DFT Study of the Stability and Electronic Properties of Ni-Doped Defected (6,0) and (8,0) Single-Walled Carbon Nanotubes
<p>This Figure presents front, lateral, and top views of the optimised structures for a Ni atom adsorbed on (<b>a</b>) pristine (6,0) SWCNT, (<b>b</b>) di-vacancy (6,0) SWCNT, (<b>c</b>) pristine (8,0) SWCNT, and (<b>d</b>) di-vacancy (8,0) SWCNT. The optimisation was performed with PBE-D2 functional.</p> "> Figure 2
<p>DOS of the pristine (6,0) SWCNT, calculated with (<b>a</b>) the PBE-D2 functional and (<b>b</b>) the PBE-D3 functional; and the (6,0) SWCNT with a di-vacancy defect, calculated with (<b>c</b>) the PBE-D2 functional and (<b>d</b>) the PBE-D3 functional.</p> "> Figure 3
<p>DOS of the pristine SWCNT (8,0), calculated with (<b>a</b>) the PBE-D2 functional and (<b>b</b>) the PBE-D3 functional; and the SWCNT (8,0) with a di-vacancy defect, calculated with: (<b>c</b>) the PBE-D2 functional and (<b>d</b>) the PBE-D3 functional.</p> "> Figure 4
<p>The total DOS of the most stable geometry of a Ni atom adsorbed on a pristine (6,0) SWCNT is illustrated in grey, the PDOS onto the C atoms in brown, and the PDOS onto the Ni atom in blue, calculated with (<b>a</b>) the PBE-D2 functional, (<b>b</b>) the PBE-D3 functional, (<b>c</b>) the PBE + U-D2 functional, and (<b>d</b>) the PBE + U-D3 functional.</p> "> Figure 5
<p>Total DOS of the most stable geometry of a Ni atom adsorbed on a pristine (8,0) SWCNT is illustrated in grey, the PDOS onto the C atoms in brown, and the PDOS onto the Ni atom in blue, calculated with (<b>a</b>) the PBE-D2 functional, (<b>b</b>) the PBE-D3 functional, (<b>c</b>) the PBE + U-D2 functional, and (<b>d</b>) the PBE + U-D3 functional.</p> "> Figure 6
<p>The total DOS of a Ni atom adsorbed on a (6,0) SWCNT with a di-vacancy is illustrated in grey, the PDOS onto the C atoms in brown, the PDOS onto the Ni atom in blue, and the DOS of the isolated Ni atom in light-blue dashed lines, calculated with (<b>a</b>) the PBE-D2 functional, (<b>b</b>) the PBE-D3 functional, (<b>c</b>) the PBE + U-D2 functional, and (<b>d</b>) the PBE + U-D3 functional.</p> "> Figure 7
<p>Total DOS of a Ni atom adsorbed on an (8,0) SWCNT with a di-vacancy is illustrated in grey, the PDOS onto the C atoms in brown, the PDOS onto the Ni atom in blue, and the DOS of the isolated Ni atom in light-blue dashed lines, calculated with (<b>a</b>) the PBE-D2 functional, (<b>b</b>) the PBE-D3 functional, (<b>c</b>) the PBE + U-D2 functional, and (<b>d</b>) the PBE + U-D3 functional.</p> "> Figure 8
<p>The PDOS for the orbitals of the system with a Ni atom adsorbed on a SWCNT with a di-vacancy. (6,0) SWCNT system, calculated with (<b>a</b>) the PBE-D2 functional and (<b>c</b>) the PBE + U-D2 functional. (8,0) SWCNT system, calculated with (<b>b</b>) the PBE-D2 functional and (<b>d</b>) the PBE + U-D2 functional. The colours used in the graphs represent the following orbitals: the s-orbital of Ni (black), p-orbital of Ni (green), d-orbital of Ni (blue), s-orbital of C (brown), and p-orbital of C (red). The inset at the top left of each sub-figure provides a zoomed view of the graphs for the energy region between 0 and −3 eV.</p> "> Figure 9
