Atmospheric Corrosion of Different Steel Types in Urban and Marine Exposure
<p>Racks exposed (<b>a</b>) on the roof of the Department of Chemistry, Materials and Chemical Engineering “Giulio Natta” of Politecnico di Milano and (<b>b</b>) outside the “MARECO” lab site (CNR—ICMATE) in Bonassola (SP).</p> "> Figure 2
<p>Average values of relative humidity and temperature in (<b>a</b>) Milan and (<b>b</b>) Bonassola exposure site for each month.</p> "> Figure 3
<p>Cumulative distribution function of free corrosion potentials (E<sub>corr</sub>) of carbon steel samples exposed in urban environment (Milan).</p> "> Figure 4
<p>Cumulative distribution function of corrosion rates (CRs) of carbon steel samples exposed in urban environment (Milan).</p> "> Figure 5
<p>Cumulative distribution function of free corrosion potentials (E<sub>corr</sub>) of galvanized steel samples exposed in urban environment (Milan).</p> "> Figure 6
<p>Corrosion rate values determined by means of LPR test on galvanized steel samples exposed in urban environment (Milan).</p> "> Figure 7
<p>Cumulative distribution function of corrosion rates (CRs) of galvanized steel samples exposed in urban environment (Milan).</p> "> Figure 8
<p>Cumulative distribution function of free corrosion potentials (E<sub>corr</sub>) of carbon steel samples exposed in marine environment (Bonassola).</p> "> Figure 9
<p>Cumulative distribution function of corrosion rates (CRs) of carbon steel samples exposed in marine environment (Bonassola).</p> "> Figure 10
<p>Cumulative distribution function of free corrosion potentials (E<sub>corr</sub>) of galvanized steel samples exposed in marine environment (Bonassola).</p> "> Figure 11
<p>Cumulative distribution function of corrosion rates (CRs) of galvanized steel samples exposed in marine environment (Bonassola).</p> "> Figure 12
<p>Picture of the stainless steel surface after 7 months of exposure in marine environment.</p> "> Figure 13
<p>Time evolution of carbon steel corrosion rate in urban environment: comparison between the ISO standard prediction and the experimental data.</p> "> Figure 14
<p>Benchmark analysis of the corrosion rates of carbon steel and zinc at urban field sites from the Exposure Site Catalogue of the European Federation of Corrosion (EFC). (<b>a</b>) Corrosion rate of carbon steel in urban environment; (<b>b</b>) Corrosion rate of galvanized steel in urban environment (<b>1</b>: AT, Linz; <b>2</b>: CZ, Kasperske Hory; <b>3</b>: CZ, Kopisty; <b>4</b>: CZ, Kralupy; <b>5</b>: CZ, Ostrava; <b>6</b>: CZ, Prague; <b>7</b>: DE, Berlin A103; <b>8</b>: DE, Berlin B1; <b>9</b>: DE, Berlin BAM; <b>10</b>: DE, Horstwalde; <b>11</b>: ES, Barcelona; <b>12</b>: FR, Le Croisty; <b>13</b>: GR, Athens; <b>14</b>: NO, Birkenes; <b>15</b>: NO, Oslo; <b>16</b>: NO, Svanvik; <b>17</b>: PL, Katowice; <b>18</b>: PT, Lisbon; <b>19</b>: PT, Lumiar; <b>20</b>: SE, Gällivare; <b>21</b>: SE, Ryda; <b>22</b>: IT, Milano; the GPS coordinates are available in the EFC catalogue).</p> "> Figure 15
<p>Benchmark analysis of the corrosion rates of carbon steel and zinc at marine field sites from the Exposure Site Catalogue of the European Federation of Corrosion (EFC). (<b>a</b>) Corrosion rate of carbon steel in marine environment; (<b>b</b>) Corrosion rate of galvanized steel in marine environment (<b>1</b>: DE, Helgoland IFAM; <b>2</b>: DE, Helgoland Seawater; <b>3</b>: DE, Helgoland Südhafen; <b>4</b>: DE, Helgoland Uplands; <b>5</b>: DE, Helgoland Seawater IFAM; <b>6</b>: DE, Helgoland-Westkaje; <b>7</b>: FR, Brest; <b>8</b>: IT, Genoa; <b>9</b>: NO, Tananger; <b>10</b>: PT, Alfanzina; <b>11</b>: PT, Sines; <b>12</b>: SE, Bohus-Malmön Kattesand; <b>13</b>: SE, Bohus-Malmön Kvarnvik; <b>14</b>: SE, Bohus-Malmön Kvarnvik 3; <b>15</b>: SE, Kristineberg; <b>16</b>: IT, Bonassola; the GPS coordinates are available in the EFC catalogue).</p> "> Figure A1
<p>XRD diffractogram of carbon steel samples exposed in Milan and Bonassola.</p> "> Figure A2
<p>XRD diffractogram of carbon steel samples exposed in urban (Milan) and marine (Bonassola) environments.</p> "> Figure A3
<p>Potentiodynamic polarization curves of carbon steel samples exposed in Milan at different exposure times.</p> "> Figure A4
<p>Potentiodynamic polarization curves of galvanized steel samples after 14 months of exposure in Milan.</p> ">
Abstract
:1. Introduction
- Based on first-year measurement of standardized specimens’ corrosion rate [9];
- Based on environmental information through the dose–response function that takes into account relative humidity, temperature, pollution by sulfur dioxide and airborne salinity.
