Transdermal Delivery Systems of Natural Products Applied to Skin Therapy and Care
<p>The applications, challenges, and technologies of natural product delivery on human skin.</p> "> Figure 2
<p>Scientists developed novel vector to expand the application of natural products.</p> "> Figure 3
<p>Natural products in various types of therapeutic bio-functions.</p> ">
Abstract
:1. Introduction
2. Natural Products in Transdermal Drugs
2.1. Ointments
2.2. Rubber Plasters
2.3. Gel Plasters
3. Novel Applications in Natural Product Transdermal Delivery
3.1. Nanocarrier
3.2. Liposome
3.3. Emulsions
3.4. Lipid Nanoparticles
3.5. Others
4. Skin Care Applications
5. Conclusions
Funding
Conflicts of Interest
Abbreviations
RSV | resveratrol |
HLB | hydrophilic-lipophilic balance |
CPP | critical packing parameter |
TPL | triptolide |
Bu-A | bulleyaconitine A |
VCR | Vincristine |
PUVA | psoralens and long-wavelength ultraviolet radiation |
8-MOP | 8-methoxypsoralen |
References
- Huarong, S.; Xinli, G.; Ruiqing, L. Research progress of transdermal absorption of traditional Chinese medicine. Chin. Anim. Husb. Vet. Med. 2009, 2018. [Google Scholar] [CrossRef] [Green Version]
- Feng, N. Chinese Medicine Transdermal Administration and Functional Cosmetics; China Medicel Technology: Beijing, China, 2019. [Google Scholar]
- Huang, S.-H.; Lee, C.-H.; Wang, H.-M.; Chang, Y.-W.; Lin, C.-Y.; Chen, C.-Y.; Chen, Y.-H. 6-Dehydrogingerdione Restrains Lipopolysaccharide-Induced Inflammatory Responses in RAW 264.7 Macrophages. J. Agric. Food Chem. 2014, 62, 9171–9179. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Zhang, J.; Wu, Q.; Xu, B.; Jin, G.; Qiao, Y.; Zhao, S.; Yang, Y.; Shang, J.; Li, X.; et al. Sulforaphene induces apoptosis and inhibits the invasion of esophageal cancer cells through MSK2/CREB/Bcl-2 and cadherin pathway in vivo and in vitro. Cancer Cell Int. 2019, 19, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, X.; Wu, Y.-L.; Chen, D. Structure determination and synthesis of a new cerebroside isolated from the traditional Chinese medicine Typhonium giganteum. Engl. Tetrahedron Lett. 2002, 43, 3529–3532. [Google Scholar] [CrossRef]
- Liu, P.-L.; Chong, I.-W.; Lee, Y.-C.; Tsai, J.-R.; Wang, H.-M.; Hsieh, C.-C.; Kuo, H.-F.; Liu, W.-L.; Chen, Y.-H.; Chen, H.-L. Anti-inflammatory Effects of Resveratrol on Hypoxia/Reoxygenation-Induced Alveolar Epithelial Cell Dysfunction. J. Agric. Food Chem. 2015, 63, 9480–9487. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.-L.; Lin, S.-W.; Lee, C.-C.; Lin, K.-Y.; Liao, C.-H.; Yang, T.-Y.; Wang, H.-M.; Huang, H.-C.; Wu, C.-R.; Hseu, Y.-C. Induction of Nrf2-mediated genes by Antrodia salmonea inhibits ROS generation and inflammatory effects in lipopolysaccharide-stimulated RAW264, 7 macrophages. Food Funct. 2015, 6, 229–240. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.-M.; Kang, S.-K.; Kim, C.-H.; Kim, Y.-S. A literuture study on the effect of Jung-an acupuncture meridian point and needling method. J. Acupunct. Res. 2008, 25, 179–186. [Google Scholar]
- Liao, F. Herbs of activating blood circulation to remove blood stasis. Clin. Hemorheol. Microcirc. 2000, 23, 127–131. [Google Scholar]
- Chang, Y.W.; Wu, Y.C.; Huang, S.H.; Wang, H.D.; Kuo, Y.R.; Lee, S.S. Autologous and not allogeneic adipose-derived stem cells improve acute burn wound healing. PLoS ONE 2018, 13, e0197744. [Google Scholar] [CrossRef] [Green Version]
- Kim, C.-S.; Kawada, T.; Kim, B.-S.; Han, I.-S.; Choe, S.-Y.; Kurata, T.; Yu, R. Capsaicin exhibits anti-inflammatory property by inhibiting IkB-a degradation in LPS-stimulated peritoneal macrophages. Cell. Signal. 2003, 15, 299–306. [Google Scholar] [CrossRef]
- Chan, T.; Tomlinson, B.; Tse, L.; Chan, J.; Chan, W.; Critchley, J. Aconitine poisoning due to Chinese herbal medicines: A review. Vet. Hum. Toxicol. 1994, 36, 452–455. [Google Scholar]
- Gülçin, İ.; Büyükokuroǧlu, M.E.; Oktay, M.; Küfrevioǧlu, Ö.İ. Antioxidant and analgesic activities of turpentine of Pinus nigra Arn. subsp. pallsiana (Lamb.) Holmboe. J. Ethnopharmacol. 2003, 86, 51–58. [Google Scholar] [CrossRef]
- Saraswati, S.; Agarwal, S. Strychnine inhibits inflammatory angiogenesis in mice via down regulation of VEGF, TNF-α and TGF-β. Microvasc. Res. 2013, 87, 7–13. [Google Scholar] [CrossRef]
- Matta, R.; Wang, X.; Ge, H.; Ray, W.; Nelin, L.D.; Liu, Y. Triptolide induces anti-inflammatory cellular responses. Am. J. Transl. Res. 2009, 1, 267. [Google Scholar] [PubMed]
- Wang, W.; Wang, P. Selective inhibitory effect of sinomenine on activity of cyclooxygenase 2. J. Guangzhou Univ. Tradit. Chin. Med. 2002, 19, 46–47. [Google Scholar]
- Deftereos, S.; Giannopoulos, G.; Panagopoulou, V.; Bouras, G.; Raisakis, K.; Kossyvakis, C.; Karageorgiou, S.; Papadimitriou, C.; Vastaki, M.; Kaoukis, A. Anti-inflammatory treatment with colchicine in stable chronic heart failure: A prospective, randomized study. JACC Heart Fail. 2014, 2, 131–137. [Google Scholar] [CrossRef]
- Kunnumakkara, A.B.; Bordoloi, D.; Padmavathi, G.; Monisha, J.; Roy, N.K.; Prasad, S.; Aggarwal, B.B. Curcumin, the golden nutraceutical: Multitargeting for multiple chronic diseases. Br. J. Pharmacol. 2017, 174, 1325–1348. [Google Scholar] [CrossRef] [Green Version]
- Kuo, C.-L.; Chi, C.-W.; Liu, T.-Y. The anti-inflammatory potential of berberine in vitro and in vivo. Cancer Lett. 2004, 203, 127–137. [Google Scholar] [CrossRef]
- Yaping, Z.; Wenli, Y.; Weile, H.; Ying, Y. Anti-inflammatory and anticoagulant activities of lycopene in mice. Nutr. Res. 2003, 23, 1591–1595. [Google Scholar] [CrossRef]
- Finney, R.; Somers, G. The anti-inflammatory activity of glycyrrhetinic acid and derivatives. J. Pharm. Pharmacol. 1958, 10, 613–620. [Google Scholar] [CrossRef]
- El-Aziz, A.T.A.; Mohamed, R.H.; Pasha, H.F.; Abdel-Aziz, H.R. Catechin protects against oxidative stress and inflammatory-mediated cardiotoxicity in adriamycin-treated rats. Clin. Exp. Med. 2012, 12, 233–240. [Google Scholar] [CrossRef] [PubMed]
- Song, X.; Zhang, W.; Wang, T.; Jiang, H.; Zhang, Z.; Fu, Y.; Yang, Z.; Cao, Y.; Zhang, N. Geniposide plays an anti-inflammatory role via regulating TLR4 and downstream signaling pathways in lipopolysaccharide-induced mastitis in mice. Inflammation 2014, 37, 1588–1598. [Google Scholar] [CrossRef] [PubMed]
- Das, S.; Das, D.K. Anti-inflammatory responses of resveratrol. Inflamm. Allergy-Drug Targets 2007, 6, 168–173. [Google Scholar] [CrossRef] [PubMed]
- Abu-Ghefreh, A.A.A.; Canatan, H.; Ezeamuzie, C.I. In vitro and in vivo anti-inflammatory effects of andrographolide. Int. Immunopharmacol. 2009, 9, 313–318. [Google Scholar] [CrossRef] [PubMed]
- Chou, T.C. Anti-inflammatory and analgesic effects of paeonol in carrageenan-evoked thermal hyperalgesia. Br. J. Pharmacol. 2003, 139, 1146–1152. [Google Scholar] [CrossRef]