<p>Selected atoms for bond analysis based on BO and OP values for the four systems: (<b>a</b>) Ni adsorbed on pristine (6,0) SWCNT, (<b>b</b>) Ni adsorbed on (6,0) SWCNT with a di-vacancy, (<b>c</b>) Ni adsorbed on pristine (8,0) SWCNT, and (<b>d</b>) Ni adsorbed on (8,0) SWCNT with a di-vacancy.</p> "> Figure 10
<p>BO for selected C-C and Ni-C bonds (see <a href="#materials-17-06236-f009" class="html-fig">Figure 9</a>), calculated before and after Ni adsorption for the optimised systems using PBE-D2 and PBE + U-D2 functionals, for the systems: (<b>a</b>) Ni-(6,0) SWCNT, (<b>b</b>) Ni-2vac-(6,0) SWCNT, (<b>c</b>) Ni-(8,0) SWCNT, and (<b>d</b>) Ni-2vac-(8,0) SWCNT.</p> "> Figure 11
<p>Variation in Bader charges for optimised systems on selected atoms (see <a href="#materials-17-06236-f009" class="html-fig">Figure 9</a>) before and after Ni adsorption using PBE-D2 and PBE + U-D2 functionals, for the systems: (<b>a</b>) Ni-(6,0) SWCNT, (<b>b</b>) Ni-2vac-(6,0) SWCNT, (<b>c</b>) Ni-(8,0) SWCNT, and (<b>d</b>) Ni-2vac-(8,0) SWCNT.</p> "> Figure 12
<p>Isosurfaces of the charge density differences. Isosurface value = 0.05 e/Å<sup>3</sup> (<b>a</b>,<b>b</b>) and 0.08 e/Å<sup>3</sup> (<b>c</b>,<b>d</b>). Electron accumulation (positive) and depletion (negative) regions are indicated in yellow and green, respectively.</p> ">
Abstract
:1. Introduction
2. Computational Method
3. Results and Discussion
3.1. Geometry Structure, Adsorption Energy, and Magnetization
3.2. Electronic Structure
3.3. Bonding Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ma, P.C.; Siddiqui, N.A.; Marom, G.; Kim, J.K. Dispersion and Functionalization of Carbon Nanotubes for Polymer-Based Nanocomposites: A Review. Compos. Part A Appl. Sci. Manuf. 2010, 41, 1345–1367. [Google Scholar] [CrossRef]
- Soni, S.K.; Thomas, B.; Kar, V.R. A Comprehensive Review on CNTs and CNT-Reinforced Composites: Syntheses, Characteristics and Applications. Mater. Today Commun. 2020, 25, 101546. [Google Scholar] [CrossRef]
- Liu, X.M.; Huang, Z.D.; Oh, S.W.; Zhang, B.; Ma, P.C.; Yuen, M.M.F.; Kim, J.K. Carbon Nanotube (CNT)-Based Composites as Electrode Material for Rechargeable Li-Ion Batteries: A Review. Compos. Sci. Technol. 2012, 72, 121–144. [Google Scholar] [CrossRef]
- Yusfi, M.; Jonuarti, R.; Wungu, T.D.K.; Suprijadi. Density Functional Theory of Ni-Doped (10, 0) Single-Walled Carbon Nanotubes for C2H2 and C2H4 Sensing. J. Phys. Conf. Ser. 2021, 1949, 012014. [Google Scholar] [CrossRef]
- Lilloja, J.; Kibena-Põldsepp, E.; Sarapuu, A.; Douglin, J.C.; Käärik, M.; Kozlova, J.; Paiste, P.; Kikas, A.; Aruväli, J.; Leis, J.; et al. Transition-Metal- And Nitrogen-Doped Carbide-Derived Carbon/Carbon Nanotube Composites as Cathode Catalysts for Anion-Exchange Membrane Fuel Cells. ACS Catal. 2021, 11, 1920–1931. [Google Scholar] [CrossRef] [PubMed]
- Ramirez-De-arellano, J.M.; Canales, M.; Magaña, L.F. Carbon Nanostructures Doped with Transition Metals for Pollutant Gas Adsorption Systems. Molecules 2021, 26, 5346. [Google Scholar] [CrossRef]
- Zhuang, H.L.; Zheng, G.P.; Soh, A.K. Interactions between Transition Metals and Defective Carbon Nanotubes. Comput. Mater. Sci. 2008, 43, 823–828. [Google Scholar] [CrossRef]
- Andriotis, A.N.; Menon, M.; Froudakis, G.E. Various Bonding Configurations of Transition-Metal Atoms on Carbon Nanotubes: Their Effect on Contact Resistance. Appl. Phys. Lett. 2000, 76, 3890–3892. [Google Scholar] [CrossRef]
