A New Method for Evaluating the Homogeneity within and between Weave Repeats in Plain Fabric Structures Using Computer Image Analysis
<p>The weaving notation of weave structural modules (SMS) and their inter-thread spaces in the fabric [<a href="#B14-materials-17-03229" class="html-bibr">14</a>].</p> "> Figure 2
<p>Graphical visualization of the fabric weave repeat (e.g., R1) and collection of the repeats (R1–R6) separated in the image.</p> "> Figure 3
<p>Plain weave repeat: (<b>a</b>) classic repeat R1, (<b>b</b>) repeat R1 for homogeneity analysis, (<b>c</b>) weave structural modulus SMS1 type in the repeat R1 for analysis, where R1 (red square)—a repeat of weave; P<sub>wa</sub>, P<sub>we</sub> (green and blue arrow)—warp, weft pitches; ITP1d, ITP2, ITP3d, ITP4 (different colored squares)—ITPs in the repeats; SMS1_d, SMS1_2, SMS1_3d, SMS1_4—SMS1 modulus types in the repeat R1; and grey lines with circles—warp, weft threads with warp and weft overlaps.</p> "> Figure 4
<p>The graphical visualization for calculating the IAR inhomogeneity, where n represents the number of analyzed repeats with the structural modules SMS1{1d, 2, 3d, 4}.</p> "> Figure 5
<p>The graphical visualization for calculating the inter-repeat inhomogeneity (IER), where 4 represents the number of structural modules SMS1{1d, 2, 3d, 4} in the plain weave fabric repeat.In this research, ITP refers to the inter-thread porosity, encompassing the hairiness of the thread. ITP represents the spaces or gaps between adjacent threads, such as warp and weft threads, in the woven structure. These pores are formed during the weaving process as threads interlace to create the fabric. The size, shape, and location of ITPs can vary based on factors like the weave pattern, thread density, and weaving parameters such as tension.</p> "> Figure 6
<p>Illustration of the parameters essential for fabric structure homogeneity: (<b>a</b>) ITP size: A: area, W: height, S: width; ITP shape: Dmax: maximum area diameter, Dmin: minimum area diameter, L: area perimeter; (<b>b</b>) ITP location: 16, 9: consecutive ITP numbers, A<sub>IDE</sub>: ideal area (in the average grid), D<sub>IDE</sub>: diameter of ideal area (in the average grid), C[i,j]: centre of gravity of the ITP; (<b>c</b>) the thread pitches: P<sub>wa</sub>, P<sub>we</sub>: warp and weft pitches [<a href="#B17-materials-17-03229" class="html-bibr">17</a>].</p> "> Figure 7
<p>Images of theoretical fabric models differentiated by the size, shape, and location of artificial ITPs.</p> "> Figure 8
<p>Images of three characteristic structures of plain cotton fabrics with different groupings of warp threads, representing a group of 30 fabrics produced on a laboratory loom by varying loom settings.</p> "> Figure 9
<p>The image analysis of the optimal algorithm of tested fabrics with plain weaves focusing on the ITP: (<b>a</b>) the picture after the acquisition, (<b>b</b>) low-pass filtering, (<b>c</b>) histogram equalization, (<b>d</b>) non-linear filtration (x<sup>2</sup>), (<b>e</b>) image negative, (<b>f</b>) thresholding operation with the auto threshold set by copyright procedure, (<b>g</b>) closing operation, (<b>h</b>) opening operation, and (<b>i</b>) cluster analysis automatically set by copyright procedure for segmentation recognition and the classification and interpretation of ITPs [<a href="#B18-materials-17-03229" class="html-bibr">18</a>].</p> "> Figure 10
<p>Results of the analysis of artificial image models for verification of IER inhomogeneity parameters: (<b>a</b>) “elements” method, and (<b>b</b>) “average” method.</p> "> Figure 10 Cont.