2. Materials and Methods
2.1. Steel Sample Preparation and Exposure
2.2. Morphological and Structural Characterization
2.3. Electrochemical and Mass Loss Analyses
3. Results
3.1. Environmental Parameters
- Carbon steel
- Zinc
3.2. Urban Atmosphere
3.2.1. Carbon Steel
Free Corrosion Potential Measurements
Corrosion Rate via Linear Polarization Resistance Measurements
Corrosion Rate by Mass Loss
3.2.2. Galvanized Steel
Free Corrosion Potential Measurements
Corrosion Rate by Linear Polarization Resistance Measurements
Corrosion Rate by Mass Loss
3.3. Marine Atmosphere
3.3.1. Carbon Steel
Free Corrosion Potential Measurements
Corrosion Rate via Linear Polarization Resistance Measurements
3.3.2. Galvanized Steel
Free Corrosion Potential Measurements
Corrosion Rate via Linear Polarization Resistance Measurements
3.3.3. Stainless Steels
4. Discussion
4.1. Category of Corrosivity of the Field Sites
4.1.1. Urban Field Site (Milan)
4.1.2. Marine Field Site (Bonassola)
4.2. Corrosion Rate in Urban and Marine Atmosphere: Benchmark Analysis with European Field Sites
4.2.1. Urban Environment
4.2.2. Marine Environment
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Steel Type | Microstructure | Chemical Composition | PREN | |||||
---|---|---|---|---|---|---|---|---|
C | Cr | Ni | Mo | Mn | N | |||
304 | A | 0.07 | 18.46 | 7.78 | - | 0.74 | 0.1 | 20.06 |
316L | A | 0–0.03 | 18.07 | 12 | 2 | 1.74 | 0.1 | 26.27 |
430 | F | 0.08 | 16.06 | 0.39 | - | - | - | 16.06 |
441 | F | 0–0.03 | 15.78 | - | - | 0.42 | - | 15.78 |
444 | F | 0–0.025 | 17.03 | - | 2.07 | 0.14 | 0.035 | 24.42 |
Surface Finishing | |
---|---|
2B | Cold rolled, heat treated, pickled, subjected to subsequent light rolling |
Chemical Composition [ppm] | |||||
---|---|---|---|---|---|
Ca2+ | K+ | Na+ | Cl− | NO3− | SO42− |
2.29 | 0.28 | 1.39 | 2.30 | 5.94 | 2.74 |
Period | CS—Urban | GS—Urban | Marine (60%) | Marine (80%) |
---|---|---|---|---|
1 month | 0.11 | - | - | - |
4 months | - | - | 0.88 | 0.55 |
6 months | - | 0.25 | - | - |
8 months | 0.33 | - | 0.85 | 0.51 |
12 months | - | 0.31 | - | - |
18 months | 0.28 | - | - | - |
21 months | - | 0.28 | - | - |
24 months | 0.29 | - | - | - |
Appendix B
References
- Leygraf, C. Atmospheric Corrosion, 2nd ed.; Wiley & Sons: Hoboken, NJ, USA, 2016. [Google Scholar]
- Pedeferri, P. Corrosion Science and Engineering, 1st ed.; Engineering Materials; Springer International Publishing: Cham, Switerland, 2018; ISBN 978-3-319-97625-9. [Google Scholar]
- Knotkova, D.; Kreislova, K.; Dean, S. International Atmospheric Exposure Program: Summary of Results; ASTM International: West Conshohocken, PA, USA, 2012. [Google Scholar]
- Morcillo, M. Atmospheric Corrosion in Ibero-America: The MICAT Project; ASTM International: West Conshohocken, PA, USA, 1995. [Google Scholar]
- ISO 9223; Corrosion of Metals and Alloys—Corrosivity of Atmospheres—Classification, Determination and Estimation. International Organization for Standardization: Geneva, Switzerland, 2012.