- Abbasi, M.; Nemati-Kande, E. Enhancing the Reactivity of Carbon-Nanotube for Carbon Monoxide Detection by Mono- and Co-Doping of Boron and Nitrogen Heteroatoms: A DFT and TD-DFT Study. J. Phys. Chem. Solids 2021, 158, 110230. [Google Scholar] [CrossRef]
- Bazmi, M.; Askari, S.; Ghasemy, E.; Rashidi, A.; Ettefaghi, E. Nitrogen-Doped Carbon Nanotubes for Heat Transfer Applications: Enhancement of Conduction and Convection Properties of Water/N-CNT Nanofluid. J. Therm. Anal. Calorim. 2019, 138, 69–79. [Google Scholar] [CrossRef]
- Mousavi-Khoshdel, S.M.; Jahanbakhsh-bonab, P.; Targholi, E. Structural, Electronic Properties, and Quantum Capacitance of B, N and P-Doped Armchair Carbon Nanotubes. Phys. Lett. Sect. A Gen. At. Solid State Phys. 2016, 380, 3378–3383. [Google Scholar] [CrossRef]
- Zhang, S.; Nguyen, N.; Leonhardt, B.; Jolowsky, C.; Hao, A.; Park, J.G.; Liang, R. Carbon-Nanotube-Based Electrical Conductors: Fabrication, Optimization, and Applications. Adv. Electron. Mater. 2019, 5, 1800811. [Google Scholar] [CrossRef]
- An, W.; Turner, C.H. Chemisorption of Transition-Metal Atoms on Boron- And Nitrogen-Doped Carbon Nanotubes: Energetics and Geometric and Electronic Structures. J. Phys. Chem. C 2009, 113, 7069–7078. [Google Scholar] [CrossRef]
- Ao, C.; Zhao, W.; Ruan, S.; Qian, S.; Liu, Y.; Wang, L.; Zhang, L. Theoretical Investigations of Electrochemical CO2 Reduction by Transition Metals Anchored on CNTs. Sustain. Energy Fuels 2020, 4, 6156–6164. [Google Scholar] [CrossRef]
- Liu, Y.; Jiang, H.; Zhu, Y.; Yang, X.; Li, C. Transition Metals (Fe, Co, and Ni) Encapsulated in Nitrogen-Doped Carbon Nanotubes as Bi-Functional Catalysts for Oxygen Electrode Reactions. J. Mater. Chem. A 2016, 4, 1694–1701. [Google Scholar] [CrossRef]
- Zhang, X.; Cui, H.; Chen, D.; Dong, X.; Tang, J. Electronic Structure and H2S Adsorption Property of Pt3 Cluster Decorated (8, 0) SWCNT. Appl. Surf. Sci. 2018, 428, 82–88. [Google Scholar] [CrossRef]
- Zuo, T.; Li, J.; Gao, Z.; Wu, Y.; Zhang, L.; Da, B.; Zhao, X.; Xiao, L. Simultaneous Improvement of Electrical Conductivity and Mechanical Property of Cr Doped Cu/CNTs Composites. Mater. Today Commun. 2020, 23, 100907. [Google Scholar] [CrossRef]
- González Fá, A.J.; Orazi, V.; González, E.A.; Juan, A.; López-Corral, I. DFT Study of β-D-Glucose Adsorption on Single-Walled Carbon Nanotubes Decorated with Platinum. A Bonding Analysis. Appl. Surf. Sci. 2017, 423, 542–548. [Google Scholar] [CrossRef]
- González Fá, A.J.; Orazi, V.; Jasen, P.; Marchetti, J.M.; López-Corral, I. Adsorption of Carbonyl Sulfide on Pt-Doped Vacancy-Defected SWCNT: A DFT Study. Appl. Surf. Sci. 2020, 525, 146331. [Google Scholar] [CrossRef]
- Gui, Y.; Zhang, X.; Lv, P.; Wang, S.; Tang, C.; Zhou, Q. Ni-CNT Chemical Sensor for SF6 Decomposition Components Detection: A Combined Experimental and Theoretical Study. Sensors 2018, 18, 3493. [Google Scholar] [CrossRef]
- Zhang, X.; Gong, X. DFT, QTAIM, and NBO Investigations of the Ability of the Fe or Ni Doped CNT to Absorb and Sense CO and NO. J. Mol. Model. 2015, 21, 225. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Zhang, X.; Wu, X.; Dai, Z.; Zhang, J. A Ni-Doped Carbon Nanotube Sensor for Detecting Oil-Dissolved Gases in Transformers. Sensors 2015, 15, 13522–13532. [Google Scholar] [CrossRef]
- Li, X.; Liu, L.; Wang, M.; Wang, Z. Adsorption and Dissociation of O2 on Ni-Doped (5, 5) SWCNT: A DFT Study. Appl. Surf. Sci. 2016, 370, 6–10. [Google Scholar] [CrossRef]
