Prioritizing Sustainable Denim Fabric through Integrated Decision-Making Framework
<p>The procedure of the proposed LMAW-DNMA framework.</p> "> Figure 2
<p>The ranking results of fabric alternatives for both garments regarding fabric content ratio.</p> "> Figure 3
<p>Elongation at break values of fabric alternatives for both warp and weft direction.</p> ">
Abstract
:1. Introduction
- -
- The study fills critical gaps in denim fabric research, especially concerning the sustainable production and performance evaluation of denim using new multi-criteria decision-making methods.
- -
- Prioritizing the most important performance criteria for denim upper and lower clothes based on expert opinions
- -
- A combined subjective–objective method is used for flexible decision-making.
- -
- The research gap regarding the evaluation of fabric alternatives containing varying ratios of recycled cotton at varying rates is being filled with a multi-criteria decision-making approach.
- -
- The methods employed in the study are recent, and their combined application in prioritizing denim fabric within the textile industry has not been previously implemented.
2. Materials and Experimental Design
Fabric Alternative Characterization
3. Methodology
3.1. Data Collection through Fabric Tests
3.2. Integrated MCDM framework for Decision Support
3.2.1. LMAW Method Proposed for Ranking the Criteria
3.2.2. DNMA Method Proposed for Ranking the Alternatives
3.3. General Interpretation through Statistical Analysis
4. Findings
4.1. Determination of the Criteria Weights Using LMAW Method
4.2. Ranking of Alternatives Using DNMA Method
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Uysaler, T.; Altay, P.; Özcan, G. Investigation of the effect of preparation processes on CO2 laser-faded denim fabric quality. Res. J. Text. Appar. 2023. ahead-of-print. [Google Scholar] [CrossRef]
- Statista. Available online: https://www.statista.com/statistics/877056/denim-market-value-worldwide/ (accessed on 26 October 2023).
- Fidan, F.Ş.; Aydoğan, E.K.; Uzal, N. An integrated life cycle assessment approach for denim fabric production using recycled cotton fibers and combined heat and power plant. J. Clean. Produc. 2021, 287, 125439. [Google Scholar]
- Psmarketresearch. Available online: https://www.psmarketresearch.com/market-analysis/denim-jeans-market (accessed on 26 October 2023).
- Karuppuchamy, A. Environmental impacts of denim. In Sustainability in Denim; Muthu, S.S., Ed.; Woodhead Publishing: Cambridge, UK, 2017; pp. 27–48. [Google Scholar]
- Levis. Available online: https://levistrauss.com/wp-content/uploads/2015/03/Full-LCA-Results-Deck-FINAL.pdf (accessed on 10 November 2023).
- Meng, X.; Fan, W.; Ma, Y.; Wei, T.; Dou, H.; Yang, X.; Tian, H.; Yu, Y.; Zhang, T.; Gao, L. Recycling of denim fabric wastes into high-performance composites using the needle-punching nonwoven fabrication route. Text. Res. J. 2020, 90, 695–709. [Google Scholar] [CrossRef]
- Birkocak, D.T.; Acar, E.; Bakadur, A.Ç.; Ütebay, B.; Özdağoğlu, A. An Application of the MARCOS Method Within the Framework of Sustainability to Determine the Optimum Recycled Fibre-Containing Fabric. Fibers Polym. 2023, 24, 2595–2608. [Google Scholar]
- Esteve-Turrillas, F.A.; de La Guardia, M. Environmental impact of Recover cotton in textile industry. Resour. Conserv. Recycl. 2017, 116, 107–115. [Google Scholar] [CrossRef]