<p>Results of the analysis of artificial image models for verification of IER inhomogeneity parameters: (<b>a</b>) “elements” method, and (<b>b</b>) “average” method.</p> "> Figure 11
<p>The results of the analysis of artificial image models for verification of IAR inhomogeneity parameters.</p> "> Figure 12
<p>Results of verification of the IAR (<math display="inline"><semantics> <mrow> <msub> <mrow> <mover accent="true"> <mrow> <mi mathvariant="normal">V</mi> </mrow> <mo stretchy="false">¯</mo> </mover> </mrow> <mrow> <mi mathvariant="normal">I</mi> <mi mathvariant="normal">A</mi> <mi mathvariant="normal">R</mi> </mrow> </msub> </mrow> </semantics></math>) and IER (<math display="inline"><semantics> <mrow> <msub> <mrow> <mover accent="true"> <mrow> <mi mathvariant="normal">V</mi> </mrow> <mo stretchy="false">¯</mo> </mover> </mrow> <mrow> <mi mathvariant="normal">I</mi> <mi mathvariant="normal">E</mi> <mi mathvariant="normal">R</mi> </mrow> </msub> </mrow> </semantics></math>) inhomogeneity in artificial images, where: green color—M_14 with the best homogeneity results (low level of <math display="inline"><semantics> <mrow> <msub> <mrow> <mover accent="true"> <mrow> <mi mathvariant="normal">V</mi> </mrow> <mo stretchy="false">¯</mo> </mover> </mrow> <mrow> <mi mathvariant="normal">I</mi> <mi mathvariant="normal">A</mi> <mi mathvariant="normal">R</mi> </mrow> </msub> <mo>=</mo> <mn>1.75</mn> <mi mathvariant="normal">%</mi> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mrow> <mover accent="true"> <mrow> <mi mathvariant="normal">V</mi> </mrow> <mo stretchy="false">¯</mo> </mover> </mrow> <mrow> <mi mathvariant="normal">I</mi> <mi mathvariant="normal">E</mi> <mi mathvariant="normal">R</mi> </mrow> </msub> <mo>=</mo> <mn>1.69</mn> <mi mathvariant="normal">%</mi> </mrow> </semantics></math>); red color—M_17 with the worst homogeneity result (high level of <math display="inline"><semantics> <mrow> <msub> <mrow> <mover accent="true"> <mrow> <mi mathvariant="normal">V</mi> </mrow> <mo stretchy="false">¯</mo> </mover> </mrow> <mrow> <mi mathvariant="normal">I</mi> <mi mathvariant="normal">A</mi> <mi mathvariant="normal">R</mi> </mrow> </msub> <mo>=</mo> <mn>19.17</mn> <mi mathvariant="normal">%</mi> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mrow> <mover accent="true"> <mrow> <mi mathvariant="normal">V</mi> </mrow> <mo stretchy="false">¯</mo> </mover> </mrow> <mrow> <mi mathvariant="normal">I</mi> <mi mathvariant="normal">E</mi> <mi mathvariant="normal">R</mi> </mrow> </msub> <mo>=</mo> <mn>19.59</mn> <mi mathvariant="normal">%</mi> </mrow> </semantics></math>); yelow color—M_112 with disturbed homogeneity (high level of <math display="inline"><semantics> <mrow> <msub> <mrow> <mover accent="true"> <mrow> <mi mathvariant="normal">V</mi> </mrow> <mo stretchy="false">¯</mo> </mover> </mrow> <mrow> <mi mathvariant="normal">I</mi> <mi mathvariant="normal">A</mi> <mi mathvariant="normal">R</mi> </mrow> </msub> <mo>=</mo> <mn>22.99</mn> <mi mathvariant="normal">%</mi> </mrow> </semantics></math> and low level <math display="inline"><semantics> <mrow> <msub> <mrow> <mover accent="true"> <mrow> <mi mathvariant="normal">V</mi> </mrow> <mo stretchy="false">¯</mo> </mover> </mrow> <mrow> <mi mathvariant="normal">I</mi> <mi mathvariant="normal">E</mi> <mi mathvariant="normal">R</mi> </mrow> </msub> <mo>=</mo> <mn>3.63</mn> <mi mathvariant="normal">%</mi> </mrow> </semantics></math>).</p> "> Figure 13