- Nguyen, T.T.H.; Le, V.K.; Le Minh, C.; Nguyen, N.H. A Theoretical Study of Carbon Dioxide Adsorption and Activation on Metal-Doped (Fe, Co, Ni) Carbon Nanotube. Comput. Theor. Chem. 2017, 1100, 46–51. [Google Scholar] [CrossRef]
- Seenithurai, S.; Kodi Pandyan, R.; Vinodh Kumar, S.; Mahendran, M. H2 Adsorption in Ni and Passivated Ni Doped 4 Å Single Walled Carbon Nanotube. Int. J. Hydrogen Energy 2013, 38, 7376–7381. [Google Scholar] [CrossRef]
- Zhao, S.; Wang, T.; Zhou, G.; Zhang, L.; Lin, C.; Veder, J.P.; Johannessen, B.; Saunders, M.; Yin, L.; Liu, C.; et al. Controlled One-Pot Synthesis of Nickel Single Atoms Embedded in Carbon Nanotube and Graphene Supports with High Loading. ChemNanoMat 2020, 6, 1063–1074. [Google Scholar] [CrossRef]
- Xiao, L.; Chu, W.; Sun, W.; Xue, Y.; Jiang, C. Enhancement of Hydrogen Sorption on Metal(Ni, Rh, Pd) Functionalized Carbon Nanotubes: A DFT Study. Chem. Res. Chin. Univ. 2017, 33, 422–429. [Google Scholar] [CrossRef]
- Li, W.; Lu, X.M.; Li, G.Q.; Ma, J.J.; Zeng, P.Y.; Chen, J.F.; Pan, Z.L.; He, Q.Y. First-Principle Study of SO2 Molecule Adsorption on Ni-Doped Vacancy-Defected Single-Walled (8,0) Carbon Nanotubes. Appl. Surf. Sci. 2016, 364, 560–566. [Google Scholar] [CrossRef]
- Li, W.; Ma, J.J.; Liu, P.; Pan, Z.L.; He, Q.Y. First-Principles Study of the Adsorption Sensitivity of Ni-Doped Single-Walled Zigzag (n,0)CNTs (n = 4,5,6) toward SO2 Molecules. Appl. Surf. Sci. 2015, 335, 17–22. [Google Scholar] [CrossRef]
- Demir, S.; Fellah, M.F. Carbon Nanotubes Doped with Ni, Pd and Pt: A Density Functional Theory Study of Adsorption and Sensing NO. Surf. Sci. 2020, 701, 121689. [Google Scholar] [CrossRef]
- Zhang, X.; Gui, Y.; Xiao, H.; Zhang, Y. Analysis of Adsorption Properties of Typical Partial Discharge Gases on Ni-SWCNTs Using Density Functional Theory. Appl. Surf. Sci. 2016, 379, 47–54. [Google Scholar] [CrossRef]
- Mashapa, M.G.; Ray, S.S. DFT Studies of Low Concentration Substitutional Doping of Transition-Metals on Single-Walled Carbon Nanotube Surface. J. Nanosci. Nanotechnol. 2010, 10, 8180–8184. [Google Scholar] [CrossRef]
- Chen, Y.K.; Liu, L.V.; Tian, W.Q.; Wang, Y.A. Theoretical Studies of Transition-Metal-Doped Single-Walled Carbon Nanotubes. J. Phys. Chem. C 2011, 115, 9306–9311. [Google Scholar] [CrossRef]
- Yagi, Y.; Briere, T.M.; Sluiter, M.H.F.; Kumar, V.; Farajian, A.A.; Kawazoe, Y. Stable Geometries and Magnetic Properties of Single-Walled Carbon Nanotubes Doped with 3d Transition Metals: A First-Principles Study. Phys. Rev. B Condens. Matter Mater. Phys. 2004, 69, 075414. [Google Scholar] [CrossRef]
- Aghashiri, A.; Fotooh, F.K.; Hashemian, S. Density Functional Calculations of Nickel, Palladium and Cadmium Adsorption onto (10,0) Single-Walled Carbon Nanotube. J. Mol. Model. 2019, 25, 185. [Google Scholar] [CrossRef] [PubMed]
- Dasilva, S.; López-Planes, R. Electronic Study of Carbon Nanotube (6,0) Doped with Transition Metals: Copper, Silver and Gold. J. Comput. Methods Sci. Eng. 2017, 17, 71–79. [Google Scholar] [CrossRef]
- Luna, C.R.; Bechthold, P.; Brizuela, G.; Juan, A.; Pistonesi, C. The Adsorption of CO, O2 and H2 on Li–Doped Defective (8,0) SWCNT: A DFT Study. Appl. Surf. Sci. 2018, 459, 201–207. [Google Scholar] [CrossRef]