- ISO 9224; Corrosion of Metals and Alloys—Values for the Corrosivity Categories. International Organization for Standardization: Geneva, Switzerland, 2012.
- ISO 9225; Corrosion of Metals and Alloys-Corrosivity of Atmospheres-Measurement of Environmental Parameters Affecting Corrosivity of Atmospheres. International Organization for Standardization: Geneva, Switzerland, 2012.
- ISO 9226; Corrosion of Metals and Alloys-Corrosivity of Atmospheres-Determination of Corrosion Rate of Standard Specimens for the Evaluation of Corrosivity. International Organization for Standardization: Geneva, Switzerland, 2012.
- EN ISO 8565:2011; Metals and Alloys—Atmospheric Corrosion Testing—General Requirements. European Committee for Standardization: Brussels, Belgium, 2011.
- Available online: https://corrosion-sites.com/ (accessed on 29 November 2024).
- Albrecht, P.; Hall, T.T. Atmospheric Corrosion Resistance of Structural Steels. In Perspectives in Civil Engineering: Commemorating the 150th Anniversary of the American Society of Civil Engineers; American Society of Civil Engineers (ASCE): Reston, VA, USA, 2003; pp. 321–343. [Google Scholar] [CrossRef]
- de la Fuente, D.; Díaz, I.; Simancas, J.; Chico, B.; Morcillo, M. Long-term atmospheric corrosion of mild steel. Corros. Sci. 2011, 53, 604–617. [Google Scholar] [CrossRef]
- Castaño, J.G.; Botero, C.A.; Restrepo, A.H.; Agudelo, E.A.; Correa, E.; Echeverría, F. Atmospheric corrosion of carbon steel in Colombia. Corros. Sci. 2010, 52, 216–223. [Google Scholar] [CrossRef]
- Misawa, T.; Asami, K.; Hashimoto, K.; Shimodaira, S. The mechanism of atmospheric rusting and the protective amorphous rust on low alloy steel. Corros. Sci. 1974, 14, 279–289. [Google Scholar] [CrossRef]
- Asami, K.; Kikuchi, M. In-depth distribution of rusts on a plain carbon steel and weathering steels exposed to coastal-industrial atmosphere for 17 years. Corros. Sci. 2003, 45, 2671–2688. [Google Scholar] [CrossRef]
- Antunes, R.A.; Costa, I.; de Faria, D.L.A. Characterization of corrosion products formed on steels in the first months of atmospheric exposure. Mater. Res. 2003, 6, 403–408. [Google Scholar] [CrossRef]
- Kamimura, T.; Nasu, S.; Tazaki, T.; Kuzushita, K.; Morimoto, S. Mössbauer spectroscopic study of rust formed on a weathering steel and a mild steel exposed for a long term in an industrial environment. Mater. Trans. 2002, 43, 694–703. [Google Scholar] [CrossRef]
- Oh, S.J.; Cook, D.C.; Townsend, H.E. Atmospheric corrosion of different steels in marine, rural and industrial environments. Corros. Sci. 1999, 41, 1687–1702. [Google Scholar] [CrossRef]
- Wu, H.; Luo, Y.; Zhou, G. The Evolution of the Corrosion Mechanism of Structural Steel Exposed to the Urban Industrial Atmosphere for Seven Years. Appl. Sci. 2023, 13, 4500. [Google Scholar] [CrossRef]
- Cook, D.C. Spectroscopic identification of protective and non-protective corrosion coatings on steel structures in marine environments. Corros. Sci. 2005, 47, 2550–2570. [Google Scholar] [CrossRef]
- Thierry, D.; Persson, D.; Le Bozec, N. Atmospheric corrosion of zinc and zinc alloyed coated steel. In Encyclopedia of Interfacial Chemistry: Surface Science and Electrochemistry; Elsevier: Amsterdam, The Netherlands, 2018; pp. 55–78. [Google Scholar] [CrossRef]
- Elsner, C.I.; Seré, P.R.; Di Sarli, A.R. Atmospheric corrosion of painted galvanized and 55% Al-Zn steel sheets: Results of 12 years of exposure. Int. J. Corros. 2012, 2012, 419640. [Google Scholar] [CrossRef]
- de la Fuente, D.; Castaño, J.G.; Morcillo, M. Long-term atmospheric corrosion of zinc. Corros. Sci. 2007, 49, 1420–1436. [Google Scholar] [CrossRef]
- EN 10088-1:2023; Stainless Steels—Part 1: List of Stainless Steels. European Standard: Plzen, Czech Republic, 2023.