- Yüksel, Y.E.; Korkmaz, Y. Eco-friendly denim fabric design and life cycle analysis. Kahram. Sütçü İmam Üni. Müh. Bil. Derg. 2023, 26, 117–125. [Google Scholar]
- Chroona, G. Fractionation of Textile Fibres from Denim Jeans. Master’s Thesis, KTH Royal Institute of Technology, Stockholm, Sweden, 2016. [Google Scholar]
- Lee Hong, C.; Ming Yeng, C.; Seong Chun, K.; Thai Kiat, O. Denim fabric-reinforced unsaturated polyester: Effect of different fabrication methods on mechanical properties and water absorption properties. Polym. Bull. 2023, 81, 2545–2563. [Google Scholar] [CrossRef]
- Alp, G.; Yıldırım, N.; Kertmen, M.; Türksoy, H. Investigation of Performance Properties of Denim Fabrics Produced from Recycled Cotton Blended Yarns. Dok. Eyl. Üni. Müh. Fak. Fen ve Müh. Der. 2023, 25, 275–285. [Google Scholar]
- Siddiquee, M.; Moula, A.; Saha, J.; Kabir Khan, M.; Kaisar, Z.; Roy, A. Sustainable Denim Washing by Process Optimization. J. Text. Sci. Technol. 2022, 8, 149–162. [Google Scholar] [CrossRef]
- Khan, M.M.R.; Mondal, M.I.H.; Uddin, M.Z. Sustainable washing for denim garments by enzymatic treatment. J. Chem. Eng. 2012, 27, 27–31. [Google Scholar]
- Sarker, U.K.; Kawser, N.; Rahim, A.; Al Parvez, A.; Shahid, M.I. Superiority of sustainable ozone wash over conventional denim washing technique. Int. J. Curr. Eng. Technol. 2021, 11, 516–522. [Google Scholar] [CrossRef]
- Shibly, M.A.H.; Hoque, M.M.; Miah, S. Development of eco-friendly denim fabric washing by natural resources. Int. J. Text. Sci. 2021, 10, 1–6. [Google Scholar]
- İvedi, İ.; Çay, A. Use of Natural and Synthetic Materials in Denim Washing Process as an Alternative to Pumice Stone. Text. Appar. 2023, 33, 68–76. [Google Scholar] [CrossRef]
- Panwar, V.; Sheikh, J.N.; Dutta, T. Sustainable denim bleaching by a novel thermostable bacterial laccase. Appl. Biochem. Biotechnol. 2020, 192, 1238–1254. [Google Scholar] [CrossRef]
- Atav, R.; Gündüz, Ö.; Yaz, S.; Çakan, G.; Sevgili, B. Laser-Activated Organic Bleaching Process as an Environmentally Friendly Clean Alternative to Permanganate Bleaching in Denim Washing. Fibers Polym. 2023, 24, 2725–2730. [Google Scholar] [CrossRef]
- Buscio, V.; Crespi, M.; Gutiérrez-Bouzán, C. Sustainable dyeing of denim using indigo dye recovered with polyvinylidene difluoride ultrafiltration membranes. J. Clean. Prod. 2015, 91, 201–207. [Google Scholar] [CrossRef]
- Khalil, E. Sustainable and ecological finishing technology for denim jeans. AASCIT Comm. 2015, 2, 159–163. [Google Scholar]
- Rim, C.; Imed, B.M. The Effect of Recycled Fibers on the Ecological Washing Performance of Denim Fabrics. In International Conference of Applied Research on Textile and Materials; Springer International Publishing: Cham, Switzerland, 2020; pp. 88–95. [Google Scholar]
- Yildirim, N.; Akgül, E.; Türksoy, H.G. Selection of dual-core yarn production parameters for denim fabric by using MULTIMOORA method. J. Text. Inst. 2022, 113, 1039–1047. [Google Scholar] [CrossRef]
- Majumdar, A.; Kaplan, S.; Göktepe, Ö. Navel selection for rotor spinning denim fabrics using a multi-criteria decision-making process. J. Text. Inst. 2010, 101, 304–309. [Google Scholar] [CrossRef]
- Feki, I.; Zeng, X.; Ghith, A.; Msahli, F.; Koehl, L.; Sakli, F. Features selection of stonewashed denim to a sensory descriptor. Fibers Polym. 2015, 16, 2066–2076. [Google Scholar] [CrossRef]