- Márquez, L.; García-Bueno, B.; Madrigal, J.L.; Leza, J.C. Mangiferin decreases inflammation and oxidative damage in rat brain after stress. Eur. J. Nutr. 2012, 51, 729–739. [Google Scholar] [CrossRef]
- Takimoto, H.C.; Wright, J.; Arbuck, S.G. Clinical applications of the camptothecins. Biochim. Biophys. Acta BBA Gene Struct. Expr. 1998, 1400, 107–119. [Google Scholar] [CrossRef]
- Chen, X.; Peng, L.-H.; Li, N.; Li, Q.-M.; Li, P.; Fung, K.-P.; Leung, P.-C.; Gao, J.-Q. The healing and anti-scar effects of astragaloside IV on the wound repair in vitro and in vivo. J. Ethnopharmacol. 2012, 139, 721–727. [Google Scholar] [CrossRef]
- Lee, J.-H.; Kim, H.-L.; Lee, M.H.; You, K.E.; Kwon, B.-J.; Seo, H.J.; Park, J.-C. Asiaticoside enhances normal human skin cell migration, attachment and growth in vitro wound healing model. Phytomedicine 2012, 19, 1223–1227. [Google Scholar] [CrossRef]
- Yin, P.-H.; Liu, X.; Qiu, Y.-Y.; Cai, J.-F.; Qin, J.-M.; Zhu, H.-R.; Li, Q. Anti-tumor activity and apoptosis-regulation mechanisms of bufalin in various cancers: New hope for cancer patients. Asian Pac. J. Cancer Prev. 2012, 13, 5339–5343. [Google Scholar] [CrossRef] [Green Version]
- Gordaliza, M.; Castro, M.D.; del Corral, J.M.; Feliciano, A.S. Antitumor properties of podophyllotoxin and related compounds. Curr. Pharm. Des. 2000, 6, 1811–1839. [Google Scholar] [CrossRef] [PubMed]
- Milross, G.C.; Mason, K.A.; Hunter, N.R.; Chung, W.-K.; Peters, L.J.; Milas, L. Relationship of mitotic arrest and apoptosis to antitumor effect of paclitaxel. JNCI J. Natl. Cancer Inst. 1996, 88, 1308–1314. [Google Scholar] [CrossRef] [PubMed]
- Long, R.; Yang, F.; Du, J.-R.; Qian, Z.-m.; Wang, C.-Y.; Chen, C. Effects of ligustilide on tumor growth and immune function in institute of cancer research mice. Trop. J. Pharm. Res. 2012, 11, 421–428. [Google Scholar] [CrossRef] [Green Version]
- Yu, X.; Wen, Y.; Liang, C.-G.; Liu, J.; Ding, Y.-B.; Zhang, W.-H. Design, synthesis and antifungal activity of psoralen derivatives. Molecules 2017, 22, 1672. [Google Scholar] [CrossRef] [Green Version]
- Zaidi, M. Antifungal activity of harmaline, HgCl/sub 2/and their complex. Phys. Chem. 2007, 16, 11–14. [Google Scholar]
- Wang, T.; Shi, G.; Shao, J.; Wu, D.; Yan, Y.; Zhang, M.; Cui, Y.; Wang, C. In vitro antifungal activity of baicalin against Candida albicans biofilms via apoptotic induction. Microb. Pathog. 2015, 87, 21–29. [Google Scholar] [CrossRef]
- Salas, P.M.; Céliz, G.; Geronazzo, H.; Daz, M.; Resnik, S.L. Antifungal activity of natural and enzymatically-modified flavonoids isolated from citrus species. Food Chem. 2011, 124, 1411–1415. [Google Scholar] [CrossRef]
- Srinivasan, M.; Sudheer, A.R.; Menon, V.P. Ferulic acid: Therapeutic potential through its antioxidant property. J. Clin. Biochem. Nutr. 2007, 40, 92–100. [Google Scholar] [CrossRef] [Green Version]
- Sova, M. Antioxidant and antimicrobial activities of cinnamic acid derivatives. Mini Rev. Med. Chem. 2012, 12, 749–767. [Google Scholar] [CrossRef]
- Kohlhardt-Floehr, C.; Boehm, F.; Troppens, S.; Lademann, J.; Truscott, T.G. Prooxidant and antioxidant behaviour of usnic acid from lichens under UVB-light irradiation–Studies on human cells. J. Photochem. Photobiol. B Biol. 2010, 101, 97–102. [Google Scholar] [CrossRef]
- Rozza, L.A.; de Faria, F.M.; Brito, A.R.S.; Pellizzon, C.H. The gastroprotective effect of menthol: Involvement of anti-apoptotic, antioxidant and anti-inflammatory activities. PLoS ONE 2014, 9, e86686. [Google Scholar] [CrossRef] [Green Version]
- Afaq, F.; Zaid, M.A.; Khan, N.; Dreher, M.; Mukhtar, H. Protective effect of pomegranate-derived products on UVB-mediated damage in human reconstituted skin. Exp. Dermatol. 2009, 18, 553–561. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, J.-L.; Liu, B.-Y.; Ma, K.-W. Traditional chinese medicine. Lancet 2008, 372, 1938–1940. [Google Scholar] [CrossRef]
- Wang, C.; Ma, J.; Liu, R.; Han, W.; Tang, X. A thermoplastic elastomer patch matrix for traditional Chinese medicine: Design and evaluation. Drug Dev. Ind. Pharm. 2014, 40, 211–221. [Google Scholar] [CrossRef] [PubMed]
- Ponrasu, T.; Cheng, T.-H.; Wang, L.; Cheng, Y.-S.; Wang, H.-M.D. Natural biocompatible polymer-based polyherbal compound gel for rapid wound contraction and promote re-epithelialization: An in vivo study. Mater. Lett. 2020, 261, 126911. [Google Scholar] [CrossRef]
- Liu, J.; Zhai, C.-M.; Chu, L.-J. Application progress of Chinese medicine gel in Cervicitis. Acta Chin. Med. Pharmacol. 2011, 39, 88–99. [Google Scholar]
- Hu, T.; Jiang, J.-G. Application of Nanotechnology in Traditional Chinese Medicine. Curr. Nanosci. 2012, 8, 474–484. [Google Scholar] [CrossRef]
- Shaker, S.D.; Ishak, R.A.H.; Ghoneim, A.; Elhuoni, M.A. Nanoemulsion: A Review on Mechanisms for the Transdermal Delivery of Hydrophobic and Hydrophilic Drugs. Sci. Pharm. 2019, 87, 17. [Google Scholar] [CrossRef] [Green Version]
- Ashtikar, M.; Nagarsekar, K.; Fahr, A. Transdermal delivery from liposomal formulations—Evolution of the technology over the last three decades. J. Control Release 2016, 242, 126–140. [Google Scholar] [CrossRef]
- Brewer, J.; Bloksgaard, M.; Kubiak, J.; Sørensen, J.A.; Bagatolli, L.A. Spatially Resolved Two-Color Diffusion Measurements in Human Skin Applied to Transdermal Liposome Penetration. J. Investig. Dermatol. 2013, 133, 1260–1268. [Google Scholar] [CrossRef] [Green Version]
- Giordo, R.; Nasrallah, G.K.; Al-Jamal, O.; Paliogiannis, P.; Pintus, G. Resveratrol Inhibits Oxidative Stress and Prevents Mitochondrial Damage Induced by Zinc Oxide Nanoparticles in Zebrafish (Danio rerio). Int. J. Mol. Sci. 2020, 21, 3838. [Google Scholar] [CrossRef]
- El Maghraby, G.M.; Williams, A.C. Vesicular systems for delivering conventional small organic molecules and larger macromolecules to and through human skin. Expert Opin. Drug Deliv. 2009, 6, 149–163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, S.P.; Li, Y.S.; Kuo, Y.C.; Tsai, S.J.; Lin, C.C. Preparation and Evaluation of Novel Transfersomes Combined with the Natural Antioxidant Resveratrol. Molecules 2019, 24, 600. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cosco, D.; Paolino, D.; Maiuolo, J.; Marzio, L.D.; Carafa, M.; Ventura, C.A.; Fresta, M. Ultradeformable liposomes as multidrug carrier of resveratrol and 5-fluorouracil for their topical delivery. Int. J. Pharm. 2015, 489, 1–10. [Google Scholar] [CrossRef]
- Zhan, Y.-D.; Wu, H.-L.; Wang, W.; Luo, W.-J. Preparation of Ultradeformable Nanoliposomes of Danshensu and Determination of Its Encapsulation Percentage. China J. Mod. Med. 2008, 18, 161–163. [Google Scholar]
- Perez, E.A. Paclitaxel in Breast Cancer. Oncologist 1998, 3, 373–389. [Google Scholar] [CrossRef] [Green Version]