<p>Results of IAR <math display="inline"><semantics> <mrow> <mo>(</mo> <msub> <mrow> <mover accent="true"> <mrow> <mi mathvariant="normal">V</mi> </mrow> <mo stretchy="false">¯</mo> </mover> </mrow> <mrow> <mi mathvariant="normal">I</mi> <mi mathvariant="normal">A</mi> <mi mathvariant="normal">R</mi> </mrow> </msub> <mo>)</mo> </mrow> </semantics></math> and IER (<math display="inline"><semantics> <mrow> <msub> <mrow> <mover accent="true"> <mrow> <mi mathvariant="normal">V</mi> </mrow> <mo stretchy="false">¯</mo> </mover> </mrow> <mrow> <mi mathvariant="normal">I</mi> <mi mathvariant="normal">E</mi> <mi mathvariant="normal">R</mi> </mrow> </msub> <mo>)</mo> </mrow> </semantics></math> inhomogeneity on the graph for all fabrics, and results of verification of (AirF) [mm/s] airflow for all plain fabrics, where: green color—P_5 fabric with the best homogeneity results (low level of <math display="inline"><semantics> <mrow> <msub> <mrow> <mover accent="true"> <mrow> <mi mathvariant="normal">V</mi> </mrow> <mo stretchy="false">¯</mo> </mover> </mrow> <mrow> <mi mathvariant="normal">I</mi> <mi mathvariant="normal">A</mi> <mi mathvariant="normal">R</mi> </mrow> </msub> <mo>=</mo> <mn>26.74</mn> <mi mathvariant="normal">%</mi> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mrow> <mover accent="true"> <mrow> <mi mathvariant="normal">V</mi> </mrow> <mo stretchy="false">¯</mo> </mover> </mrow> <mrow> <mi mathvariant="normal">I</mi> <mi mathvariant="normal">E</mi> <mi mathvariant="normal">R</mi> </mrow> </msub> <mo>=</mo> <mn>24.91</mn> <mi mathvariant="normal">%</mi> </mrow> </semantics></math>, AirF = 383.73 mm/s); red color—P_12 fabric with the worst homogeneity result (high level of <math display="inline"><semantics> <mrow> <msub> <mrow> <mover accent="true"> <mrow> <mi mathvariant="normal">V</mi> </mrow> <mo stretchy="false">¯</mo> </mover> </mrow> <mrow> <mi mathvariant="normal">I</mi> <mi mathvariant="normal">A</mi> <mi mathvariant="normal">R</mi> </mrow> </msub> <mo>=</mo> <mn>47.13</mn> <mi mathvariant="normal">%</mi> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mrow> <mover accent="true"> <mrow> <mi mathvariant="normal">V</mi> </mrow> <mo stretchy="false">¯</mo> </mover> </mrow> <mrow> <mi mathvariant="normal">I</mi> <mi mathvariant="normal">E</mi> <mi mathvariant="normal">R</mi> </mrow> </msub> <mo>=</mo> <mn>45.20</mn> <mi mathvariant="normal">%</mi> <mo>,</mo> <mi mathvariant="normal">A</mi> <mi mathvariant="normal">i</mi> <mi mathvariant="normal">r</mi> <mi mathvariant="normal">F</mi> <mo>=</mo> <mn>620.91</mn> <mo> </mo> <mi mathvariant="normal">m</mi> <mi mathvariant="normal">m</mi> <mo>/</mo> <mi mathvariant="normal">s</mi> </mrow> </semantics></math>); yelow color—P_20 fabric with disturbed homogeneity (high level of <math display="inline"><semantics> <mrow> <msub> <mrow> <mover accent="true"> <mrow> <mi mathvariant="normal">V</mi> </mrow> <mo stretchy="false">¯</mo> </mover> </mrow> <mrow> <mi mathvariant="normal">I</mi> <mi mathvariant="normal">A</mi> <mi mathvariant="normal">R</mi> </mrow> </msub> <mo>=</mo> <mn>36.40</mn> <mi mathvariant="normal">%</mi> </mrow> </semantics></math> and low level <math display="inline"><semantics> <mrow> <msub> <mrow> <mover accent="true"> <mrow> <mi mathvariant="normal">V</mi> </mrow> <mo stretchy="false">¯</mo> </mover> </mrow> <mrow> <mi mathvariant="normal">I</mi> <mi mathvariant="normal">E</mi> <mi mathvariant="normal">R</mi> </mrow> </msub> <mo>=</mo> <mn>24.52</mn> <mi mathvariant="normal">%</mi> <mo>,</mo> </mrow> </semantics></math> AirF = 510.73 mm/s).</p> "> Figure 14
<p>Images of three characteristic plain fabrics after image analysis: P_5 with the best homogeneity (green color), P_12 with the worst homogeneity (red color), and P_20 with the best IER homogeneity but the worst IAR homogeneity (yelow color).</p> "> Figure 15
<p>After image analysis, the pore size distribution for three characteristic plain fabrics: P_5, P_12, P_20.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Methods
- The size, shape, and location of ITPs;
- The value and position of thread pitches.