- Frankelt, G.S. Pitting Corrosion of Metals: A Review of the Critical Factors. J. Electrochem. Soc. 1998, 145, 2186–2198. [Google Scholar] [CrossRef]
- Uhlig, H. Uhlig’s Corrosion Handbook, 3rd ed.; Revie, R.W., Ed.; Wiley: Hoboken, NJ, USA, 2011; p. 1296. [Google Scholar]
- Stefec, R.; Franz, F. A study of the pitting corrosion of cold-worked stainless steel. Corros. Sci. 1978, 18, 161–168. [Google Scholar] [CrossRef]
- Fontana, M.G. Corrosion Engineering; McGraw-Hill Book Company, 3rd ed.; Publisher Services Incorporated: Atlanta, GA, USA, 1987. [Google Scholar]
- Szklarska-Smialowska, Z. Pitting Corrosion of Metals; National Association of Corrosion Engineers: Huston, TX, USA, 1986. [Google Scholar]
- Sedriks, J. Corrosion of Stainless Steels; John Wiley & Sons: Hoboken, NJ, USA, 1979. [Google Scholar]
- Grubb, J.F.; Ludlum, A.; Fritz, J.D.; Stainless, T.M.R. Corrosion of Wrought Stainless Steels. ASM Handb. 2018, 13B, 54–77. [Google Scholar] [CrossRef]
- Sedriks, A.J. Effects of alloy composition and microstructure on the passivity of stainless steels. Corrosion 1986, 42, 376–389. [Google Scholar] [CrossRef]
- Iversen, A.; Leffler, B. Aqueous corrosion of stainless steels. In Shreir’s Corrosion; Elsevier: Amsterdam, The Netherlands, 2010; pp. 1802–1878. [Google Scholar] [CrossRef]
- Ilevbare, G.O.; Burstein, G.T. Role of alloyed molybdenum in the inhibition of pitting corrosion in stainless steels. Corros. Sci. 2001, 43, 485–513. [Google Scholar] [CrossRef]
- Peguet, L.; Malki, B.; Baroux, B. Influence of cold working on the pitting corrosion resistance of stainless steels. Corros. Sci. 2007, 49, 1933–1948. [Google Scholar] [CrossRef]
- Rhouma, A.B.; Braham, C.; Fitzpatrick, M.E.; Lédion, J.; Sidhom, H. Effects of surface preparation on pitting resistance, residual stress, and stress corrosion cracking in austenitic stainless steels. J. Mater. Eng. Perform. 2001, 10, 507–514. [Google Scholar] [CrossRef]
- Messinese, E.; Casanova, L.; Paterlini, L.; Capelli, F.; Bolzoni, F.; Ormellese, M.; Brenna, A. A comprehensive in-vestigation on the effects of surface finishing on the resistance to localized corrosion of stainless steel. Metals 2022, 12, 1751. [Google Scholar] [CrossRef]
- Bellezze, T.; Viceré, A.; Giuliani, G.; Sorrentino, E.; Roventi, G. Study of localized corrosion of AISI 430 and AISI 304 batches having different roughness. Metals 2018, 8, 244. [Google Scholar] [CrossRef]
- Rodríguez-Yáñez, J.E.; Batlle, S.F.; Sanabria-Chinchilla, J.; Rojas-Marín, J.F. Combined effect of the exposure angle and face orientation on the atmospheric corrosion behavior of low carbon steel. Electrochim. Acta 2023, 439, 141567. [Google Scholar] [CrossRef]