- Kim, G.S.; Ryplida, B.; Phuong, P.T.M.; Won, H.J.; Lee, G.; Bhang, S.H.; Park, S.Y. Reduction-Triggered Paclitaxel Release Nano-Hybrid System Based on Core-Crosslinked Polymer Dots with a pH-Responsive Shell-Cleavable Colorimetric Biosensor. Int. J. Mol. Sci. 2019, 20, 5368. [Google Scholar] [CrossRef] [Green Version]
- Weiss, B.R.; Donehower, R.C.; Wiernik, P.H.; Ohnuma, T.; Gralla, R.J.; Trump, D.L.; Baker, J.R., Jr.; van Echo, D.A.; von Hoff, D.D.; Leyland-Jones, B. Hypersensitivity reactions from taxol. J. Clin. Oncol. 1990, 8, 1263–1268. [Google Scholar] [CrossRef]
- Utreja, P.; Jain, S.; Tiwary, A.K. Localized delivery of paclitaxel using elastic liposomes: Formulation development and evaluation. Drug Deliv. 2011, 18, 367–376. [Google Scholar] [CrossRef] [Green Version]
- Kale, N.S.; Deore, S.L. Emulsion micro emulsion and nano emulsion: A review. Syst. Rev. Pharm. 2017, 8, 39. [Google Scholar] [CrossRef] [Green Version]
- Xue, M.; Zhao, Y.; Li, X.-J.; JIang, Z.-Z.; Zhang, L.; Liu, S.-H.; Li, X.-M.; Zhang, L.-Y.; Yang, S.-Y. Comparison of toxicokinetic and tissue distribution of triptolide-loaded solid lipid nanoparticles vs free triptolide in rats. Eur. J. Pharm. Sci. 2012, 47, 713–717. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Deng, L.; Zhao, H.; Liu, M.; Jin, H.; Li, J.; Dong, A. Pressure-sensitive adhesive properties of poly (N-vinyl pyrrolidone)/D, L-lactic acid oligomer/glycerol/water blends for TDDS. J. Biomater. Sci. Polym. Ed. 2010, 21, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, M.; Gu, Y.; Yang, D.; Tang, X.; Liu, J. Development of triptolide-nanoemulsion gels for percutaneous administration: Physicochemical, transport, pharmacokinetic and pharmacodynamic characteristics. J. Nanobiotechnol. 2017, 15, 88. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luo, M.; Shen, Q.; Chen, J. Transdermal delivery of paeonol using cubic gel and microemulsion gel. Int. J. Nanomed. 2011, 6, 1603–1610. [Google Scholar]
- Guang-chang, Z.; Yin-rui, G.; Zhe-li, W.; Jian, W. In Vitro Transdermal Effect of Euodiae Fructus Oil-in-water Microemulsion Cataplasm. Chin. J. Exp. Tradit. Med. Formulae 2015, 17, 1–4. [Google Scholar]
- Zhan, X.; Zhang, W.; Sun, T.; Feng, Y.; Xi, Y.; Jiang, Y.; Tang, X. Bulleyaconitine A Effectively Relieves Allergic Lung Inflammation in a Murine Asthmatic Model. Med. Sci. Monit. 2019, 25, 1656–1662. [Google Scholar] [CrossRef]
- Xiaohui, W. Study on the Carotenoid Microemulsion and Its Aqueous Transdermal Catheterization System; Peking Union Medical College: Beijing, China, 2006. [Google Scholar]
- Mostafa, M.D.; Kassem, A.A.; Asfour, M.H.; al Okbi, S.Y.; Mohamed, D.A.; Hamed, T.E.-S. Transdermal cumin essential oil nanoemulsions with potent antioxidant and hepatoprotective activities: In-vitro and in-vivo evaluation. J. Mol. Liq. 2015, 212, 6–15. [Google Scholar] [CrossRef]
- Sulaiman, C.I.S.; Basri, M.; Masoumi, H.R.F.; Ashari, S.E.; Ismail, M. Design and development of a nanoemulsion system containing extract of Clinacanthus nutans (L.) leaves for transdermal delivery system by D-optimal mixture design and evaluation of its physicochemical properties. RSC Adv. 2016, 6, 67378–67388. [Google Scholar] [CrossRef]
- Muller, H.R.; Shegokar, R.; Keck, C.M. 20 years of lipid nanoparticles (SLN and NLC): Present state of development and industrial applications. Curr. Drug Discov. Technol. 2011, 8, 207–227. [Google Scholar] [CrossRef]
- Muller, H.R.; Keck, C.M. Challenges and solutions for the delivery of biotech drugs--a review of drug nanocrystal technology and lipid nanoparticles. J. Biotechnol. 2004, 113, 151–170. [Google Scholar] [CrossRef]
- Gu, Y.; Yang, M.; Tang, X.; Wang, T.; Yang, D.; Zhai, G.; Liu, J. Lipid nanoparticles loading triptolide for transdermal delivery: Mechanisms of penetration enhancement and transport properties. J. Nanobiotechnol. 2018, 16, 68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chou, K.C.; Yang, Y.T.; Yang, H.C.; Liang, S.S.; Wang, T.N.; Kuo, P.L.; Wang, H.D.; Tsai, E.M.; Chiu, C.C. The Impact of Di(2-ethylhexyl)phthalate on Cancer Progression. Arch. Immunol. Ther. Exp. 2018, 66, 183–197. [Google Scholar] [CrossRef] [PubMed]
- Palem, P.P.; Kuriakose, G.C.; Jayabaskaran, C. An Endophytic Fungus, Talaromyces radicus, Isolated from Catharanthus roseus, Produces Vincristine and Vinblastine, Which Induce Apoptotic Cell Death. PLoS ONE 2015, 10, e0144476. [Google Scholar] [CrossRef]
- Yan, L. Study on Transdermal Interventional Therapeutic System of Vincristine and Its Transport Mechanism in the Active Ingredients of Anti-Malignant Lymphoma; Sichuan University: Chengdu, China, 2006; p. 106. [Google Scholar]
- Chang, C.-K.; Wang, H.-M.D.; Lan, J.C.-W. Investigation and characterization of plasma-treated poly (3-hydroxybutyrate) and poly (3-hydroxybutyrate-co-3-hydroxyvalerate) biopolymers for an in vitro cellular study of mouse adipose-derived stem cells. Polymers 2018, 10, 355. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lis-Balchin, M. Aromatherapy Science: A Guide for Healthcare Professionals; Pharmaceutical Press: London, UK, 2006. [Google Scholar]
- Alves-Rodrigues, A.; Shao, A. The science behind lutein. Toxicol. Lett. 2004, 150, 57–83. [Google Scholar] [CrossRef]
- Mitri, K.; Shegokar, R.; Gohla, S.; Anselmi, C.; Muller, R.H. Lipid nanocarriers for dermal delivery of lutein: Preparation, characterization, stability and performance. Int. J. Pharm. 2011, 414, 267–275. [Google Scholar] [CrossRef]
- Andersen, H.H.; Sand, C.; Elberling, J. Effective pain relief of post-herpetic neuralgia with capsaicin patch. Ugeskr. Laeger. 2016, 178, V10150846. [Google Scholar]
- Chanda, S.; Bashir, M.; Babbar, S.; Koganti, A.; Bley, K. In vitro hepatic and skin metabolism of capsaicin. Drug Metab Dispos. 2008, 36, 670–675. [Google Scholar] [CrossRef]
- Wang, R.X.; Gao, S.Q.; Niu, X.Q.; Li, L.J.; Ying, X.Y.; Hu, Z.J.; Gao, J.Q. Capsaicin-loaded nanolipoidal carriers for topical application: Design, characterization, and in vitro/in vivo evaluation. Int. J. Nanomed. 2017, 12, 3881–3898. [Google Scholar] [CrossRef] [Green Version]
- Peng, H.; Dong, R.; Wang, S.; Zhang, Z.; Luo, M.; Bai, C.; Zhao, Q.; Li, J.; Chen, L.; Xiong, H. A pH-responsive nano-carrier with mesoporous silica nanoparticles cores and poly(acrylic acid) shell-layers: Fabrication, characterization and properties for controlled release of salidroside. Int. J. Pharm. 2013, 446, 153–159. [Google Scholar] [CrossRef]