2.1.1. The General Coefficient of IAR Inhomogeneity ()
- The coefficients of the ITP variation:
- 1.1
- VIAR_A—the IAR inhomogeneity of the ITP area (A);
- 1.2
- VIAR_S—the IAR inhomogeneity of the ITP shape (S);VIAR_Feret—the IAR inhomogeneity of the ITP elongation (Feret);VIAR_AspR—the IAR inhomogeneity of the ITP oval shape (AspectR);VIAR_FormF—the IAR inhomogeneity of the edge development of the ITP (FormF).
- The coefficients of the thread pitch variation:
- 2.1
- VIAR_Pwa—the IAR inhomogeneity of the warp thread pitches (Pwa);
- 2.2
- VIAR_Pwe—the IAR inhomogeneity of the weft thread pitches (Pwe).
- The coefficients of the average grid variation:
- 3.1
- VIAR_DITP—the IAR inhomogeneity of the position (DITP);
- 3.2
- VIAR_RID—the IAR inhomogeneity of the area difference (RID).
2.1.2. The General Coefficient of Inter-Repeat Inhomogeneity ()
- The coefficients of the ITP variation:
- 1.1
- VIER_A—the IER inhomogeneity of the ITP area (A);
- 1.2
- VIER_S—the IER inhomogeneity of the ITP shape (S);VIER_Feret—the IER inhomogeneity of the ITP elongation (Feret);VIER_AspR—the IER inhomogeneity of the ITP oval shape (AspectR);VIER_FormF—the IER inhomogeneity of the edge development of the ITP (FormF).
- The coefficients of the thread pitch variation:
- 2.1
- VIER_Pwa—the IER inhomogeneity of the warp thread pitches (Pwa);
- 2.2
- VIER_Pwe—the IER inhomogeneity of the weft thread pitches (Pwe).
- The coefficients of the average grid variation:
- 3.1
- VIER_DITP—the IER inhomogeneity of the position (DITP);
- 3.2
- VIER_RID—the IER inhomogeneity of the area difference (RID).
2.2. Material
2.2.1. The Images of Theoretical Model Fabrics for Verification of the New Method
2.2.2. The Images of Plain Weave Fabrics for Verification of the New Method
3. Results and Discussion
3.1. Verification of the New Method Using the Images of Theoretical Model Fabrics
3.2. Verification of the New Method Using the Images of Plain Weave Fabrics
3.3. Verification of the New Method Using the Pore Size Distribution
3.4. Verification of the New Method Using the Results of the Multiple Regression Analysis for the Air Flow (AirF) and and Homogeneity Structure Parameters
+(0.72 × (0.45 VIER_Feret + 0.45 VIER_AspR + 0.1 VIER_FormF)
3.5. Verification of the New Method Using the Multiple Regression Models of the Air Flow AirF [mm/s] and the General Coefficient of IAR and IER Inhomogeneity ()
3.6. Verification of the New Method Using the Multiple Regression Models of the Air Flow AirF [mm/s] and the Pore Size Distribution Parameters
3.7. Verification of the New Method Using the Multiple Regression Models of the St Dev σ (A) and and Inhomogeneity Fabric Structure Parameters
3.8. Verification of the New Method Using the Multiple Regression Models for the Air Flow AirF [mm/s] and the Warp and Weft Pitches
3.9. Verification of the New Method Using the Multiple Regression Models for the St Dev (Pwa) and and Inhomogeneity Fabric Structure Parameters
3.10. Verification of the New Method Using the Multiple Regression Models for the Air Flow AirF [mm/s] and and the General Coefficients of IAR and IER Inhomogeneity () and Statistical Description of the Pore Size Distribution and Warp and Weft Pitches
4. Conclusions
5. Patents
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Adanur, S.; Jayswal, A. Filtration mechanisms and manufacturing methods of face masks: An overview. J. Ind. Text. 2022, 51 (Suppl. S3), 3683S–3717S. [Google Scholar] [CrossRef]