- Xia, D.H.; Deng, C.M.; Macdonald, D.; Jamali, S.; Mills, D.; Luo, J.L.; Strebl, M.G.; Amiri, M.; Jin, W.; Song, S.; et al. Electrochemical measurements used for assessment of corrosion and protection of metallic materials in the field: A critical review. J. Mater. Sci. Technol. 2022, 112, 151–183. [Google Scholar] [CrossRef]
- Macdonald, D.D. An Impedance Interpretation of Small Amplitude Cyclic Voltammetry: I. Theoretical Analysis for a Resistive-Capacitive System. J. Electrochem. Soc. 1978, 125, 1443–1449. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, J.; Gharbi, O.; Vivier, V.; Gao, M.; Orazem, M.E. Electrochemical impedance spectroscopy. Nat. Rev. Methods Primers 2021, 1, 41. [Google Scholar] [CrossRef]
- Bosch, R.W.; Bogaerts, W.F. Instantaneous Corrosion Rate Measurement with Small-Amplitude Potential Intermodulation Techniques. Corrosion 1996, 52, 204–211. [Google Scholar] [CrossRef]
- Bosch, R.W. Electrochemical frequency modulation: A new electrochemical technique for online corrosion monitoring. Corrosion 2001, 57, 60–70. [Google Scholar] [CrossRef]
- Abdel-Rehim, S.S.; Khaled, K.F.; Abd-Elshafi, N.S. Electrochemical frequency modulation as a new technique for monitoring corrosion inhibition of iron in acid media by new thiourea derivative. Electrochim. Acta 2006, 51, 3269–3277. [Google Scholar] [CrossRef]
- Mameno, S.H.; Pettersson, R.; Leygraf, C.; Wegrelius, L. Atmospheric corrosion resistance of stainless steel: Results of a field exposure program in the middle-east. Berg. Huttenmännische Monatshefte 2016, 161, 33–43. [Google Scholar] [CrossRef]
- ASTM-G50-20; Standard Practice for Conducting Atmospheric Corrosion Tests on Metals. ASTM International: West Conshohocken, PA, USA, 2020. [CrossRef]
- ASTM G1-03; Practice for Preparing, Cleaning, and Evaluating Corrosion Test Specimens. ASTM International: West Conshohocken, PA, USA, 2017. [CrossRef]
- Persson, D.; Thierry, D.; Karlsson, O. Corrosion and corrosion products of hot dipped galvanized steel during long term atmospheric exposure at different sites world-wide. Corros. Sci. 2017, 126, 152–165. [Google Scholar] [CrossRef]
Corrosivity Category | Corrosivity | Unit | Carbon Steel | Zinc | Typical Environments |
---|---|---|---|---|---|
C1 | Very Low | g/(m2y) μm/y | rcorr ≤ 10 rcorr ≤ 1.3 | rcorr ≤ 0.7 rcorr ≤ 0.1 | Dry or cold zone, atmospheric environment with very low pollution and time of wetness |
C2 | Low | g/(m2y) μm/y | 10 < rcorr ≤ 200 1.3 < rcorr ≤ 25 | 0.7 < rcorr ≤ 5 0.1 < rcorr ≤ 0.7 | Temperate zone, atmospheric environment with low pollution (SO2 < 5 µg/m3), e.g., rural areas, small towns; dry or cold zone, atmospheric environment with short time of wetness |
C3 | Medium | g/(m2y) μm/y | 200 < rcorr ≤ 400 25 < rcorr ≤ 50 | 5 < rcorr ≤ 15 0.7 < rcorr ≤ 2.1 | Temperate zone, atmospheric environment with medium pollution (SO2: 5 µg/m3 to 30 µg/m3) or some effect of chlorides |
