Fano and Electromagnetically Induced Transparency Resonances in Dual Side-Coupled Photonic Crystal Nanobeam Cavities
<p>Simplified model of two side-coupled standing-wave cavities (<span class="html-italic">C</span><sub>1</sub> and <span class="html-italic">C</span><sub>2</sub>).</p> "> Figure 2
<p>The calculated transmission spectra of the (<b>a</b>) type Ⅰ and (<b>b</b>) type Ⅱ systems based on the temporary CMT. The coupling Q-factors are <span class="html-italic">Q<sub>w</sub></span><sub>1</sub> = 500 and <span class="html-italic">Q<sub>w</sub></span><sub>2</sub> = 2000, and the intrinsic Q-factors are <span class="html-italic">Q<sub>i</sub></span><sub>1</sub> = <span class="html-italic">Q<sub>i</sub></span><sub>2</sub> = 1 × 10<sup>5</sup>. The resonant wavelengths of <span class="html-italic">C</span><sub>1</sub> and <span class="html-italic">C</span><sub>2</sub> are <span class="html-italic">λ</span><sub>1</sub> = <span class="html-italic">λ</span><sub>2</sub> = 1550 nm in (<b>a</b>) and <span class="html-italic">λ</span><sub>1</sub> = 1550 nm and <span class="html-italic">λ</span><sub>2</sub> = 1549 nm in (<b>b</b>).</p> "> Figure 3
<p>Models of two side-coupled cavities with phase-shifted periodic structure under weak perturbation conditions: (<b>a</b>) Type Ⅰ system with same resonant wavelengths and grating phase difference of <span class="html-italic">π</span> between <span class="html-italic">C</span><sub>1</sub> and <span class="html-italic">C</span><sub>2</sub>. (<b>b</b>) Type Ⅱ system with different resonant wavelengths and same grating phase between <span class="html-italic">C</span><sub>1</sub> and <span class="html-italic">C</span><sub>2</sub>.</p> "> Figure 4
<p>The calculated transmission spectra of the (<b>a</b>) type Ⅰ and (<b>b</b>) type Ⅱ systems under weak perturbation conditions based on the coupled mode equations of Equations (6)–(8).</p> "> Figure 5
<p>Schematics of proposed (<b>a</b>) type Ⅰ and (<b>b</b>) type Ⅱ dual-PCNC systems on SOI platform.</p> "> Figure 6
<p>The reflection spectra of the designed Bragg reflector with 4 tapered holes and 9 uniform holes and the Bragg reflector with 13 uniform holes.</p> "> Figure 7
<p>A schematic of the calculation of the effective index of the strip waveguide with a hole.</p> "> Figure 8
<p>Simulated (<b>a</b>) transmission and (<b>b</b>) reflection spectra when only <span class="html-italic">C</span><sub>1</sub> or <span class="html-italic">C</span><sub>2</sub> is side-coupled to the bus waveguide.</p> "> Figure 9
<p>(<b>a</b>) The transmission and reflection spectra of the type Ⅰ dual-PCNC system with an EIT-like line shape, and the |<span class="html-italic">H<sub>y</sub></span>| profile at the (<b>b</b>) transmission peak point <span class="html-italic">A</span>, (<b>c</b>) transmission dip point <span class="html-italic">B</span> and (<b>d</b>) transmission dip point <span class="html-italic">C</span> calculated by the 3D FDTD method.</p> "> Figure 10
<p>(<b>a</b>) Transmission spectra and (<b>b</b>) phase of type Ⅰ dual-PCNC system with different bus waveguide widths calculated by 3D FDTD method. Red dot is point of maximum slope change in phase relative to wavelength.</p> "> Figure 11
<p>(<b>a</b>) The transmission and reflection spectra of the type Ⅰ dual-PCNC system with a Fano line shape (<span class="html-italic">w</span><sub>0</sub> = 435 nm), and the |<span class="html-italic">H<sub>y</sub></span>| profile at (<b>b</b>) point <span class="html-italic">A</span>, (<b>c</b>) point <span class="html-italic">B</span> and (<b>d</b>) point <span class="html-italic">C</span> calculated by the 3D FDTD method.</p> "> Figure 12