- Rogina-Car, B.; Kovacevic, S.; Schwarz, I.; Dimitrovski, K. Microbial Barrier Properties of Cotton Fabric-Influence of Weave Architecture. Polymers 2020, 12, 1570. [Google Scholar] [CrossRef] [PubMed]
- Dridi, S.; Morestin, F.; Dogui, A. Use of Digital Image Correlation to Analyse the Shearing Deformation in Woven Fabric. Exp. Tech. 2012, 36, 46–52. [Google Scholar] [CrossRef]
- Hufenbach, W.A.; Gude, M.; Adam, F.; Modler, N.; Heber, T.; Renner, O.; Körner, I.; Weck, D. Experimental investigation of composite-based compliant structures. Compos. Theory Pract. 2011, 11, 187–191. [Google Scholar]
- Sakaguchi, A.; Wen, G.H.; Matsumoto, Y.I.; Toriumi, K.; Kim, H. Image analysis of woven fabric surface irregularity. Text. Res. J. 2001, 71, 666–671. [Google Scholar] [CrossRef]
- Kang, T.J.; Choi, S.H.; Kim, S.M.; Oh, K.W. Automatic structure analysis and objective evaluation of woven fabric using image analysis. Text. Res. J. 2001, 71, 261–270. [Google Scholar] [CrossRef]
- Jiraskova, P.; Mouckova, E. New method for the evaluation of woven fabric unevenness. Autex Res. J. 2010, 10, 49–54. [Google Scholar] [CrossRef]
- Havlova, M. Detection of Fabric Structure Irregularities Using Air Permeability Measurements. J. Eng. Fibers Fabr. 2014, 9, 157–164. [Google Scholar] [CrossRef]
- Ragab, A.; Fouda, A.; El-Deeb, H.; Abou-Taleb, H. Determination of Pore Size, Porosity and Pore Size Distribution of Woven Structures by Image Analysis Techniques. J. Text. Sci. Eng. 2017, 7, 5. [Google Scholar] [CrossRef]
- Kostajnšek, K.; Zupin, Ž.; Hladnik, A.; Dimitrovski, K. Optical assessment of porosity parameters in transparent woven fabrics. Polymers 2021, 13, 408. [Google Scholar] [CrossRef] [PubMed]
- Douguet, O.; Buet-Gautier, K.; Leyssens, G.; Bueno, M.A.; Mathieu, D.; Brilhac, J.F.; Tschamber, V. Evaluation of structural parameters to predict particle filtration and air permeability performance of woven textiles. Text. Res. J. 2023, 93, 4686–4700. [Google Scholar] [CrossRef]
- Zupin, Z.; Stampfl, V.; Kocevar, T.N.; Tomc, H.G. Comparison of Measured and Calculated Porosity Parameters of Woven Fabrics to Results Obtained with Image Analysis. Materials 2024, 17, 783. [Google Scholar] [CrossRef] [PubMed]
- Rolich, T.; Domovic, D.; Cubric, G.; Cubric, I.S. Advanced Image Analysis and Machine Learning Models for Accurate Cover Factor and Porosity Prediction in Knitted Fabrics: Tailored Applications in Sportswear, Swimwear, and Casual Wear. Fibers 2024, 12, 45. [Google Scholar] [CrossRef]
- Szosland, J. Identyfication of Structure of Inter-Thread Channels in Models of Woven Fabrics. Fibres Text. East. Eur. 1999, 7, 41–45. [Google Scholar]
- Polipowski, M.; Wiecek, P.; Wiecek, B.; Jasinska, I. Study on Woven Fabric Structure Using 3D Computer Image Analysis for In-Depth Identification of Thread Channels. Fibres Text. East. Eur. 2015, 23, 33–39. [Google Scholar]
- Owczarek, M.; Masajtis, J. Evaluation of the structural homogeneity of denim fabric by means of digital image analysis. Fibres Text. East. Eur. 2006, 14, 41–45. [Google Scholar]
- Owczarek, M. Morphometrical structural analysis of inter-thread pores in woven fabrics with the use of computer image analysis. Text. Res. J. 2019, 89, 4858–4874. [Google Scholar] [CrossRef]
- Owczarek, M. The impact and importance of fabric image preprocessing for the new method of individual inter-thread pores detection. Autex Res. J. 2020, 20, 250–262. [Google Scholar] [CrossRef]
- CEN. EN ISO 7231:2024-02; Polymeric Materials, Cellular Flexible—Determination of Air Flow Permeability. European Committee for Standardization: Brussels, Belgium, 2024.