C4 | High | g/(m2y) μm/y | 400 < rcorr ≤ 650 50 < rcorr ≤ 80 | 15 < rcorr ≤ 30 2.1 < rcorr ≤ 4.2 | Temperate zone, atmospheric environment with high pollution (SO2: 30 µg/m3 to 90 µg/m3) or substantial effect of chlorides |
C5 | Very high | g/(m2y) μm/y | 650 < rcorr ≤ 1500 80 < rcorr ≤ 200 | 30 < rcorr ≤ 60 4.2 < rcorr ≤ 8.4 | Temperate and subtropical zone, atmospheric environment with very high pollution (SO2: 90 µg/m3 to 250 µg/m3) and/or significant effect of chlorides |
CX | Extreme | g/(m2y) μm/y | 1500 < rcorr ≤ 5500 200 < rcorr ≤ 700 | 60 < rcorr ≤ 180 8.4 < rcorr ≤ 25 | Subtropical and tropical zone (very high time of wetness), atmospheric environment with very high SO2 pollution (higher thana 250 μg/m3) including accompanying and production factors and/or strong effect of chlorides |
Steel Type | Label | Number | Surface Finishing |
---|---|---|---|
Carbon steel | CSa | 30 | As received |
CS | 15 | Sandblasted | |
Galvanized steel | GS | 15 | As received |
Steel Type | Label | Number | Surface Finishing |
---|---|---|---|
Carbon steel | CSa | 10 | As received |
CS | 10 | Sandblasted | |
Galvanized steel | GS | 10 | As received |
Stainless steel | 304 * | 1 | 2B ** |
316L * | 1 | 2B ** | |
430 * | 2 | 2B ** | |
441 * | 2 | 2B ** | |
444 * | 2 | 2B ** |
Type of Test | Sample | Time of Exposure (Months) |
---|---|---|
XRD | CSa + CS | 0, 10, 18 |
GS | 0, 12 | |
LPR | CSa + CS | 1, 8, 18, 24 |
GS | 6, 12, 20 | |
PDP | CSa + CS | 10, 15, 20, 26 |
GS | 14 | |
Mass loss | CSa + CS | 10, 15, 20, 26 |
GS | 14 |
Type of Test | Sample | Time of Exposure (Months) |
---|---|---|
XRD | CSa + CS | 0, 4 |
GS | 0, 4 | |
LPR | CSa + CS | 4, 8 |
GS | 0, 4, 7 | |
SS | 0, 7 |
Parameter | CS—Urban | GS—Urban | Marine |
---|---|---|---|
Period | 22–23 May | 22–23 December | 23–24 October |
T (°C) | 17.2 | 18.1 | 18.4 |
RH% | 63 | 61 | 74 |
SO2 (µg/m3) | 2.3 (P0) | 2.2 (P0) | 3.2 (P0) |
Cl− (mg/m2·d) | - | - | 209 (S2) |
NOx (µg/m3) | 29.2 | 28.0 | 13.9 |
Rainfall (mm/y) | 574 | 853 | 1317 |
Total radiation (W/m2) | 165 | 163 | 161 |
Time of wetness (60%) | - | - | 0.86 (τ5) |
Time of wetness (80%) | 0.27 (τ3) | 0.23 (τ3) | 0.33 (τ4) |
Exposure Time (Months) | Ecorr (V vs. Ag/AgCl/KClsat) | |||
---|---|---|---|---|
Mean | Standard Dev. | Min. | Max. | |
1 | −0.260 | 0.082 | −0.414 | −0.098 |
8 | −0.045 | 0.047 | −0.161 | 0.083 |
18 | −0.005 | 0.034 | −0.090 | 0.068 |
24 | −0.023 | 0.052 | −0.138 | 0.090 |
Exposure Time (Months) | CR (µm/year) | ||||
---|---|---|---|---|---|
τ % | Mean | Standard Dev. | Min. | Max. | |
1 | 11 | 4.1 | 1.0 | 1.4 | 7 |
8 | 33 | 7.9 | 4.9 | 0.1 | 23.3 |
18 | 28 | 6.2 | 3.9 | 0.1 | 15.3 |
24 | 29 | 7.4 | 2.9 | 1.1 | 12.4 |
Exposure Time (Months) | Mass Loss Rate (g/(m2·y)) | Corrosion Penetration Rate (µm/y) |
---|---|---|