<p>(<b>a</b>) The transmission and reflection spectra of the type Ⅱ dual-PCNC system with an EIT-like line shape, and the |<span class="html-italic">H<sub>y</sub></span>| profile at the (<b>b</b>) transmission peak point <span class="html-italic">A</span>, (<b>c</b>) transmission dip point <span class="html-italic">B</span> and (<b>d</b>) transmission dip point <span class="html-italic">C</span> calculated by the 3D FDTD method.</p> "> Figure 13
<p>(<b>a</b>) The transmission spectra and (<b>b</b>) phase of the type Ⅱ dual-PCNC system with different bus waveguide widths calculated by the 3D FDTD method. The red dot is the point of the maximum slope change in phase relative to the wavelength.</p> "> Figure 14
<p>(<b>a</b>) The transmission and reflection spectra of the type Ⅱ dual-PCNC system with an asymmetric EIT line shape (<span class="html-italic">w</span><sub>0</sub> = 380) nm, and the |<span class="html-italic">H<sub>y</sub></span>| profile at (<b>b</b>) point <span class="html-italic">A</span>, (<b>c</b>) point <span class="html-italic">B</span> and (<b>d</b>) point <span class="html-italic">C</span> calculated by the 3D FDTD method.</p> "> Figure 15
<p>(<b>a</b>) The transmission and reflection spectra of the type Ⅱ dual-PCNC system with a Fano line shape and (<span class="html-italic">w</span><sub>0</sub> = 460), and the |<span class="html-italic">H<sub>y</sub></span>| profile at (<b>b</b>) point <span class="html-italic">A</span>, (<b>c</b>) point <span class="html-italic">B</span> and (<b>d</b>) point <span class="html-italic">C</span> calculated by the 3D FDTD method.</p> "> Figure 16
<p>The transmission spectra of the (<b>a</b>) type Ⅰ and (<b>b</b>) type Ⅱ dual-PCNC systems with EIT line shapes with different waveguide width deviations (∆<span class="html-italic">w</span>).</p> "> Figure 17
<p>The transmission spectra of the (<b>a</b>) type Ⅰ and (<b>b</b>) type Ⅱ dual-PCNC systems with EIT line shapes with different hole radius deviations (∆<span class="html-italic">r</span>).</p> ">
Abstract
:1. Introduction
2. Theoretical Model and Analysis
3. Design and Simulation
4. Fabrication Error Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, B.-B.; Xiao, Y.-F.; Zou, C.-L.; Liu, Y.-C.; Jiang, X.-F.; Chen, Y.-L.; Li, Y.; Gong, Q. Experimental observation of Fano resonance in a single whispering-gallery microresonator. Appl. Phys. Lett. 2011, 98, 021116. [Google Scholar] [CrossRef]
- Yang, X.; Yu, M.; Kwong, D.-L.; Wong, C.W. All-Optical Analog to Electromagnetically Induced Transparency in Multiple Coupled Photonic Crystal Cavities. Phys. Rev. Lett. 2009, 102, 173902. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Ng, G.I.; Hu, T.; Qiu, H.; Guo, X.; Wang, W.; Rouifed, M.S.; Liu, C.; Wang, H. Conversion between EIT and Fano spectra in a microring-Bragg grating coupled-resonator system. Appl. Phys. Lett. 2017, 111, 081105. [Google Scholar] [CrossRef]
- Limonov, M.F.; Rybin, M.V.; Poddubny, A.N.; Kivshar, Y.S. Fano resonances in photonics. Nat. Photonics 2017, 11, 543–554. [Google Scholar] [CrossRef]
- Miroshnichenko, A.E.; Flach, S.; Kivshar, Y.S. Fano resonances in nanoscale structures. Rev. Mod. Phys. 2010, 82, 2257–2298. [Google Scholar] [CrossRef]
- Miroshnichenko, A.E.; Kivshar, Y.S. Fano Resonances in All-Dielectric Oligomers. Nano Lett. 2012, 12, 6459–6463. [Google Scholar] [CrossRef]
- Hopkins, B.; Filonov, D.S.; Miroshnichenko, A.E.; Monticone, F.; Alù, A.; Kivshar, Y.S. Interplay of Magnetic Responses in All-Dielectric Oligomers To Realize Magnetic Fano Resonances. ACS Photonics 2015, 2, 724–729. [Google Scholar] [CrossRef]