- Bai, C.; Kusi-Sarpong, S.; Khan, S.A.; Vazquez-Brust, D. Sustainable buyer–supplier relationship capability development: A relational framework and visualization methodology. Ann. Oper. Res. 2021, 304, 1–34. [Google Scholar] [CrossRef]
- Kaya, R.; Salhi, S.; Spiegler, V. A novel integration of MCDM methods and Bayesian networks: The case of incomplete expert knowledge. Ann. Oper. Res. 2023, 320, 205–234. [Google Scholar] [CrossRef]
- Sarı, B.; Birkocak, D.T.; İşler, M. Analysing the Purchasing Decision-Making for a Recycled Materials Used Garment by DEMATEL Method. Eur. J. Sci. Technol. 2021, 864–871. [Google Scholar] [CrossRef]
- Sarkar, J.; Al Faruque, M.A.; Khalil, E. Predicting the tearing strength of laser engraved denim garments using a fuzzy logic approach. Heliyon 2022, 8, e08740. [Google Scholar]
- Tong, Y.; Wang, Q.; Wang, Z.; Liang, Z.; Xu, Q.; Zuo, D.; Yi, C. Prediction of parameters in the laser fading process of denim using convolutional neural networks. Text. Res. J. 2023, 93, 3790–3801. [Google Scholar] [CrossRef]
- Xu, J.; He, Z.; Li, S.; Ke, W. Production cost optimization of enzyme washing for indigo dyed cotton denim by combining Kriging surrogate with differential evolution algorithm. Text. Res. J. 2020, 90, 1860–1871. [Google Scholar] [CrossRef]
- Xu, J.; Liu, F.; He, Z.; Zhang, Z.; Li, S. Cost optimization of sodium hypochlorite bleaching washing for denim by combining ensemble of surrogates with particle swarm optimization. J. Eng. Fibers Fabr. 2021, 16, 1–13. [Google Scholar] [CrossRef]
- Gazzah, M.; Jaouachi, B.; Sakli, F. Optimization of bagged denim fabric behaviors using the genetic algorithms and the ant colony optimization methods. Inter. J. Clot. Sci. Technol. 2015, 27, 772–792. [Google Scholar]
- Ben Fraj, A.; Jaouachi, B. Study of the effect of enzymatic washing parameters on the bagging properties of denim fabric with Taguchi method. J. Surfactants Deterg. 2022, 25, 505–519. [Google Scholar]
- Katırcıoğlu, G.; Aydoğan, E.K.; Delice, Y.; Akgül, E. Predicting quality parameters of denim fabrics using developed ANN based Artificial Bee Colony algorithm. J. Text. Inst. 2023, 115, 757–767. [Google Scholar] [CrossRef]
- EN 12127; Textiles—Fabrics—Determination of Mass per Unit Area Using Small Samples. European Standards: Pilsen, Czech Republic, 1997.
- ISO 5084; Textiles—Determination of Thickness of Textiles and Textile Products. ISO: Geneva, Switzerland, 1996.
- ISO 21182; Light Conveyor Belts—Determination of the Coefficient of Friction. ISO: Geneva, Switzerland, 2013.
- ISO 13937-2; Textiles—Tear Properties of Fabrics. ISO: Geneva, Switzerland, 2000.
- ISO 13934-1; Textiles—Tensile Properties of Fabrics. ISO: Geneva, Switzerland, 2013.
- ISO 12945-2; Textiles—Determination of Fabric Propensity to Surface Pilling, Fuzzing or Matting. ISO: Geneva, Switzerland, 2020.
- ISO 7784-2; Paints and Varnishes—Determination of Resistance to Abrasion. ISO: Geneva, Switzerland, 2023.
- ISO 9237; Textiles—Determination of the Permeability of Fabrics to Air. ISO: Geneva, Switzerland, 1995.
- ISO 105-X12; Textiles—Tests for Colour Fastness—Part X12: Colour Fastness to Rubbing. ISO: Geneva, Switzerland, 2016.
- ISO 3759; Textiles—Preparation, Marking and Measuring of Fabric Specimens and Garments in Tests for Determination of Dimensional Change. ISO: Geneva, Switzerland, 2011.
- ISO 105-C06; Textiles—Tests for Colour Fastness. ISO: Geneva, Switzerland, 2010.