- Patrignani, M.; Juan, J.; Nagel, O.; Reimers, W.; Luna, R.; Jasen, P. V The Adsorption of CO and NO on (8,0) SWCNT Decorated with Transition Metals: A DFT Study as a Possible Gas Sensor. Powder Technol. 2024, 438, 119691. [Google Scholar] [CrossRef]
- Cui, H.; Zhang, X.; Chen, D.; Tang, J. Pt & Pd Decorated CNT as a Workable Media for SOF2 Sensing: A DFT Study. Appl. Surf. Sci. 2019, 471, 335–341. [Google Scholar] [CrossRef]
- Chiral Data up to (40,40). Available online: https://www.photon.t.u-tokyo.ac.jp/~maruyama/kataura/chiraldata.html (accessed on 19 November 2024).
- Jia, G.; Li, L.; Wu, T.; Wang, X.; An, S. Curvature, Vacancy Size and Chirality Effects of Mono- to Octa-Vacancies in Zigzag Single-Walled Carbon Nanotubes. New J. Chem. 2016, 40, 8625–8631. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficient Iterative Schemes for Ab Initio Total-Energy Calculations Using a Plane-Wave Basis Set. Phys. Rev. B 1996, 54, 11169–11186. [Google Scholar] [CrossRef] [PubMed]
- Kresse, G.; Furthmüller, J. Efficiency of Ab-Initio Total Energy Calculations for Metals and Semiconductors Using a Plane-Wave Basis Set. Comput. Mater. Sci. 1996, 6, 15–50. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef]
- Blöchl, P.E. Projector Augmented-Wave Method. Phys. Rev. B 1994, 50, 17953–17979. [Google Scholar] [CrossRef] [PubMed]
- Kresse, G.; Joubert, D. From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method. Phys. Rev. B 1999, 59, 1758–1775. [Google Scholar] [CrossRef]
- Monkhorst, H.J.; Pack, J.D. Special Points for Brillouin-Zone Integrations. Phys. Rev. B 1976, 13, 5188–5192. [Google Scholar] [CrossRef]
- Press, W.H. Numerical Recipes in Pascal: The Art of Scientific Computing, 1st ed.; Cambridge University Press: Cambridge, UK, 1989; ISBN 9780521375160. [Google Scholar]
- Grimme, S. Semiempirical GGA-Type Density Functional Constructed with a Long-Range Dispersion Correction. J. Comput. Chem. 2006, 27, 1787–1799. [Google Scholar] [CrossRef]
- Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A Consistent and Accurate Ab Initio Parametrization of Density Functional Dispersion Correction (DFT-D) for the 94 Elements H-Pu. J. Chem. Phys. 2010, 132, 154104. [Google Scholar] [CrossRef] [PubMed]
- Dudarev, S.L.; Botton, G.A.; Savrasov, S.Y.; Humphreys, C.J.; Sutton, A.P. Electron-Energy-Loss Spectra and the Structural Stability of Nickel Oxide: An LSDA+U Study. Phys. Rev. B Condens. Matter Mater. Phys. 1998, 57, 1505–1509. [Google Scholar] [CrossRef]
- Ao, B. Atom-Resolved Chemical States in the Multivalent U-TM-O (TM: Ti, V, Cr, Mn, Fe, Ni, Nb, Mo, W) Ternary Oxides from First-Principles. J. Phys. Chem. C 2019, 123, 29609–29622. [Google Scholar] [CrossRef]
- Piotrowski, M.J.; Ungureanu, C.G.; Tereshchuk, P.; Batista, K.E.A.; Chaves, A.S.; Guedes-Sobrinho, D.; Da Silva, J.L.F. Theoretical Study of the Structural, Energetic, and Electronic Properties of 55-Atom Metal Nanoclusters: A DFT Investigation within van Der Waals Corrections, Spin−Orbit Coupling, and PBE+U of 42 Metal Systems. J. Phys. Chem. C 2016, 120, 28844–28856. [Google Scholar] [CrossRef]
- Bader, R.F.W. Atoms in Molecules. A Quantum Theory; Clarendon Press: Oxford, UK, 1990; ISBN 0198551681. [Google Scholar]
- Manz, T.A.; Limas, N.G. Chargemol Program for Performing DDEC Analysis 2016. Available online: https://sourceforge.net/projects/ddec/files/ (accessed on 10 July 2024).