- Solodovchenko, N.S.; Samusev, K.B.; Limonov, M.F. Fano resonances in all-dielectric nanostructures. In All-Dielectric Nanophotonics; Elsevier: Amsterdam, The Netherlands, 2024; pp. 115–155. [Google Scholar]
- Yu, Y.; Heuck, M.; Hu, H.; Xue, W.; Peucheret, C.; Chen, Y.; Oxenløwe, L.K.; Yvind, K.; Mørk, J. Fano resonance control in a photonic crystal structure and its application to ultrafast switching. Appl. Phys. Lett. 2014, 105, 061117. [Google Scholar] [CrossRef]
- Limonov, M.F. Fano resonance for applications. Adv. Opt. Photonics 2021, 13, 703–771. [Google Scholar] [CrossRef]
- Cai, L.; Li, S.-w.; Xiang, F.-c.; Liu, J.; Liu, Q. Fano resonance in whispering gallery mode microcavities and its sensing applications. Opt. Laser Technol. 2023, 167, 109679. [Google Scholar] [CrossRef]
- Zhang, J.; Leroux, X.; Durán-Valdeiglesias, E.; Alonso-Ramos, C.; Marris-Morini, D.; Vivien, L.; He, S.; Cassan, E. Generating Fano Resonances in a Single-Waveguide Silicon Nanobeam Cavity for Efficient Electro-Optical Modulation. ACS Photonics 2018, 5, 4229–4237. [Google Scholar] [CrossRef]
- Piao, X.; Yu, S.; Park, N. Control of Fano asymmetry in plasmon induced transparency and its application to plasmonic waveguide modulator. Opt. Express 2012, 20, 18994–18999. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Zeng, D.; Mei, C.; Li, H.; Huang, Q.; Zhang, X. Integrated photonic devices enabled by silicon traveling wave-like Fabry-Perot resonators. Opt. Express 2022, 30, 9450–9462. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Cheng, Z.; Dong, J.; Zhang, X. Cascaded nanobeam spectrometer with high resolution and scalability. Optica 2022, 9, 517–521. [Google Scholar] [CrossRef]
- Gu, L.; Wang, B.; Yuan, Q.; Fang, L.; Zhao, Q.; Gan, X.; Zhao, J. Fano resonance from a one-dimensional topological photonic crystal. APL Photonics 2021, 6, 086105. [Google Scholar] [CrossRef]
- Shi, P.; Zhou, G.; Deng, J.; Tian, F.; Chau, F.S. Tuning all-Optical Analog to Electromagnetically Induced Transparency in nanobeam cavities using nanoelectromechanical system. Sci. Rep. 2015, 5, 14379. [Google Scholar] [CrossRef]
- Ciminelli, C.; Innone, F.; Brunetti, G.; Conteduca, D.; Dell’Olio, F.; Tatoli, T.; Armenise, M.N. Rigorous model for the design of ultra-high Q-factor resonant cavities. In Proceedings of the 2016 18th International Conference on Transparent Optical Networks (ICTON), Trento, Italy, 10–14 July 2016; pp. 1–4. [Google Scholar]
- Hardy, A.A. A unified approach to coupled-mode phenomena. IEEE J. Quantum Electron. 1998, 34, 1109–1116. [Google Scholar] [CrossRef]
- Barreda, A.; Mercadé, L.; Zapata-Herrera, M.; Aizpurua, J.; Martínez, A. Hybrid Photonic-Plasmonic Cavity Design for Very Large Purcell Factors at Telecommunication Wavelengths. Phys. Rev. Appl. 2022, 18, 044066. [Google Scholar] [CrossRef]
- Chang, C.-M.; Solgaard, O. Fano resonances in integrated silicon Bragg reflectors for sensing applications. Opt. Express 2013, 21, 27209–27218. [Google Scholar] [CrossRef]
- Cheng, Z.; Dong, J.; Zhang, X. Ultracompact optical switch using a single semisymmetric Fano nanobeam cavity. Opt. Lett. 2020, 45, 2363. [Google Scholar] [CrossRef]
- Sun, F.; Li, Z.; Tang, B.; Li, B.; Zhang, P.; Liu, R.; Yang, G.; Huang, K.; Han, Z.; Luo, J.; et al. Scalable high Q-factor Fano resonance from air-mode photonic crystal nanobeam cavity. Nanophotonics 2023, 12, 3135–3148. [Google Scholar] [CrossRef] [PubMed]
- Han, Z.; Wang, C.; Liu, Y.; Tian, H. Simultaneous detection of complex refractive index and temperature using a compact side-coupled photonic crystal nanobeam cavity. J. Opt. Soc. Am. B 2021, 38, 2765. [Google Scholar] [CrossRef]