- Pamucar, D.; Žižović, M.; Biswas, S.; Božanić, D. A new logarithm methodology of additive weights (LMAW) for multi-criteria decision-making: Application in logistics. Facta Univ. Ser. Mech. Eng. 2021, 19, 361–380. [Google Scholar] [CrossRef]
- Demir, G. Analysis of the financial performance of the deposit banking sector in the Covid-19 period with LMAW-DNMA methods. Int. J. Insur. Financ. 2022, 2, 17–36. [Google Scholar] [CrossRef]
- Božanić, D.; Pamučar, D.; Milić, A.; Marinković, D.; Komazec, N. Modification of the logarithm methodology of additive weights (LMAW) by a triangular fuzzy number and its application in multi-criteria decision making. Axioms 2022, 11, 89. [Google Scholar] [CrossRef]
- Puška, A.; Štilić, A.; Nedeljković, M.; Božanić, D.; Biswas, S. Integrating Fuzzy Rough Sets with LMAW and MABAC for Green Supplier Selection in Agribusiness. Axioms 2023, 12, 746. [Google Scholar] [CrossRef]
- Liao, H.; Wu, X. DNMA: A double normalization-based multiple aggregation method for multi-expert multi-criteria decision making. Omega 2020, 94, 102058. [Google Scholar] [CrossRef]
- Lukić, R. Application of the LMAW-DNMA method in the evaluation of the environmental problem in the agriculture of selected European Union countries. Acta Agric. Serb. 2023, 28, 49–61. [Google Scholar] [CrossRef]
- Ecer, F.; Zolfani, S.H. Evaluating economic freedom via a multi-criteria merec-dnma model-based composite system: Case of OPEC countries. Technol. Econ. Dev. Econ. 2022, 28, 1158–1181. [Google Scholar] [CrossRef]
- Mishra, A.R.; Rani, P.; Saha, A.; Hezam, I.M.; Cavallaro, F.; Chakrabortty, R.K. An extended DNMA-based multi-criteria decision-making method and its application in the assessment of sustainable location for a lithium-ion batteries’ manufacturing plant. Heliyon 2023, 9, e14244. [Google Scholar] [CrossRef] [PubMed]
- Özçil, A. An Alternative Method Proposal to Multi Criteria Decision Making Methods: Integrative Referance Point Approach. Ph.D. Dissertation, Pamukkale University, Denizli, Turkey, 2020. [Google Scholar]
- Sarioğlu, E.; Babaarslan, O. A comparative strength analysis of denim fabrics made from core-spun yarns containing textured microfilaments. J. Eng. Fibers Fabr. 2017, 12, 22–32. [Google Scholar] [CrossRef]
- Özkan, M.; Baykal, P.D.; Özkan, İ. Investigation of Performance Properties of Denim Fabrics Containing Cotton/Sustans® Blend Rotor Yarn. Text. Appar. 2022, 32, 314–326. [Google Scholar] [CrossRef]
- Midha, V.; Suresh Kumar, S.; Nivas Kumar, M. Investigation on permeability and moisture management properties of different denim fabrics after repeated laundering. J. Text. Inst. 2017, 108, 71–77. [Google Scholar] [CrossRef]
- Shaw, V.P.; Mukhopadhyay, A. Behaviour of stretch denim fabric under tensile load. Fibers Polym. 2022, 23, 295–302. [Google Scholar] [CrossRef]