- Manz, T.A.; Limas, N.G. Introducing DDEC6 Atomic Population Analysis: Part 1. Charge Partitioning Theory and Methodology. RSC Adv. 2016, 6, 47771–47801. [Google Scholar] [CrossRef]
- Limas, N.G.; Manz, T.A. Introducing DDEC6 Atomic Population Analysis: Part 2. Computed Results for a Wide Range of Periodic and Nonperiodic Materials. RSC Adv. 2016, 6, 45727–45747. [Google Scholar] [CrossRef]
- Durgun, E.; Dag, S.; Bagci, V.M.K.; Gülseren, O.; Yildirim, T.; Ciraci, S. Systematic Study of Adsorption of Single Atoms on a Carbon Nanotube. Phys. Rev. B Condens. Matter Mater. Phys. 2003, 67, 201401. [Google Scholar] [CrossRef]
- Gaztañaga, F.; Sandoval, M.G.; Luna, C.R.; Jasen, P.V. Theoretical Study about Alkali Metal Adsorption on Pristine and Defective (8,0) SWCNT: Geometrical, Magnetic and Electronic Changes. Appl. Surf. Sci. 2020, 513, 145769. [Google Scholar] [CrossRef]
- Luna, C.R.; Verdinelli, V.; Germán, E.; Seitz, H.; Volpe, M.A.; Pistonesi, C.; Jasen, P.V. Hydrogen Adsorption and Associated Electronic and Magnetic Properties of Rh-Decorated (8,0) Carbon Nanotubes Using Density Functional Theory. J. Phys. Chem. C 2015, 119, 13238–13247. [Google Scholar] [CrossRef]
- Ambrusi, R.E.; Orazi, V.; Marchetti, J.M.; Pronsato, M.E. Ni Clusters Embedded in Multivacancy Graphene Substrates. J. Phys. Chem. Solids 2020, 138, 109258. [Google Scholar] [CrossRef]
- Matsuda, Y.; Tahir-Kheli, J.; Goddard, W.A. Definitive Band Gaps for Single-Wall Carbon Nanotubes. J. Phys. Chem. Lett. 2010, 1, 2946–2950. [Google Scholar] [CrossRef]
- Charlier, J.C.; Blase, X.; Roche, S. Electronic and Transport Properties of Nanotubes. Rev. Mod. Phys. 2007, 79, 677–732. [Google Scholar] [CrossRef]
- Soussi, A.; Haounati, R.; Ait hssi, A.; Taoufiq, M.; Baoubih, S.; Jellil, Z.; El Hankari, S.; Elfanaoui, A.; Markazi, R.; Ihlal, A. Investigating Structural, Morphological, Electronic, and Optical Properties of SnO2 and Al-Doped SnO2: A Combined DFT Calculation and Experimental Study. Phys. B Condens. Matter 2024, 690, 416242. [Google Scholar] [CrossRef]
- Sholl, D.S.; Steckel, J.A. Density Functional Theory. A Practical Introduction; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2009; ISBN 0470373172. [Google Scholar]
- Ambrusi, R.E.; Luna, C.R.; Juan, A.; Pronsato, M.E. DFT Study of Rh-Decorated Pristine, B-Doped and Vacancy Defected Graphene for Hydrogen Adsorption. RSC Adv. 2016, 6, 83926–83941. [Google Scholar] [CrossRef]
System | Functional | Eads/eV | μB (After) † |
---|---|---|---|
Ni-(6,0) SWCNT: Adsorbed Ni atom on the pristine (6,0) SWCNT | PBE-D2 | −2.63 | 0.0 |