- Verma, P.; Pathak, K. Nanosized ethanolic vesicles loaded with econazole nitrate for the treatment of deep fungal infections through topical gel formulation. Nanomedicine 2012, 8, 489–496. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.-H.; Wu, S.-H.; Lee, S.-S.; Lin, Y.-N.; Chai, C.-Y.; Lai, C.-S.; Wang, H.-M.D. Platelet-Rich Plasma Injection in Burn Scar Areas Alleviates Neuropathic Scar Pain. Int. J. Med. Sci. 2018, 15, 238–247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, J.; Lu, Y.-R.; Lin, I.-F.; Kang, W.; Chen, H.-b.; Lu, H.-F.; Wang, H.-M.D. Reversing UVB-induced photoaging with Hibiscus sabdariffa calyx aqueous extract. J. Sci. Food Agric. 2020, 100, 672–681. [Google Scholar] [CrossRef]
- Peng, L.-H.; Xu, S.-Y.; Shan, Y.-H.; Wei, W.; Liu, S.; Zhang, C.-Z.; Wu, J.-H.; Liang, W.-Q.; Gao, J.-Q. Sequential release of salidroside and paeonol from a nanosphere-hydrogel system inhibits ultraviolet B-induced melanogenesis in guinea pig skin. Int. J. Nanomed. 2014, 9, 1897–1908. [Google Scholar] [CrossRef] [Green Version]
- Abbasi, E.; Aval, S.F.; Akbarzadeh, A.; Milani, M.; Nasrabadi, H.T.; Joo, S.W.; Hanifehpour, Y.; Nejati-Koshki, K.; Pashaei-Asl, R. Dendrimers: Synthesis, applications, and properties. Nanoscale Res. Lett. 2014, 9, 247. [Google Scholar] [CrossRef] [Green Version]
- Hsu, S.-K.; Chiu, C.-C.; Dahms, H.-U.; Chou, C.-K.; Cheng, C.-M.; Chang, W.-T.; Cheng, K.-C.; Wang, H.-M.D.; Lin, I. Unfolded protein response (UPR) in survival, dormancy, immunosuppression, metastasis, and treatments of cancer cells. Int. J. Mol. Sci. 2019, 20, 2518. [Google Scholar] [CrossRef] [Green Version]
- Chang, W.-T.; Wu, C.-Y.; Lin, Y.-C.; Wu, M.-T.; Su, K.-L.; Yuan, S.-S.; Wang, H.-M.D.; Fong, Y.; Lin, Y.-H.; Chiu, C.-C. C2-Ceramide-Induced Rb-Dominant Senescence-Like Phenotype Leads to Human Breast Cancer MCF-7 Escape from p53-Dependent Cell Death. Int. J. Mol. Sci. 2019, 20, 4292. [Google Scholar] [CrossRef] [Green Version]
- Stern, S.R.; Laird, N. The carcinogenic risk of treatments for severe psoriasis. Photochemotherapy Follow-up Study. Cancer 1994, 73, 2759–2764. [Google Scholar] [CrossRef]
- Liu, X.; Dong, J.; Liang, Q.; Wang, H.-M.D.; Liu, Z.; Xu, R.; Kang, W. Coagulant Effects and Mechanism of Schefflera heptaphylla (L.) Frodin. Molecules 2019, 24, 4547. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borowska, K.; Wolowiec, S.; Rubaj, A.; Glowniak, K.; Sieniawska, E.; Radej, S. Effect of polyamidoamine dendrimer G3 and G4 on skin permeation of 8-methoxypsoralene--in vivo study. Int. J. Pharm. 2012, 426, 280–283. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.-Y.; Yeh, Y.-T. Two new phenylalkanoids from the rhizomes of Zingiber officinale. Nat. Prod. Res. 2011, 25, 62–67. [Google Scholar] [CrossRef] [PubMed]
- Junghanns, J.U.; Müller, R.H. Nanocrystal technology, drug delivery and clinical applications. Int. J. Nanomed. 2008, 3, 295–309. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, N.T.-P.; Nguyen, L.V.-H.; Thanh, N.T.; Toi, V.V.; Quyen, T.N.; Tran, P.A.; Wang, H.-M.D.; Nguyen, T.-H. Stabilization of silver nanoparticles in chitosan and gelatin hydrogel and its applications. Mater. Lett. 2019, 248, 241–245. [Google Scholar] [CrossRef]
- Zhang, X.; Yu, Q.; Jiang, H.; Ma, C.; Wang, H.M.D.; Wang, J.; Kang, W.-Y. A novel polysaccharide from Malus halliana Koehne with coagulant activity. Carbohydr. Res. 2019, 485, 107813. [Google Scholar] [CrossRef]
- Fang, J.-H.; Liu, C.-H.; Hsu, R.-S.; Chen, Y.-Y.; Chiang, W.-H.; Wang, H.-M.D.; Hu, S.-H. Transdermal Composite Microneedle Composed of Mesoporous Iron Oxide Nanoraspberry and PVA for Androgenetic Alopecia Treatment. Polymers 2020, 12, 1392. [Google Scholar] [CrossRef]
- Xu, H.; Yuan, X.-D.; Shen, B.-D.; Han, J.; Lv, Q.-Y.; Dai, L.; Lin, M.-G.; Yu, C.; Bai, J.-X.; Yuan, H.-L. Development of poly(N-isopropylacrylamide)/alginate copolymer hydrogel-grafted fabrics embedding of berberine nanosuspension for the infected wound treatment. J. Biomater. Appl. 2014, 28, 1376–1385. [Google Scholar] [CrossRef]
- Wu, C.Y.; Wang, Y.C.; Wang, W.T.; Wang, H.D.; Lin, H.H.; Su, L.J.; Kuo, Y.R.; Lai, C.S.; Ho, M.L.; Yu, J. Fluorescent Nanodiamonds Enable Long-Term Detection of Human Adipose-Derived Stem/Stromal Cells in an In Vivo Chondrogenesis Model Using Decellularized Extracellular Matrices and Fibrin Glue Polymer. Polymers 2019, 11, 1391. [Google Scholar] [CrossRef] [Green Version]
- Weiyu, W.; Huinan, X.; Hong, L.; Teng, S.; Jianfang, Z.; Li, S.; Lihua, Q. Skin permeability and anti-inflammatory analgesic activities of bulleyaconitine A liposomes. Chin. J. Clin. Pharm. 2003, 3, 3. [Google Scholar]
- Duangjit, S.; Chairat, W.; Opanasopit, P.; Rojanarata, T.; Panomsuk, S.; Ngawhirunpat, T. Development, Characterization and Skin Interaction of Capsaicin-Loaded Microemulsion-Based Nonionic Surfactant. Biol. Pharm. Bull. 2016, 39, 601–610. [Google Scholar] [CrossRef] [Green Version]
- Min, X.; Guo, X.J.; Chun, W.X.; Ting, W.T.; Ping, W.Z. Study on the transdermal absorption of Saussurea involucrate microemulsion. Chin. J. Hosp. Pharm. 2012, 14, 3. [Google Scholar]
- Wenzhen, W.; Xiaolan, C.; Yumei, W.; Wen, L.; Yaping, L.; Jian, X. Study on in vitro transdermal and influencing factors of Artemisia annua microemulsion. Lishizhen Med. Mater. Med. Res. 2015, 26, 2132–2134. [Google Scholar]
- Chen, X.Z.; Li, B.; Liu, T.; Wang, X.; Zhu, Y.; Wang, L.; Wang, X.H.; Niu, X.; Xiao, Y.; Sun, Q. Evaluation of paeonol-loaded transethosomes as transdermal delivery carriers. Eur. J. Pharm. Sci. 2017, 99, 240–245. [Google Scholar] [CrossRef] [PubMed]
- Ma, H.; Guo, D.; Fan, Y.; Wang, J.; Cheng, J.; Zhang, X. Paeonol-Loaded Ethosomes as Transdermal Delivery Carriers: Design, Preparation and Evaluation. Molecules 2018, 23, 1756. [Google Scholar] [CrossRef] [Green Version]
- Shi, J.; Wu, Y.; Guo, S.; Zhang, H.; Chen, G.; Xu, X. The efficacy of anti-VEGF antibody-modified liposomes loaded with paeonol in the prevention and treatment of hypertrophic scars. Drug Dev. Ind. Pharm. 2019, 45, 439–455. [Google Scholar] [CrossRef]
- Wang, W.; Cai, Y.; Liu, Y.; Zhao, Y.; Feng, J.; Liu, C. Microemulsions based on paeonol-menthol eutectic mixture for enhanced transdermal delivery: Formulation development and in vitro evaluation. Artif. Cells Nanomed. Biotechnol. 2017, 45, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Tosato, G.M.; Giron, J.V.M.; Martin, A.A.; Tippavajhala, V.K.; de Mele, M.F.L.; Dicelio, L. Comparative study of transdermal drug delivery systems of resveratrol: High efficiency of deformable liposomes. Mater. Sci. Eng. C Mater. Biol. Appl. 2018, 90, 356–364. [Google Scholar] [CrossRef] [Green Version]
- Chauhan, A.S. Dendrimer nanotechnology for enhanced formulation and controlled delivery of resveratrol. Ann. N. Y. Acad. Sci. 2015, 1348, 134–140. [Google Scholar] [CrossRef]
- Da, W.; Qu, W.; Yan, M. Chinese Medicine Application in Cosmetics. Guangdong Chem. Ind. 2012, 39, 142–143. [Google Scholar]
- Chen, Y.; Huang, J.-Y.; Lin, Y.; Lin, I.F.; Lu, Y.-R.; Liu, L.-H.; Wang, H.-M.D. Antioxidative and Antimelanoma Effects of Various Tea Extracts via a Green Extraction Method. J. Food Qual. 2018, 2018, 5156073. [Google Scholar] [CrossRef]