- Choudhary, A.K.; Bansal, S. Influences of elastane content, aesthetic finishes and fabric weight on mechanical and comfort properties of denim fabrics. J. Text. Eng. Fash. Technol. 2018, 4, 36–42. [Google Scholar]
Fabric Alternatives | Fabric Composition | Yarn Count | Density [yarns/cm] | Weave Type | ||
---|---|---|---|---|---|---|
Weft | Warp | Weft | Warp | |||
A1 | 40% R-Co, 60% V-Co | Ne 12/1 | 12/1 Ne | 17 | 28 | 3/1 Twill (Z) |
A2 | 20% R-Co, 80% V-Co | Ne 12/1 | 12/1 Ne | 16 | 24 | |
A3 | 100% R-Co | Ne 12/1 | 8/1 Ne | 18 | 28 | |
A4 | 40% R-Co, 60% V-Co | Ne 12/1 | 10/1 Ne | 17 | 23 | |
A5 | 20% R-Co, 79% V-Co, 1% Ea | Ne 12/1 + 40 dtex Ea | 10/1 Ne | 18 | 27 | |
A6 | 40% R-Co, 60% V-Co | Ne 12/1 | 10/1 Ne | 18 | 23 | |
A7 | 24% R-Co, 74% V-Co, %2 Ea | Ne 12/1 + 72 dtex Ea | 10/1 Ne | 19 | 27 | |
A8 | 99% R-Co, 1% Ea | Ne 12/1 + 78 dtex Ea | 12/1 Ne | 18 | 25 | |
A9 | 24% R-Co, 75% V-Co, 1% Ea | Ne 12/1 + 72 dtex Ea | 10/1 Ne | 19 | 27 | |
A10 | 40% R-Co, 59% V-Co, 1% Ea | Ne 8/1 + 78 dtex Ea | 10/1 Ne | 19 | 26 | |
A11 | 40% R-Co, 59% V-Co, 1% Ea | Ne 12/1 + 72 dtex Ea | 9/1 Ne | 18 | 25 | |
A12 | 20% R-Co, 80% V-Co | Ne 12/1 | 12/1 Ne | 18 | 23 | |
A13 | 40% R-Co, 60% V-Co | Ne 12/1 | 8/1 Ne | 20 | 28 | |
A14 | 20% R-Co, 79% V-Co, 1% Ea | Ne 12/1 + 78 dtex Ea | 9/1 Ne | 17 | 25 | |
A15 | 25% R-Co, 74% V-Co, 1% Ea | Ne 14/1 + 40 dtex Ea | 12/1 Ne | 21 | 28 | |
A16 | 20% R-Co, 80% V-Co | Ne 12/1 | 10/1 Ne | 17 | 23 | |
R-Co: Recycled Cotton; V-Co: Virgin Cotton; Ea: Elastane |
Fabric Tests | Testing Instrument | Manufacturer/Developer | Country | Test Standard | Year of Issue |
---|---|---|---|---|---|
Mass per unit area | Sartorius Scales | Sartorius | Germany | EN 12127 [37] | 1997 |
Fabric thickness | SDL Atlas | SDL Atlas | USA | ISO 5084 [38] | 1996 |
Kinetic friction coefficient | Frictorq (Fabric Friction Tester) | University of Minho | Portugal | ISO 21182 [39] | 2013 |
Tear strength | Zwick Z010 (Roell) tensile strength testing machine | Zwick Roell | Germany | EN ISO 13937-2 [40] | 2000 |
Tensile strength | Zwick Z010 (Roell) tensile strength testing machine | Zwick Roell | Germany | EN ISO 13934-1 [41] | 2013 |
Pilling resistance | Martindale Pilling and Abrasion Tester | James H. Heal | UK | EN ISO 12945-2 [42] | 2020 |
Abrasion resistance | Martindale Pilling and Abrasion Tester | James H. Heal | UK | EN ISO 7784-2 [43] | 2023 |
Air permeability | Textest FX 3300 air permeability instrument | Textest | Switzerland | ISO 9237 [44] | 1995 |
Rubbing fastness (dry and wet) | Crockmeter | SDL Atlas | USA | TS EN ISO 105-X12 [45] | 2016 |
Dimensional stability | Wascator | Electrolux | Sweden | EN ISO 3759 [46] | 2011 |
Color fastness to washing | Atlas Linitest Plus | SDL Atlas | USA | EN ISO 105-C06 [47] | 2010 |