- Yan, Y.; Jiang, Y.-F.; Li, B.-X.; Deng, C.-S. Controlling Dual Fano Resonance Lineshapes Based on an Indirectly Coupled Double-Nanobeam-Cavity Photonic Molecule. J. Light. Technol. 2024, 42, 732–739. [Google Scholar] [CrossRef]
- Meng, Z.-M.; Liang, A.; Li, Z.-Y. Fano resonances in photonic crystal nanobeams side-coupled with nanobeam cavities. J. Appl. Phys. 2017, 121, 193102. [Google Scholar] [CrossRef]
- Yu, P.; Hu, T.; Qiu, H.; Ge, F.; Yu, H.; Jiang, X.; Yang, J. Fano resonances in ultracompact waveguide Fabry-Perot resonator side-coupled lossy nanobeam cavities. Appl. Phys. Lett. 2013, 103, 091104. [Google Scholar] [CrossRef]
- Lin, T.; Chau, F.S.; Deng, J.; Zhou, G. Dynamic control of the asymmetric Fano resonance in side-coupled Fabry–Pérot and photonic crystal nanobeam cavities. Appl. Phys. Lett. 2015, 107, 223105. [Google Scholar] [CrossRef]
- Dong, G.; Wang, Y.; Zhang, X. High-contrast and low-power all-optical switch using Fano resonance based on a silicon nanobeam cavity. Opt. Lett. 2018, 43, 5977–5980. [Google Scholar] [CrossRef]
- Jiang, F.; Deng, C.-S.; Lin, Q.; Wang, L.-L. Simulation study on active control of electromagnetically induced transparency analogue in coupled photonic crystal nanobeam cavity-waveguide systems integrated with graphene. Opt. Express 2019, 27, 32122–32134. [Google Scholar] [CrossRef]
- Ma, J.; Deng, C.-S.; Lin, Q.; Wang, L.-L. Graphene-based active tunable mode splitting in an indirectly coupled photonic crystal nanobeam cavity–waveguide system. J. Opt. Soc. Am. B 2022, 39, 2849–2856. [Google Scholar] [CrossRef]
- Manolatou, C.; Khan, M.; Fan, S.; Villeneuve, P.R.; Haus, H.; Joannopoulos, J. Coupling of modes analysis of resonant channel add-drop filters. IEEE J. Quantum Electron. 1999, 35, 1322–1331. [Google Scholar] [CrossRef]
- Li, Q.; Wang, T.; Su, Y.; Yan, M.; Qiu, M. Coupled mode theory analysis of mode-splitting in coupled cavity system. Opt. Express 2010, 18, 8367–8382. [Google Scholar] [CrossRef] [PubMed]
- Yariv, A. Coupled-mode theory for guided-wave optics. IEEE J. Quantum Electron. 1973, 9, 919–933. [Google Scholar] [CrossRef]
- Zhao, Y.; Shi, Y.; Liu, G.; Dai, P.; Hao, L.; Ma, Y.; Liu, S.; Chen, X. Study of resonant mode coupling in the transverse-mode-conversion based resonator with an anti-symmetric nanobeam Bragg reflector. Opt. Express 2023, 31, 6577–6589. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Shi, Y.; Dai, P.; Liu, S.; Hao, L.; Ma, Y.; Chen, X. Side-coupled Fabry-Perot resonator filter based on dual-waveguide Bragg grating. J. Light. Technol. 2022, 40, 6454–6464. [Google Scholar] [CrossRef]
- Gu, L.; Fang, L.; Fang, H.; Li, J.; Zheng, J.; Zhao, J.; Zhao, Q.; Gan, X. Fano resonance lineshapes in a waveguide-microring structure enabled by an air-hole. APL Photonics 2020, 5, 016108. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Y.; Chen, Y.; Hao, L. Fano and Electromagnetically Induced Transparency Resonances in Dual Side-Coupled Photonic Crystal Nanobeam Cavities. Materials 2024, 17, 6213. https://doi.org/10.3390/ma17246213
Zhao Y, Chen Y, Hao L. Fano and Electromagnetically Induced Transparency Resonances in Dual Side-Coupled Photonic Crystal Nanobeam Cavities. Materials. 2024; 17(24):6213. https://doi.org/10.3390/ma17246213
Chicago/Turabian StyleZhao, Yong, Yuxuan Chen, and Lijun Hao. 2024. "Fano and Electromagnetically Induced Transparency Resonances in Dual Side-Coupled Photonic Crystal Nanobeam Cavities" Materials 17, no. 24: 6213. https://doi.org/10.3390/ma17246213
APA StyleZhao, Y., Chen, Y., & Hao, L. (2024). Fano and Electromagnetically Induced Transparency Resonances in Dual Side-Coupled Photonic Crystal Nanobeam Cavities. Materials, 17(24), 6213. https://doi.org/10.3390/ma17246213