- Kao, C.-J.; Chou, H.-Y.; Lin, Y.-C.; Liu, Q.; Wang, H.-M.D. Functional Analysis of Macromolecular Polysaccharides: Whitening, Moisturizing, Anti-Oxidant, and Cell Proliferation. Antioxidants 2019, 8, 533. [Google Scholar] [CrossRef] [Green Version]
- Chou, H.-Y.; Wang, H.-M.D.; Kuo, C.-H.; Lu, P.-H.; Wang, L.; Kang, W.; Sun, C.-L. Antioxidant Graphene Oxide Nanoribbon as a Novel Whitening Agent Inhibits Microphthalmia-Associated Transcription Factor-Related Melanogenesis Mechanism. ACS Omega 2020, 5, 6588–6597. [Google Scholar] [CrossRef] [Green Version]
- Kuo, C.-H.; Shieh, C.-J.; Huang, S.-M.; Wang, H.-M.; Huang, C.-Y. The effect of extrusion puffing on the physicochemical properties of brown rice used for saccharification and Chinese rice wine fermentation. Food Hydrocoll. 2019, 94, 363–370. [Google Scholar] [CrossRef]
- Li, J.; Huang, S.-Y.; Deng, Q.; Li, G.; Su, G.; Liu, J.; Wang, H.-M.D. Extraction and characterization of phenolic compounds with antioxidant and antimicrobial activities from pickled radish. Food Chem. Toxicol. Int. J. Publ. Br. Ind. Biol. Res. Assoc. 2020, 136, 111050. [Google Scholar] [CrossRef]
- Li, C.; Hu, M.; Jiang, S.; Liang, Z.; Wang, J.; Liu, Z.; Wang, H.D.; Kang, W. Evaluation Procoagulant Activity and Mechanism of Astragalin. Molecules 2020, 25, 177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan-jun, X.; Wei-jun, K.; Mei-hua, Y.; Shi-hai, Y. Research progress of Chinese herbal medi. China J. Chin. Mater. Med. 2015, 40, 3925–3931. [Google Scholar]
- Surjushe, A.; Vasani, R.; Saple, D.G. Aloe vera: A short review. Indian J. Dermatol. 2008, 53, 163–166. [Google Scholar] [CrossRef]
- Hsieh, T.-F.; Chang, Y.-N.; Liu, B.-L.L. Effect of extracts of traditional Chinese medicines on anti-tyrosinase and antioxidant activities. J. Med. Plants Res. 2015, 9, 1131–1138. [Google Scholar]
- Amen, Y.; Arung, E.T.; Afifi, M.S.; Halim, A.F.; Ashour, A.; Fujimoto, R.; Goto, T.; Shimizu, K. Melanogenesis inhibitors from Coix lacryma-jobi seeds in B16-F10 melanoma cells. Nat. Prod. Res. 2017, 31, 2712–2718. [Google Scholar] [CrossRef]
- Xu, B.; Chen, X. Comparative studies on free radical scavenging capacities and total phenolic contents of whole and dehulled adlay (coix lacryma-jobi var. ma-yuen) as affected by thermal processing methods. J. Food Process. Preserv. 2013, 37, 630–636. [Google Scholar] [CrossRef]
- Das, S.; Akhter, R.; Khandaker, S.; Huque, S.; Das, P.; Anwar, M.R.; Tanni, K.A.; Shabnaz, S.; Shahriar, M. Phytochemical screening, antibacterial and anthelmintic activities of leaf and seed extracts of Coix lacryma-jobi L. J. Coast. Life Med. 2017, 5, 360–364. [Google Scholar] [CrossRef]
- Ye, Y.; Chu, J.H.; Wang, H.; Xu, H.; Chou, G.X.; Leung, A.K.M.; Fong, W.f.; Yu, Z.L. Involvement of p38 MAPK signaling pathway in the anti-melanogenic effect of San-bai-tang, a Chinese herbal formula, in B16 cells. J. Ethnopharmacol. 2010, 132, 533–535. [Google Scholar] [CrossRef] [PubMed]
- Li, C.-Q.; He, L.-C.; Dong, H.-Y.; Jin, J.-Q. Screening for the anti-inflammatory activity of fractions and compounds from Atractylodes macrocephala koidz. J. Ethnopharmacol. 2007, 114, 212–217. [Google Scholar] [CrossRef] [PubMed]
- Peng, W.; Han, T.; Xin, W.-B.; Zhang, X.-G.; Zhang, Q.-Y.; Jia, M.; Qin, L.-P. Comparative research of chemical constituents and bioactivities between petroleum ether extracts of the aerial part and the rhizome of Atractylodes macrocephala. Med. Chem. Res. 2011, 20, 146–151. [Google Scholar] [CrossRef]
- Lu, C.-L.; Zhu, W.; Wang, M.; Xu, X.-J.; Lu, C.-J. Antioxidant and anti-inflammatory activities of phenolic-enriched extracts of Smilax glabra. Evid. Based Complement. Altern. Med. 2014, 2014, 910438. [Google Scholar] [CrossRef]
- Xu, S.; Shang, M.Y.; Liu, G.X.; Xu, F.; Wang, X.; Shou, C.C.; Cai, S.Q. Chemical constituents from the rhizomes of Smilax glabra and their antimicrobial activity. Molecules 2013, 18, 5265–5287. [Google Scholar] [CrossRef] [Green Version]
- Zhou, J.-X.; Braun, M.S.; Wetterauer, P.; Wetterauer, B.; Wink, M. Antioxidant, cytotoxic, and antimicrobial activities of Glycyrrhiza glabra L., Paeonia lactiflora Pall., and Eriobotrya japonica (Thunb.) Lindl. extracts. Medicines 2019, 6, 43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cho, H.Y.; Kim, J.H.; Park, S.M.; Lee, B.C.; Pyo, H.B.; Park, H.D. New cosmetic agents for skin whitening from Angelica dahurica. J. Cosmet. Sci. 2006, 57, 11–21. [Google Scholar] [PubMed]
- Lee, M.-Y.; Lee, J.-A.; Seo, C.-S.; Ha, H.; Lee, H.; Son, J.-K.; Shin, H.-K. Anti-inflammatory activity of Angelica dahurica ethanolic extract on RAW264, 7 cells via upregulation of heme oxygenase-1. Food Chem. Toxicol. 2011, 49, 1047–1055. [Google Scholar] [CrossRef]
- Kim, K.-S.; Yang, H.J.; Choi, E.-K.; Park, Y.J.; Cho, D.H.; Ahn, K.S.; Lee, J.H.; Lee, S.-G.; Um, J.Y.; Jung, H.-J. The multi-target antibiotic efficacy of Angelica dahurica Bentham et Hooker extract exposed to the Escherichia coli O157: H7. BioChip. J. 2011, 5, 333–342. [Google Scholar] [CrossRef]
- Nakamura, S.; Nakashima, S.; Tanabe, G.; Oda, Y.; Yokota, N.; Fujimoto, K.; Matsumoto, T.; Sakuma, R.; Ohta, T.; Ogawa, K.; et al. Alkaloid constituents from flower buds and leaves of sacred lotus (Nelumbo nucifera, Nymphaeaceae) with melanogenesis inhibitory activity in B16 melanoma cells. Bioorg. Med. Chem. 2013, 21, 779–787. [Google Scholar] [CrossRef]
- Kim, S.-Y.; Moon, G.-S. Photoprotective Effect of Lotus (Nelumbo nucifera Gaertn.) Seed Tea against UVB Irradiation. Prev. Nutr. Food Sci. 2015, 20, 162–168. [Google Scholar] [CrossRef] [Green Version]
- Arjun, P.; Priya, S.M.; Sivan, P.S.; Krishnamoorthy, M.; Balasubramanian, K. Antioxidant and antimicrobial activity of Nelumbo nucifera Gaertn. leaf extracts. J. Acad. Indus. Res. 2012, 1, 15–19. [Google Scholar]
- Kilani-Jaziri, S.; Bhouri, W.; Skandrani, I.; Limem, I.; Chekir-Ghedira, L.; Ghedira, K. Phytochemical, antimicrobial, antioxidant and antigenotoxic potentials of Cyperus rotundus extracts. S. Afr. J. Bot. 2011, 77, 767–776. [Google Scholar] [CrossRef] [Green Version]
- Parekh, J.; Chanda, S. In-vitro antimicrobial activities of extracts of Launaea procumbens roxb.(Labiateae), Vitis vinifera l.(Vitaceae) and Cyperus rotundus l.(Cyperaceae). Afr. J. Biomed. Res. 2006, 9. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.-S.; Kim, J.-A.; Cho, S.-H.; Son, A.-R.; Jang, T.-S.; So, M.-S.; Chung, S.-R.; Lee, S.-H. Tyrosinase Inhibitors isolated from the Roots of Glycyrrhiza glabra L. Korean J. Pharmacogn. 2003, 34, 33–39. [Google Scholar]
- Nirmala, P.; Selvaraj, T. Anti-inflammatory and anti-bacterial activities of Glycyrrhiza glabra L. J. Agric. Technol. 2011, 7, 815–823. [Google Scholar]