10 | 64.7 | 8.3 |
15 | 18.4 | 2.4 |
20 | 17.3 | 2.2 |
26 | 13.6 | 1.7 |
Exposure Time (Months) | Ecorr (V vs. Ag/AgCl/KClsat) | |||
---|---|---|---|---|
Mean | Standard Dev. | Min. | Max. | |
6 | −0.900 | 0.018 | −0.940 | −0.870 |
12 | −0.824 | 0.034 | −0.865 | −0.740 |
21 | −0.793 | 0.030 | −0.850 | 0.740 |
Exposure Time (Months) | CR (µm/Year) | ||||
---|---|---|---|---|---|
τ % | Mean | Standard Dev. | Min. | Max. | |
6 | 25 | 1.89 | 1.01 | 0.31 | 3.69 |
12 | 31 | 0.68 | 0.33 | 0.12 | 1.33 |
21 | 28 | 0.54 | 0.38 | 0.11 | 1.19 |
Exposure Time (Months) | Ecorr (V vs. Ag/AgCl/KClsat) | |||
---|---|---|---|---|
Mean | Standard Dev. | Min. | Max. | |
4 | −0.128 | 0.020 | −0.170 | −0.100 |
8 | −0.137 | 0.015 | −0.173 | −0.114 |
Exposure Time (Months) | CR (µm/Year) | ||||
---|---|---|---|---|---|
τ % | Mean | Standard Dev. | Min. | Max. | |
4 | 88 | 79.3 | 17.3 | 45.7 | 106.3 |
8 | 85 | 75.8 | 19.8 | 40.4 | 122.5 |
Exposure Time (Months) | Ecorr (V vs. Ag/AgCl/KClsat) | |||
---|---|---|---|---|
Mean | Standard Dev. | Min. | Max. | |
0 | −0.796 | 0.044 | −0.880 | −0.681 |
4 | −0.908 | 0.022 | −0.943 | −0.874 |
7 | −0.925 | 0.049 | −0.999 | 0.866 |
Exposure Time (Months) | CR (µm/Year) | ||||
---|---|---|---|---|---|
τ % | Mean | Standard Dev. | Min. | Max. | |
0 | n.d. | 26 | 10.7 | 9.56 | 48.84 |
4 | 88 | 4.42 | 1.48 | 2.26 | 7.75 |
7 | 85 | 9.37 | 5.31 | 3.81 | 18.70 |
Field Site | Environmental | Material | Corrosion Rate [µm/Year] | Category of Corrosivity | ||||
---|---|---|---|---|---|---|---|---|
T (°C) | RH % | τ % | By LPR | By Mass Loss | Dose–Response (ISO 9223) | Standard Coupons | ||
Urban | 17.2 | 63 | 27 | CS | 4–8 | 8.3 (10 months) | 8.65 | C2 |
GS | 0.68 | 0.65 (12 months) | 0.22 | C2 | ||||
Marine | 18.4 | 74 | 86 | CS | 79.3–75.8 | --- | 83.2 | C4 |
GS | 4.4–9.4 | --- | 3.6 | C5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paterlini, L.; Brenna, A.; Ceriani, F.; Gamba, M.; Ormellese, M.; Bolzoni, F. Atmospheric Corrosion of Different Steel Types in Urban and Marine Exposure. Materials 2024, 17, 6211. https://doi.org/10.3390/ma17246211
Paterlini L, Brenna A, Ceriani F, Gamba M, Ormellese M, Bolzoni F. Atmospheric Corrosion of Different Steel Types in Urban and Marine Exposure. Materials. 2024; 17(24):6211. https://doi.org/10.3390/ma17246211
Chicago/Turabian StylePaterlini, Luca, Andrea Brenna, Federica Ceriani, Matteo Gamba, Marco Ormellese, and Fabio Bolzoni. 2024. "Atmospheric Corrosion of Different Steel Types in Urban and Marine Exposure" Materials 17, no. 24: 6211. https://doi.org/10.3390/ma17246211
APA StylePaterlini, L., Brenna, A., Ceriani, F., Gamba, M., Ormellese, M., & Bolzoni, F. (2024). Atmospheric Corrosion of Different Steel Types in Urban and Marine Exposure. Materials, 17(24), 6211. https://doi.org/10.3390/ma17246211