PBE-D3 | −2.54 | 0.0 | |
PBE + U-D2 | −2.79 | 0.0 | |
PBE + U-D3 | −2.70 | 0.0 | |
Ni-(8,0) SWCNT: Adsorbed Ni atom on the pristine (8,0) SWCNT | PBE-D2 | −2.16 | 0.0 |
PBE-D3 | −2.01 | 0.3 | |
PBE + U-D2 | −2.34 | 0.0 | |
PBE + U-D3 | −2.25 | 0.0 | |
Ni-2vac-(6,0) SWCNT: Adsorbed Ni atom on the (6,0) SWCNT with a di-vacancy | PBE-D2 | −3.34 | 0.0 |
PBE-D3 | −3.20 | 0.0 | |
PBE + U-D2 | −3.41 | 0.0 | |
PBE + U-D3 | −3.27 | 0.0 | |
Ni-2vac-(8,0) SWCNT: Adsorbed Ni atom on the (8,0) SWCNT with a di-vacancy | PBE-D2 | −2.85 | 1.4 |
PBE-D3 | −2.71 | 1.3 | |
PBE + U-D2 | −3.16 | 1.5 | |
PBE + U-D3 | −3.02 | 1.3 |
System | Bond | Distance 1 [Å] | Change 2 |
---|---|---|---|
Ni-(6,0) SWCNT: Adsorbed Ni atom on the pristine (6,0) SWCNT | C1-C2 | 1.45 (1.40) | +3.5% |
C1-C3 | 1.44 (1.48) | +2.7% | |
Ni-C1 | 1.89 | - | |
C1-C2 | 1.45 (1.41) | +2.8% | |
Ni-(8,0) SWCNT: Adsorbed Ni atom on the pristine (8,0) SWCNT | C1-C3 | 1.46 (1.43) | +2.0% |
Ni-C1 | 1.90 | - | |
C1-C2 | 1.54 (1.45) | +6.2% | |
C2-C11 | 1.44 (1.42) | +1.4% | |
Ni-2vac-(6,0) SWCNT: Adsorbed Ni atom on the (6,0) SWCNT with a di-vacancy | C2-C3 | 1.45 (1.44) | +0.7% |
C3-C4 | 1.39 (1.40) | −0.7% | |
C3-C12 | 1.42 (1.44) | −1.4% | |
Ni-C1 | 2.04 | - | |
Ni-2vac-(8,0) SWCNT: Adsorbed Ni atom on the (8,0) SWCNT with a di-vacancy | C1-C2 | 1.52 (1.47) | +3.4% |
C2-C11 | 1.44 (1.42) | +1.4% | |
C2-C3 | 1.45 (1.42) | +2.1% | |
C3-C4 | 1.41 (1.43) | −1.4% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Orazi, V.; Ambrusi, R.E.; Morelli, A.; Juan, A.; Marchetti, J.M. DFT Study of the Stability and Electronic Properties of Ni-Doped Defected (6,0) and (8,0) Single-Walled Carbon Nanotubes. Materials 2024, 17, 6236. https://doi.org/10.3390/ma17246236
Orazi V, Ambrusi RE, Morelli A, Juan A, Marchetti JM. DFT Study of the Stability and Electronic Properties of Ni-Doped Defected (6,0) and (8,0) Single-Walled Carbon Nanotubes. Materials. 2024; 17(24):6236. https://doi.org/10.3390/ma17246236
Chicago/Turabian StyleOrazi, Valeria, Rubén Eduardo Ambrusi, Alejandro Morelli, Alfredo Juan, and Jorge Mario Marchetti. 2024. "DFT Study of the Stability and Electronic Properties of Ni-Doped Defected (6,0) and (8,0) Single-Walled Carbon Nanotubes" Materials 17, no. 24: 6236. https://doi.org/10.3390/ma17246236
APA StyleOrazi, V., Ambrusi, R. E., Morelli, A., Juan, A., & Marchetti, J. M. (2024). DFT Study of the Stability and Electronic Properties of Ni-Doped Defected (6,0) and (8,0) Single-Walled Carbon Nanotubes. Materials, 17(24), 6236. https://doi.org/10.3390/ma17246236