- Cha, S.D.; Eun, J.S.; Jeon, H. Anti-inflammatory and antinociceptive properties of the leaves of Eriobotrya japonica. J. Ethnopharmacol. 2011, 134, 305–312. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.J.; Seo, Y.C.; No, R.H.; Lee, H.Y. Improved cosmetic activity by optimizing the Lithospermum erythrorhizon extraction process. Cytotechnology 2015, 67, 51–65. [Google Scholar] [CrossRef] [Green Version]
- Chang, M.-J.; Huang, H.-C.; Chang, H.-C.; Chang, T.-M. Cosmetic formulations containing Lithospermum erythrorhizon root extract show moisturizing effects on human skin. Arch. Dermatol. Res. 2008, 300, 317–323. [Google Scholar] [CrossRef]
- Ishida, T.; Sakaguchi, I. Protection of human keratinocytes from UVB-induced inflammation using root extract of Lithospermum erythrorhizon. Biol. Pharm. Bull. 2007, 30, 928–934. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, U.-Y.; Chang, D.-S.; Cho, H.-R. Antimicrobial effect of Lithospermi radix (Lithospermum erythrorhizon) extract. J. Korean Soc. Food Sci. Nutr. 1992, 21, 97–100. [Google Scholar]
- Chen, Z.; Zhang, C.; Gao, F.; Fu, Q.; Fu, C.; He, Y.; Zhang, J. A systematic review on the rhizome of Ligusticum chuanxiong Hort. (Chuanxiong). Food Chem. Toxicol. 2018, 119, 309–325. [Google Scholar] [CrossRef] [PubMed]
- Ran, X.; Ma, L.; Peng, C.; Zhang, H.; Qin, L.-P. Ligusticum chuanxiong Hort: A review of chemistry and pharmacology. Pharm. Biol. 2011, 49, 1180–1189. [Google Scholar] [CrossRef] [Green Version]
- Cai, Y.; Sun, M.; Xing, J.; Corke, H. Antioxidant phenolic constituents in roots of Rheum officinale and Rubia cordifolia: Structure− radical scavenging activity relationships. J. Agric. Food Chem. 2004, 52, 7884–7890. [Google Scholar] [CrossRef] [PubMed]
- Alaadin, M.A.; Al-Khateeb, E.H.; Jäger, A.K. Antibacterial activity of the Iraqi Rheum ribes. Root. Pharm. Biol. 2007, 45, 688–690. [Google Scholar] [CrossRef]
- Dung, T.N.; Bajpai, V.K.; Rahman, A.; Yoon, J.I.; Kang, S.C. Phenolic contents, antioxidant and tyrosinase inhibitory activities of lonicera japonica thumb. J. Food Biochem. 2011, 35, 148–160. [Google Scholar] [CrossRef]
- Xiong, J.; Li, S.; Wang, W.; Hong, Y.; Tang, K.; Luo, Q. Screening and identification of the antibacterial bioactive compounds from Lonicera japonica Thunb. leaves. Food Chem. 2013, 138, 327–333. [Google Scholar] [CrossRef]
- Jang, Y.J.; Kim, H.N.; Kim, Y.R.; Choi, W.Y.; Choi, Y.H.; Shin, H.K.; Choi, B.T. Partially purified components of Nardostachys chinensis suppress melanin synthesis through ERK and Akt signaling pathway with cAMP down-regulation in B16F10 cells. J. Ethnopharmacol. 2011, 137, 1207–1214. [Google Scholar] [CrossRef]
- Jing, L.; Zhu, Z.L.; Ping, W.X.; Ming, C.Z. Study on Antimicrobial and Antioxidant Activities of the Essential Oil of Nardostachys chinensis. Food Ind. 2014, 35, 91–93. [Google Scholar] [CrossRef] [Green Version]
- Erdogan-Orhan, I.; Kartal, M. Insights into research on phytochemistry and biological activities of Prunus armeniaca L. (apricot). Food Res. Int. 2011, 44, 1238–1243. [Google Scholar] [CrossRef]
- Yiğit, D.; Yiğit, N.; Mavi, A. Antioxidant and antimicrobial activities of bitter and sweet apricot (Prunus armeniaca L.) kernels. Braz. J. Med. Biol. Res. 2009, 42, 346–352. [Google Scholar] [CrossRef] [Green Version]
- Kim, M.; Lim, S.J.; Oidovsambuu, S.; Nho, C.W. Gnetin H isolated from Paeonia anomala inhibits FcεRI-mediated mast cell signaling and degranulation. J. Ethnopharmacol. 2014, 154, 798–806. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Xia, Q.; Liu, X.; Liu, W.; Huang, W.; Mei, X.; Luo, J.; Shan, M.; Lin, R.; Zou, D.; et al. Phytochemistry, pharmacology, quality control and future research of Forsythia suspensa (Thunb.) Vahl: A review. J. Ethnopharmacol. 2018, 210, 318–339. [Google Scholar] [CrossRef] [PubMed]
- Chao, W.W.; Lin, B.F. Bioactivities of major constituents isolated from Angelica sinensis (Danggui). Chin. Med. 2011, 6, 29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jin, M.; Zhao, K.; Huang, Q.; Xu, C.; Shang, P. Isolation, structure and bioactivities of the polysaccharides from Angelica sinensis (Oliv.) Diels: A review. Carbohydr. Polym. 2012, 89, 713–722. [Google Scholar] [CrossRef] [PubMed]
- Kuo, P.-C.; Cherng, C.-Y.; Jeng, J.-F.; Damu, A.G.; Teng, C.-M.; Lee, E.-J.; Wu, T.-S. Isolation of a natural antioxidant, dehydrozingerone from Zingiber officinale and synthesis of its analogues for recognition of effective antioxidant and antityrosinase agents. Arch. Pharmacal Res. 2005, 28, 518–528. [Google Scholar] [CrossRef]
- Sah, P.; Al-Tamimi, B.; Al-Nassri, N.; Al-Mamari, R. Effect of temperature on antibiotic properties of garlic (Allium sativum L.) and ginger (Zingiber officinale Rosc.). Afr. J. Biotechnol. 2012, 11, 16192–16195. [Google Scholar]
- Hsieh, W.-T.; Liu, Y.-T.; Lin, W.-C. Anti-inflammatory properties of Ajuga bracteosa in vivo and in vitro study and their effects on mouse model of liver fibrosis. J. Ethnopharmacol. 2011, 135, 116–125. [Google Scholar] [CrossRef]
- Lu, H.Y.; Chen, J.; Wei, D.Z.; Wang, Z.T.; Tao, X.Y. Tyrosinase inhibitory effect and inhibitory mechanism of tiliroside from raspberry. J. Enzym. Inhib. Med. Chem. 2009, 24, 1154–1160. [Google Scholar] [CrossRef] [Green Version]
- Zhang, T.-T.; Wang, M.; Yang, L.; Jiang, J.-G.; Zhao, J.-W.; Zhu, W. Flavonoid glycosides from Rubus chingii Hu fruits display anti-inflammatory activity through suppressing MAPKs activation in macrophages. J. Funct. Foods 2015, 18, 235–243. [Google Scholar] [CrossRef]
- Li, T.C.; Chen, X.; Zhang, Q.Z.; Yang, Y.Y.; Chu, C.K.; Li, C. Study on antibacterial effect of 100 Chinese herbal medicines on Aeromonas hydrophila in vitro. Freshw. Fish. 2012, 42, 27–34. [Google Scholar]
- Chou, S.-T.; Chang, W.-L.; Chang, C.-T.; Hsu, S.-L.; Lin, Y.-C.; Shih, Y. Cinnamomum cassia essential oil inhibits α-MSH-induced melanin production and oxidative stress in murine B16 melanoma cells. Int. J. Mol. Sci. 2013, 14, 19186–19201. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.C.; Li, R.X.; Chuang, L.Y. Antioxidant activity of various parts of Cinnamomum cassia extracted with different extraction methods. Molecules 2012, 17, 7294–7304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ammar, M.S.S.; Mokhtaria, K.; Amar, A.A.; Tahar, B.B.; Moulay, D.; Mohamed, H.S.; Laid, B. Chemical composition and antibacterial activity of Cinnamomum aromaticum essential oil against four enteropathogenic bacteria associated with neonatal calve’s diarrhea. Asian J. Anim. Vet. Adv. 2017, 12, 24–30. [Google Scholar] [CrossRef] [Green Version]