- ASTM. ASTM D 737-18; Standard Test Method for Air Permeability of Textile Fabrics. ASTM International: West Conshohocken, PA, USA, 2018.
M_11 | M_12 | M_13 | M_14 | M_15 | M_16 | M_17 | M_18 | M_19 | M_110 | M_111 | M_112 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
A | 1159 | 1830 | 2265 | 3600 | 2715 | 1830 | 2715 | 3254 | 2196 | 1481 | 1698 | 2121 |
δ (A) | 671 | 30 | 1335 | 0 | 885 | 30 | 885 | 346 | 712 | 5 | 536 | 532 |
Pwa | 147 | 148 | 146 | 144 | 146 | 147 | 146 | 144 | 146 | 146 | 148 | 145 |
δ (Pwa) | 15 | 4 | 17 | 3 | 9 | 4 | 3 | 0 | 3 | 3 | 4 | 4 |
Pwe | 138 | 138 | 138 | 138 | 138 | 139 | 138 | 138 | 138 | 138 | 138 | 138 |
δ (Pwe) | 10 | 9 | 10 | 9 | 9 | 12 | 9 | 8 | 9 | 11 | 10 | 24 |
Property of Yarns | Value |
---|---|
Cvm Variation of linear mass | 13.93% |
Warp twist | 646 S twist/m |
Weft twist | 604 S twist/m |
Hairiness | 7.31 fibers/m |
Number of thin places per 1000 m | <5% |
Number of thick places per 1000 m | <25% |
Plain Fabrics | P1 | P2 | P3 | P4 | P5 | P6 | P7 | P8 | P9 | P10 | P11 | P12 | P13 | P14 | P15 |
A | 3554 | 3508 | 3918 | 3816 | 3338 | 3384 | 3437 | 3161 | 3939 | 3785 | 3863 | 4029 | 3527 | 3741 | 3155 |
δ (A) | 2991 | 3590 | 2808 | 3593 | 2174 | 2257 | 2139 | 2321 | 3650 | 3608 | 3196 | 3848 | 3648 | 3027 | 3237 |
Pwa | 134 | 137 | 133 | 133 | 134 | 134 | 135 | 133 | 134 | 133 | 134 | 135 | 134 | 133 | 134 |
δ (Pwa) | 21 | 26 | 18 | 25 | 13 | 15 | 15 | 16 | 26 | 28 | 24 | 29 | 30 | 18 | 26 |
Pwe | 218 | 226 | 220 | 225 | 216 | 221 | 216 | 223 | 214 | 213 | 213 | 217 | 218 | 217 | 216 |
δ (Pwe) | 12 | 9 | 11 | 15 | 8 | 8 | 13 | 12 | 11 | 8 | 14 | 12 | 13 | 11 | 9 |
Plain Fabrics | P16 | P17 | P18 | P19 | P20 | P21 | P22 | P23 | P24 | P25 | P26 | P27 | P28 | P29 | P30 |
A | 3170 | 3342 | 2726 | 3282 | 3903 | 3579 | 3652 | 3674 | 3709 | 3871 | 3817 | 4135 | 4165 | 3830 | 3708 |
δ (A) | 2622 | 2430 | 2526 | 2964 | 3359 | 2409 | 2759 | 3426 | 2976 | 3434 | 3186 | 3669 | 3595 | 3095 | 3408 |
Pwa | 135 | 137 | 133 | 133 | 132 | 135 | 134 | 135 | 133 | 135 | 136 | 137 | 133 | 133 | 135 |
δ (Pwa) | 21 | 20 | 23 | 23 | 24 | 18 | 17 | 27 | 23 | 24 | 22 | 27 | 25 | 20 | 24 |
Pwe | 214 | 214 | 212 | 214 | 211 | 216 | 227 | 213 | 214 | 214 | 215 | 216 | 217 | 220 | 217 |
δ (Pwe) | 10 | 11 | 12 | 9 | 9 | 11 | 12 | 11 | 14 | 11 | 10 | 15 | 11 | 8 | 13 |
