 | 1:64 | ○ | - |
Liposomal composition | Lec-MC (lipo) * | - | 1.00 | 0.25 | 98.75 | 1 | 1:2 | 1:4 | 1:8 | 1:16 | 1:32 | 1:64 | □ | - |
Liposomal composition | Nap-Lec (lipo) | 0.095 | 1.00 | - | 98.00 | 1 | 1:2 | 1:4 | 1:8 | 1:16 | 1:32 | 1:64 | ● | - |
Liposomal composition | Nap-Lec-MC(lipo) * | 0.095 | 1.00 | 0.25 | 97.75 | 1 | 1:2 | 1:4 | 1:8 | 1:16 | 1:32 | 1:64 | ■ | - |
Relation | Sample | Equation Type of Highest Determination Coefficient | Determination Coefficient [r2] |
---|---|---|---|
, (9) | Lec | y = 6.0604x0.832 | 0.9996 |
MC | y = 0.4302x + 4.0226 | 0.9980 | |
Lec-MC | y = 5.3534x0.8764 | 0.9999 | |
Nap | y = 71.318x0.9526 | 0.9998 | |
Nap-Lec | y = 77.417x0.9263 | 0.9992 | |
Nap-MC | y = 67.999x0.9547 | 0.9998 | |
Nap-Lec-MC | y = 74.66x0.9339 | 0.9997 | |
Lec (lipo) | y = 19.518x0.7567 | 0.9917 | |
Lec-MC (lipo) | y = 16.92x0.8233 | 0.9989 | |
Nap-Lec (lipo) | y = 88.26x0.8848 | 0.9980 | |
Nap-Lec-MC (lipo) | y = 85.572x0.9048 | 0.9998 | |
, (10) | Nap | y = −3125ln(x) + 53,064 | 0.9557 |
Nap-Lec | y = −4908ln(x) + 46,418 | 0.9653 | |
Nap-MC | y = −2863ln(x) + 51,433 | 0.9533 | |
Nap-Lec-MC | y = −4341ln(x) + 47,710 | 0.9644 | |
Nap-Lec (lipo) | y = −7794ln(x) + 35,988 | 0.9400 | |
Nap-Lec-MC (lipo) | y = −6674ln(x) + 42,021 | 0.9852 | |
, (11) | Lec | y = 0.9602e0.0018x | 0.9289 |
MC | y = 0.9541e0.0171x | 0.9992 | |
Lec-MC | y = 1.0457e0.0138x | 0.9943 | |
Nap | y = 0.9625e0.0006x | 0.6226 | |
Nap-Lec | y = 0.9972e0.0017x | 0.9085 | |
Nap-Lec-MC | y = 0.9831e0.0199x | 0.9996 | |
Lec (lipo) | y = 1.0555e0.0126x | 0.9977 | |
Lec-MC (lipo) | y = 0.9201e0.0234x | 0.9984 | |
Nap-Lec (lipo) | y = 0.9699e0.005x | 0.9996 | |
Nap-Lec-MC (lipo) | y = 0.9647e0.0218x | 0.9998 |
Relation | Sample | Equation Type of Highest Determination Coefficient | Determination Coefficient [r2] |
---|---|---|---|
, (12) | Lec | y = 1435.4x − 1360.4 | 0.9200 |
MC | y = 25.126ln(x) + 5.2273 | 0.9950 | |
Lec-MC | y = 218.81ln(x) − 0.5934 | 0.9868 | |
Nap | y = 7 × 10−8e23.687x | 0.7541 | |
Nap-Lec | y = 26013x − 25611 | 0.8792 | |
Nap-Lec-MC | y = 2677.3ln(x) + 156.28 | 0.9976 | |
Lec (lipo) | y = 446.11ln(x) + 30.135 | 0.9784 | |
Lec-MC (lipo) | y = 297.03ln(x) + 66.775 | 0.9788 | |
Nap-Lec (lipo) | y = 9565.5ln(x) + 493.86 | 0.9923 | |
Nap-Lec-MC (lipo) | y = 2438.9ln(x) + 236.7 | 0.9952 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Musiał, W.; Caddeo, C.; Jankowska-Konsur, A.; Passiu, G.; Urbaniak, T.; Twarda, M.; Zalewski, A. Electrical Conductivity as an Informative Factor of the Properties of Liposomal Systems with Naproxen Sodium for Transdermal Application. Materials 2024, 17, 5666. https://doi.org/10.3390/ma17225666
Musiał W, Caddeo C, Jankowska-Konsur A, Passiu G, Urbaniak T, Twarda M, Zalewski A. Electrical Conductivity as an Informative Factor of the Properties of Liposomal Systems with Naproxen Sodium for Transdermal Application. Materials. 2024; 17(22):5666. https://doi.org/10.3390/ma17225666
Chicago/Turabian StyleMusiał, Witold, Carla Caddeo, Alina Jankowska-Konsur, Giorgio Passiu, Tomasz Urbaniak, Maria Twarda, and Adam Zalewski. 2024. "Electrical Conductivity as an Informative Factor of the Properties of Liposomal Systems with Naproxen Sodium for Transdermal Application" Materials 17, no. 22: 5666. https://doi.org/10.3390/ma17225666
APA StyleMusiał, W., Caddeo, C., Jankowska-Konsur, A., Passiu, G., Urbaniak, T., Twarda, M., & Zalewski, A. (2024). Electrical Conductivity as an Informative Factor of the Properties of Liposomal Systems with Naproxen Sodium for Transdermal Application. Materials, 17(22), 5666. https://doi.org/10.3390/ma17225666