- Piwowarski, P.J.; Kiss, A.K.; Kozłowska-Wojciechowska, M. Anti-hyaluronidase and anti-elastase activity screening of tannin-rich plant materials used in traditional Polish medicine for external treatment of diseases with inflammatory background. J. Ethnopharmacol. 2011, 137, 937–941. [Google Scholar] [CrossRef]
- Tunalier, Z.; Koşar, M.; Küpeli, E.; Çaliş, İ.; Başer, K.H.C. Antioxidant, anti-inflammatory, anti-nociceptive activities and composition of Lythrum salicaria L. extracts. J. Ethnopharmacol. 2007, 110, 539–547. [Google Scholar] [CrossRef]
- Yoon, M.-Y.; Kim, H.-J.; Lee, S.-J. The effect of antioxidant and whitening action on Plantago asiatica L. leaf ethanol extract for health care. Technol. Health Care 2019, 27, 567–577. [Google Scholar] [CrossRef]
- Stanisavljević, T.I.; Stojičević, S.S.; Veličković, D.T.; Lazić, M.L.; Veljković, V.B. Screening the antioxidant and antimicrobial properties of the extracts from plantain (Plantago major L.) leaves. Sep. Sci. Technol. 2008, 43, 3652–3662. [Google Scholar] [CrossRef]
- Park, T.-S.; Kim, D.-H.; Son, J.-H. Whitening effect of Salvia miltorrhiza Bunge water extract in human epidermal melanocyte. J. Appl. Biol. Chem. 2015, 58, 333–338. [Google Scholar] [CrossRef] [Green Version]
- Choi, G.H.; Tran, P.T.; Lee, J.-H.; Min, B.S.; Kim, J.A. Anti-inflammatory activity of caffeic acid derivatives isolated from the roots of Salvia miltiorrhiza Bunge. Arch. Pharmacal Res. 2018, 41, 64–70. [Google Scholar] [CrossRef]
- Zhao, J.; Lou, J.; Mou, Y.; Li, P.; Wu, J.; Zhou, L. Diterpenoid tanshinones and phenolic acids from cultured hairy roots of Salvia miltiorrhiza Bunge and their antimicrobial activities. Molecules 2011, 16, 2259–2267. [Google Scholar] [CrossRef] [Green Version]
- Kumar, P.J.; Mandal, B.B. Inhibitory role of silk cocoon extract against elastase, hyaluronidase and UV radiation-induced matrix metalloproteinase expression in human dermal fibroblasts and keratinocytes. Photochem. Photobiol. Sci. 2019, 18, 1259–1274. [Google Scholar] [CrossRef]
- Momtaz, S.; Lall, N.; Basson, A. Inhibitory activities of mushroom tyrosine and DOPA oxidation by plant extracts. S. Afr. J. Bot. 2008, 74, 577–582. [Google Scholar] [CrossRef] [Green Version]
- Yadav, Y.; Mohanty, P.; Kasture, S. Anti-inflammatory activity of hydroalcoholic extract of Quisqualis indica Linn. flower in rats. Int. J. Pharm. Life Sci. 2011, 2. [Google Scholar] [CrossRef]
- Jahan, N.F.; Rahman, M.S.; Hossain, M.; Rashid, M.A. Antimicrobial activity and toxicity of Quisqualis indica. Orient. Pharm. Exp. Med. 2008, 8, 53–58. [Google Scholar] [CrossRef] [Green Version]
- Moura, A.A.C.; Silva, E.L.F.; Fraga, M.C.A.; Wanderley, A.G.; Afiatpour, P.; Maia, M.B.S. Antiinflammatory and chronic toxicity study of the leaves of Ageratum conyzoides L. in rats. Phytomedicine 2005, 12, 138–142. [Google Scholar] [CrossRef]
- Hoffman, B.; DelasAlas, H.; Blanco, K.; Wiederhold, N.; Lewis, R.; Williams, L. Screening of antibacterial and antifungal activities of ten medicinal plants from Ghana. Pharm. Biol. 2004, 42, 13–17. [Google Scholar] [CrossRef]
- Hu, S.-H.; Zhou, G.; Wang, Y.-W. Tyrosinase Inhibitory Activity of Total Triterpenes and Poricoic Acid A Isolated from Poria cocos. Chin. Herb. Med. 2017, 9, 321–327. [Google Scholar] [CrossRef]
- Wang, L.D.; Chen, W.D.; Xu, X.X. Anti-inflammatory effect of triterpene acids from poria cocos. Anhui Med. Pharm. J. 2009, 9, 1331. [Google Scholar]
- Kudo, M.; Kobayashi-Nakamura, K.; Tsuji-Naito, K. Bifunctional effects of O-methylated flavones from Scutellaria baicalensis Georgi on melanocytes: Inhibition of melanin production and intracellular melanosome transport. PLoS ONE 2017, 12, e0171513. [Google Scholar] [CrossRef]
- Huang, W.-H.; Lee, A.-R.; Yang, C.-H. Antioxidative and anti-inflammatory activities of polyhydroxyflavonoids of Scutellaria baicalensis GEORGI. Biosci. Biotechnol. Biochem. 2006, 70, 2371–2380. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, Y.; Joerger, R.; Wu, C. Study of the chemical composition and antimicrobial activities of ethanolic extracts from roots of Scutellaria baicalensis Georgi. J. Agric. Food Chem. 2011, 59, 10934–10942. [Google Scholar] [CrossRef]
- Tai, J.; Cheung, S. Anti-proliferative and antioxidant activities of Saposhnikovia divaricata. Oncol. Rep. 2007, 18, 227–234. [Google Scholar] [CrossRef] [Green Version]
- Oliveira Amorim, A.P.; Campos de Oliveira, M.C.; de Azevedo Amorim, T.; Echevarria, A. Antioxidant, iron chelating and tyrosinase inhibitory activities of extracts from Talinum triangulare Leach Stem. Antioxidants 2013, 2, 90–99. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, F.; Li, W.; Huang, Y.; Chen, Y.; Jin, B.; Chen, N.; Ding, Z.; Ding, X. Antioxidant, antityrosinase and antitumor activity comparison: The potential utilization of fibrous root part of Bletilla striata (Thunb.) Reichb. f. PLoS ONE 2013, 8, e58004. [Google Scholar] [CrossRef]
- Ling-shan, K.; Ling, Y.; Guo-sheng, H.; Shu-mei, C.; Yi-li, W. Molecular weight, hygroscopicity and moisturizing performance of polysaccharide from Rhizoma Bletillae. China Surfactant Deterg. Cosmet. 2015, 45, 94–98. [Google Scholar]
- Wang, W.; Meng, H. Cytotoxic, anti-inflammatory and hemostatic spirostane-steroidal saponins from the ethanol extract of the roots of Bletilla striata. Fitoterapia 2015, 101, 12–18. [Google Scholar] [CrossRef]
- Lv, D.; Li, W.-P.; Pan, P.; Wang, B.-J.; Ding, Z.-S.; Jiang, F.-S. Antibacterial Effect of Tubers and Fibrous Roots Extracts of Bletilla striata. Chin. J. Exp. Tradit. Med. Formulae 2013, 5. [Google Scholar] [CrossRef]
- Lai, K.-Y.; Hu, H.-C.; Chiang, H.-M.; Liu, Y.-J.; Yang, J.-C.; Lin, Y.-A.; Chen, C.-J.; Chang, Y.-S.; Lee, C.-L. New diterpenes leojaponins G–L from Leonurus japonicus. Fitoterapia 2018, 130, 125–133. [Google Scholar] [CrossRef]
- Zhang, R.-H.; Liu, Z.-K.; Yang, D.-S.; Zhang, X.-J.; Sun, H.-D.; Xiao, W.-L. Phytochemistry and pharmacology of the genus Leonurus: The herb to benefit the mothers and more. Phytochemistry 2018, 147, 167–183. [Google Scholar] [CrossRef]
- Xiong, L.; Peng, C.; Zhou, Q.-M.; Wan, F.; Xie, X.-F.; Guo, L.; Li, X.-H.; He, C.-J.; Dai, O. Chemical composition and antibacterial activity of essential oils from different parts of Leonurus japonicus Houtt. Molecules 2013, 18, 963–973. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ko, H.-C.; Wang, Y.-H.; Liou, K.-T.; Chen, C.-M.; Chen, C.-H.; Wang, W.-Y.; Chang, S.; Hou, Y.-C.; Chen, K.-T.; Chen, C.-F.; et al. Anti-inflammatory effects and mechanisms of the ethanol extract of Evodia rutaecarpa and its bioactive components on neutrophils and microglial cells. Eur. J. Pharmacol. 2007, 555, 211–217. [Google Scholar] [CrossRef]
- Chien, C.-C.; Tsai, M.-L.; Chen, C.-C.; Chang, S.-J.; Tseng, C.-H. Effects on tyrosinase activity by the extracts of Ganoderma lucidum and related mushrooms. Mycopathologia 2008, 166, 117. [Google Scholar] [CrossRef] [PubMed]