P_1 | P_2 | P_3 | P_4 | P_5 | P_6 | P_7 | P_8 | P_9 | P_10 | P_11 | P_12 | P_13 | P_14 | P_15 | |
min (A) | 68 | 1 | 182 | 64 | 36 | 288 | 216 | 176 | 82 | 50 | 58 | 1 | 1 | 80 | 64 |
max (A) | 12,144 | 13,906 | 10,220 | 13,090 | 8822 | 8710 | 8220 | 9818 | 12,706 | 13,654 | 10,938 | 12,716 | 12,608 | 10,564 | 14,520 |
(A) | 3554 | 3508 | 3918 | 3816 | 3338 | 3384 | 3437 | 3161 | 3939 | 3785 | 3863 | 4029 | 3527 | 3741 | 3155 |
\A\ | 2711 | 1862 | 3220 | 2340 | 2862 | 3161 | 2994 | 2338 | 2641 | 2597 | 2487 | 2838 | 2097 | 3073 | 1516 |
σ (A) | 2983 | 3566 | 2785 | 3582 | 2168 | 2240 | 2136 | 2317 | 3642 | 3600 | 3199 | 3853 | 3627 | 3004 | 3312 |
P_16 | P_17 | P_18 | P_19 | P_20 | P_21 | P_22 | P_23 | P_24 | P_25 | P_26 | P_27 | P_28 | P_29 | P_30 | |
min (A) | 154 | 1 | 58 | 1 | 92 | 46 | 84 | 94 | 70 | 92 | 110 | 104 | 1 | 78 | 114 |
max (A) | 12,938 | 12,116 | 10,342 | 10,562 | 13,698 | 10,512 | 11,828 | 12,310 | 9950 | 11,540 | 11,972 | 13,240 | 12,870 | 12,242 | 11,488 |
(A) | 3170 | 3342 | 2726 | 3282 | 3903 | 3579 | 3652 | 3674 | 3709 | 3871 | 3817 | 4135 | 4165 | 3830 | 3708 |
\A\ | 2358 | 2812 | 2018 | 2274 | 2481 | 3256 | 3239 | 2259 | 3129 | 2559 | 2804 | 2838 | 2898 | 3077 | 2538 |
σ (A) | 2605 | 2430 | 2518 | 2953 | 3357 | 2407 | 2792 | 3420 | 2976 | 3461 | 3169 | 3643 | 3589 | 3112 | 3391 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Owczarek, M. A New Method for Evaluating the Homogeneity within and between Weave Repeats in Plain Fabric Structures Using Computer Image Analysis. Materials 2024, 17, 3229. https://doi.org/10.3390/ma17133229
Owczarek M. A New Method for Evaluating the Homogeneity within and between Weave Repeats in Plain Fabric Structures Using Computer Image Analysis. Materials. 2024; 17(13):3229. https://doi.org/10.3390/ma17133229
Chicago/Turabian StyleOwczarek, Magdalena. 2024. "A New Method for Evaluating the Homogeneity within and between Weave Repeats in Plain Fabric Structures Using Computer Image Analysis" Materials 17, no. 13: 3229. https://doi.org/10.3390/ma17133229
APA StyleOwczarek, M. (2024). A New Method for Evaluating the Homogeneity within and between Weave Repeats in Plain Fabric Structures Using Computer Image Analysis. Materials, 17(13), 3229. https://doi.org/10.3390/ma17133229