Step | Equation | Equation Number |
---|---|---|
Weight for expert e | (1) | |
Aggregated weight | (2) |
Step | Equation | Equation No |
---|---|---|
Linear normalization (benefit criterion) | (3) | |
Linear normalization (cost criterion) | (4) | |
Vector normalization (benefit criterion) | (5) | |
Vector normalization (cost criterion) | (6) | |
Total weighted linear normalization | (7) | |
Second integration function for linear normalization | (8) | |
Second integration function (vector normalization) | (9) | |
The first normalized integration function | (10) | |
The second normalized integration function | (11) | |
The third normalized integration function | (12) | |
Final value | (13) |
Criterion No | Criterion | Criterion Orientation Type | Criterion Weight () | ||
---|---|---|---|---|---|
Denim Jacket | Denim Pant | Denim Jacket | Denim Pant | ||
C1 | Mass per unit area | min. | min. | 0.0635 | 0.0620 |
C2 | Fabric thickness | min. | min. | 0.0622 | 0.0620 |
C3 | Kinetic friction coefficient | min. | min. | 0.0633 | 0.0642 |
C4 | Tear strength/weft wise | max. | max. | 0.0672 | 0.0680 |
C5 | Tear strength/warp wise | max. | max. | 0.0667 | 0.0675 |
C6 | Tensile strength/weft wise | max. | max. | 0.0663 | 0.0676 |
C7 | Tensile strength/warp wise | max. | max. | 0.0662 | 0.0674 |
C8 | Pilling resistance | max. | max. | 0.0660 | 0.0642 |
C9 | Abrasion resistance | max. | max. | 0.0685 | 0.0705 |
C10 | Air permeability | max. | max. | 0.0661 | 0.0632 |
C11 | Dry rubbing fastness | max. | max. | 0.0672 | 0.0681 |
C12 | Wet rubbing fastness | max. | max. | 0.0665 | 0.0678 |
C13 | Dimensional stability/weft wise | min. | min. | 0.0698 | 0.0685 |
C14 | Dimensional stability/warp wise | min. | min. | 0.0697 | 0.0687 |
C15 | Color fastness to washing | max. | max. | 0.0708 | 0.0699 |
Alt. No. | Criteria | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
C1 (g/m2) | C2 (mm) | C3 (µkin) | C4 (N) | C5 (N) | C6 (N) | C7 (N) | C8 (Grade) | C9 (Cycle) | C10 (L/m2/s) | C11 (Grade) | C12 (Grade) | C13 (%) | C14 (%) | C15 (Grade) | |
A1 | 403.88 | 0.866 | 0.2837 | 32.67 | 39.43 | 390.64 | 1040.99 | 3.5 | 203.33 | 86.65 | 4.5 | 1.50 | 3.0 | 2.0 | 4.5 |
A2 | 417.40 | 0.828 | 0.2884 | 39.67 | 46.17 | 530.68 | 1404.01 | 4.5 | 146.67 | 54.97 | 4.0 | 1.00 | 0.5 | 1.0 | 4.5 |
A3 | 419.32 | 0.814 | 0.2849 | 39.63 | 53.30 | 600.98 | 1429.52 | 4.5 | 120.00 | 30.56 | 4.0 | 1.00 | 1.0 | 0.5 | 4.5 |
A4 | 470.84 | 0.952 | 0.2800 | 34.20 | 48.70 | 523.38 | 1346.03 | 3.5 | 483.33 | 82.70 | 4.0 | 1.00 | 0.5 | 2.0 | 4.5 |
A5 | 413.20 | 0.797 | 0.2576 | 54.37 | 51.67 | 531.70 | 1512.05 | 3.5 | 143.33 | 44.34 | 4.5 | 2.00 | 3.5 | 2.0 | 5.0 |
A6 | 369.04 | 0.726 | 0.2781 | 31.60 | 45.43 | 514.93 | 1162.21 | 3.5 | 126.67 | 65.66 | 2.5 | 1.00 | 0. | 4.0 | 4.5 |