- Yang-lin, H.; Miao, Z.; Jun, L.; Qun, W.; Tong, C.; Jian, T.; Yong, C. Optimization of Fermentation Conditions and Moisturizing Properties of Lingzhi Mushroom Extract. Biomass Chem. Eng. 2016, 50, 22–28. [Google Scholar]
- Lin, J.-M.; Lin, C.-C.; Chiu, H.-F.; Yang, J.-J.; Lee, S.-G. Evaluation of the anti-inflammatory and liver-protective effects of Anoectochilus formosanus, Ganoderma lucidum and Gynostemma pentaphyllum in rats. Am. J. Chin. Med. 1993, 21, 59–69. [Google Scholar] [CrossRef] [PubMed]
The Effect of Transdermal Drug | Natural Product Active Ingredients |
---|---|
Analgesic and anti-inflammation | Capsaicin [11], aconitine [12], turpentine [13], strychnine [14], triptolide (TPL) [15], sinomenine [16], colchicine [17], curcumin [18], berberine [19], lycopene [20], glycyrrhetic acid [21], catechin [22], geniposide [23], resveratrol [24], andrographolide [25], paeonol [26], mangiferin [27], |
Skin repair | Camptothecin derivatives [28], Astragaloside IV [29], Asiaticoside [30] |
Antitumor | Bufalin [31], podophyllotoxin [32], paclitaxel [33], ligustilide [34] |
Psoriasis and Antifungal | Psoralen [35], harmaline [36], baicalin [37], hesperidin [38] |
Reduce UVB damage, Repair DNA injury, Anti-oxidative activity and skin whitening | Ferulic acid [39], cinnamic acid [40], usnic acid [41], menthol [42], pomegranate [43] |
Compound | Technologies | Application | Publication Note |
---|---|---|---|
Bu- A | Liposome | Anti-inflammatory | 2003 [102] |
Microemulsion | Improve solubility and stability | 2019 [67] | |
Berberine | Nanocrystal nanosuspension embedded hydrogel-grafted fabric | Achieve sustained drug release | 2014 [100] |
Capsaicin | Microemulsion | Avoid gastrointestinal problems first-pass metabolism | 2016 [103] |
Lipid nanoparticles | Increase permeation Lower skin irritation | 2017 [83] | |
Clinacanthus nutans Lindau | Nanoemulsion | Improve Bioavailability | 2016 [70] |
Cumin essential oil | Nanoemulsion | prolonged systemic antioxidant | 2015 [69] |
Evodiae Fructus | Microemulsion Cataplasm | Improve Release performance | 2015 [66] |
Saussurea involucrata | Microemulsion | Enhance bioavailability | 2012 [104] |
Shortstalk Monkshood root | Microemulsion | Reduce side effects | 2015 [105] |
Triptolide | Nanoemulsion gels | Improve percutaneous amounts | 2017 [64] |
Lipid nanoparticles | Enhanced skin permeation | 2018 [73] | |
Elastic liposomes | Remove Cremophor EL. | 2011 [60] | |
Paeonol | Microemulsion gel | Enhance the skin permeability | 2011 [65] |
Transethosomes | Improve stability, skin delivery pharmacokinetic efficiency | 2017 [106] | |
Ethosomes | Improve Bioavailability | 2018 [107] | |
Anti-VEGF Antibody-modified liposomes | Hypertrophic Scars | 2019 [108] | |
Paeonol-menthol eutectic | Microemulsion | Enhanced skin permeation | 2017 [109] |
Paeonol and salidroside | Nanosphere-hydrogel system | For sequential delivery | 2014 [88] |
Resveratrol and 5-fluorouracil | Ultradeformable liposomes | Nonmelanoma skin cancer | 2015 [55] |
Resveratrol | Deformable liposomes | Avoid gastrointestinal problems and first-pass metabolism | 2018 [110] |
Transfersomes | Maintain stability | 2019 [54] | |
Dendrimer | Improve bioavailability | 2015 [111] | |
8-methoxypsoralen | Dendrimers | Enhance skin permeation | 2012 [94] |
Scientific Name | Whitening | Moisturizing | Anti-Inflammation | Antimicrobial |
---|---|---|---|---|
Aloe vera | 2008 [120] | 2008 [120] | 2008 [120] | 2008 [120] |
Tribulus terrestris L. | 2015 [121] | 2015 [121] | ||
Coix lacryma-jobi L. | 2017 [122] | 2013 [123] | 2017 [124] | |
Atractylodes macrocephala Koidz | 2010 [125] | 2007 [126] | 2011 [127] | |
Smilax glabra Roxb | 2010 [125] | 2014 [128] | 2013 [129] | |
Paeonia lactiflora Pall | 2010 [125] | 2019 [130] | 2019 [130] | |
Angelica dahurica Bentham et Hook. | 2006 [131] | 2011 [132] | 2011 [133] | |
Nelumbo nucifera Gaertn | 2013 [134] | 2015 [135] | 2015 [135] | 2012 [136] |
Cyperus rotundus L. | 2015 [121] | 2011 [137] | 2006 [138] | |
Glycyrrhiza glabra L. | 2003 [139] | 2011 [140] | 2019 [130] | |
Eriobotrya japonica | 2011 [141] | |||
Lithospermum erythrorhizon | 2015 [142] | 2008 [143] | 2007 [144] | 1992 [145] |
Ligusticum chuanxiong Hort. | 2108 [146] | 2011 [147] | ||
Rheum officinale Baill | 2004 [148] | 2007 [149] | ||
Lonicera japonica Thunb. | 2011 [150] | 2011 [150] | 2013 [151] | |
Nardostachys chinensis Bat. | 2011 [152] | 2014 [153] | 2014 [153] | |
Prunus armeniaca L. | 2011 [154] | 2011 [154] | 2009 [155] | |
Typhonium giganteum Engl. | 2014 [156] | 2014 [156] | ||
Forsythia suspensa (Thunb.) Vahl | 2018 [157] | 2018 [157] | ||
Angelica sinensis (Oliv.) Diels | 2011 [158] | 2012 [159] | ||
Zingiber officinale Rosc. | 2005 [160] | 2005 [160] | 2012 [161] | |
Ajuga bracteosa Wall. | 2011 [162] | |||
Rubus chingii Hu | 2009 [163] | 2015 [164] | 2012 [165] | |
Cinnamomum aromaticum Nees | 2013 [166] | 2012 [167] | 2017 [168] | |
Lythrum salicaria L. | 2011 [169] | 2007 [170] | 2007 [170] | |
Plantago asiatica L. | 2019 [171] | 2019 [171] | 2008 [172] | |
Salvia miltiorrhiza Bunge | 2015 [173] | 2018 [174] | 2011 [175] | |
silkworm cocoon | 2019 [176] | 2019 [176] | ||
Quisqualis indica L. | 2008 [177] | 2011 [178] | 2008 [179] | |
Ageratum conyzoides L. | 2005 [180] | 2004 [181] | ||
Poria cocos (Schw.) Wolf. | 2017 [182] | 2009 [183] | ||
Scutellaria baicalensis Georgi | 2017 [184] | 2006 [185] | 2011 [186] | |
Saposhnikovia divaricata (Turcz.) Schischk. | 2007 [187] | |||
Talinum triangulare Willd. | 2013 [188] | 2013 [188] | ||
Bletilla striata (Thunb.) Reichb. f. | 2013 [189] | 2015 [190] | 2015 [191] | 2013 [192] |
Leonurus japonicus Houtt. | 2018 [193] | 2018 [194] | 2013 [195] | |
Evodia rutaecarpa (Juss.) Benth. | 2007 [196] | |||
Ganoderma lucidum | 2008 [197] | 2016 [198] | 1993 [199] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, Y.-C.; Li, T.S.; Su, H.L.; Lee, P.C.; Wang, H.-M.D. Transdermal Delivery Systems of Natural Products Applied to Skin Therapy and Care. Molecules 2020, 25, 5051. https://doi.org/10.3390/molecules25215051
Cheng Y-C, Li TS, Su HL, Lee PC, Wang H-MD. Transdermal Delivery Systems of Natural Products Applied to Skin Therapy and Care. Molecules. 2020; 25(21):5051. https://doi.org/10.3390/molecules25215051
Chicago/Turabian StyleCheng, Ying-Chen, Tzong Shiun Li, Hong Lin Su, Po Chun Lee, and Hui-Min David Wang. 2020. "Transdermal Delivery Systems of Natural Products Applied to Skin Therapy and Care" Molecules 25, no. 21: 5051. https://doi.org/10.3390/molecules25215051
APA StyleCheng, Y.-C., Li, T. S., Su, H. L., Lee, P. C., & Wang, H.-M. D. (2020). Transdermal Delivery Systems of Natural Products Applied to Skin Therapy and Care. Molecules, 25(21), 5051. https://doi.org/10.3390/molecules25215051