A7 | 347.76 | 0.742 | 0.2767 | 37.03 | 48.47 | 469.42 | 1250.45 | 4.5 | 133.33 | 58.53 | 4.5 | 2.50 | 2.0 | 9.5 | 4.5 |
A8 | 439.26 | 0.837 | 0.2586 | 56.60 | 45.97 | 562.34 | 1288.56 | 4.5 | 143.33 | 35.14 | 4.5 | 2.00 | 0.0 | 4.0 | 4.5 |
A9 | 399.36 | 0.802 | 0.2935 | 37.93 | 150.00 | 480.33 | 1430.27 | 4.5 | 133.33 | 38.17 | 4.5 | 2.00 | 2.0 | 6.5 | 4.5 |
A10 | 474.42 | 0.892 | 0.2697 | 47.20 | 62.13 | 586.31 | 1912.35 | 3.5 | 293.33 | 37.12 | 4.5 | 1.00 | 4.0 | 2.0 | 4.5 |
A11 | 413.78 | 0.733 | 0.3057 | 50.43 | 66.73 | 748.02 | 1516.19 | 3.5 | 220.00 | 22.02 | 3.5 | 1.00 | 0.0 | 0.0 | 4.5 |
A12 | 372.02 | 0.741 | 0.2664 | 65.87 | 83.17 | 772.53 | 1388.54 | 3.5 | 53.33 | 55.62 | 4.5 | 2.50 | 1.5 | 3.0 | 4.5 |
A13 | 367.26 | 0.760 | 0.2565 | 19.27 | 150.00 | 293.82 | 1268.75 | 4.5 | 146.67 | 53.50 | 3.5 | 1.00 | 0.5 | 0.75 | 4.5 |
A14 | 455.22 | 0.788 | 0.2682 | 53.57 | 69.00 | 917.03 | 1964.87 | 4.5 | 236.67 | 24.06 | 4.0 | 2.00 | 6.0 | 6.0 | 4.5 |
A15 | 323.60 | 0.625 | 0.2715 | 30.13 | 150.00 | 358.76 | 1486.55 | 3.5 | 83.33 | 38.67 | 4.5 | 3.00 | 1.75 | 5.0 | 4.5 |
A16 | 420.82 | 0.866 | 0.2804 | 44.07 | 42.03 | 499.69 | 1247.41 | 4.5 | 60.00 | 80.43 | 3.0 | 1.00 | 1.0 | 0.0 | 4.5 |
Fabric Alternatives | Denim Jacket | Denim Pant | ||
---|---|---|---|---|
Rank | Rank | |||
A1 | 0.1339 | 15 | 0.1337 | 15 |
A2 | 0.1802 | 8 | 0.1797 | 8 |
A3 | 0.1703 | 12 | 0.1704 | 12 |
A4 | 0.1754 | 9 | 0.1754 | 9 |
A5 | 0.2289 | 2 | 0.2321 | 1 |
A6 | 0.1233 | 16 | 0.1226 | 16 |
A7 | 0.1744 | 10 | 0.1746 | 11 |
A8 | 0.2114 | 5 | 0.2122 | 4 |
A9 | 0.1867 | 6 | 0.1876 | 6 |
A10 | 0.1495 | 14 | 0.1523 | 14 |
A11 | 0.1740 | 11 | 0.1750 | 10 |
A12 | 0.2405 | 1 | 0.2273 | 2 |
A13 | 0.2116 | 4 | 0.2111 | 5 |
A14 | 0.1836 | 7 | 0.1862 | 7 |
A15 | 0.2192 | 3 | 0.2205 | 3 |
A16 | 0.1614 | 13 | 0.1599 | 13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Acar, E.; Tama Birkocak, D.; Özdağoğlu, A.; Ünal, Z.; Özdemir, G.; Josè Abreu, M. Prioritizing Sustainable Denim Fabric through Integrated Decision-Making Framework. Materials 2024, 17, 3291. https://doi.org/10.3390/ma17133291
Acar E, Tama Birkocak D, Özdağoğlu A, Ünal Z, Özdemir G, Josè Abreu M. Prioritizing Sustainable Denim Fabric through Integrated Decision-Making Framework. Materials. 2024; 17(13):3291. https://doi.org/10.3390/ma17133291
Chicago/Turabian StyleAcar, Eda, Derya Tama Birkocak, Aşkın Özdağoğlu, Zümrüt Ünal, Gizem Özdemir, and Maria Josè Abreu. 2024. "Prioritizing Sustainable Denim Fabric through Integrated Decision-Making Framework" Materials 17, no. 13: 3291. https://doi.org/10.3390/ma17133291
APA StyleAcar, E., Tama Birkocak, D., Özdağoğlu, A., Ünal, Z., Özdemir, G., & Josè Abreu, M. (2024). Prioritizing Sustainable Denim Fabric through Integrated Decision-Making Framework. Materials, 17(13), 3291. https://doi.org/10.3390/ma17133291