Influence of EDM Process Parameters on the Surface Finish of Alnico Alloys
<p>A system providing additional rotational motions to the tool and the workpiece.</p> "> Figure 2
<p>The three-factor, three-level design of experiment DOE.</p> "> Figure 3
<p>3D isometric views of the workpiece surface after EDM. Process parameters: <span class="html-italic">t<sub>on</sub></span> = 200 µs, <span class="html-italic">t<sub>off</sub></span> = 10 µs, and (<b>a</b>) <span class="html-italic">I</span> = 5 A; (<b>b</b>) <span class="html-italic">I</span> = 10 A; (<b>c</b>) <span class="html-italic">I</span> = 15 A.</p> "> Figure 4
<p>Micro images of the surface after EDM for: (<b>a</b>) high spark energy; (<b>b</b>) low spark energy.</p> "> Figure 5
<p>The estimated response surface plot of arithmetical mean height (<span class="html-italic">Sa</span>): (<b>a</b>) constant <span class="html-italic">t<sub>off</sub></span> = 50 µs; (<b>b</b>) constant <span class="html-italic">t<sub>on</sub></span> = 200 µs; (<b>c</b>) constant <span class="html-italic">I</span> = 15 A.</p> "> Figure 6
<p>Estimated response surface plot of the maximum height (<span class="html-italic">Sz</span>): (<b>a</b>) constant <span class="html-italic">t<sub>off</sub></span> = 50 µs; (<b>b</b>) constant <span class="html-italic">t<sub>on</sub></span> = 200 µs; (<b>c</b>) constant <span class="html-italic">I</span> = 15 A.</p> "> Figure 7
<p>Estimated response surface plot of skewness (<span class="html-italic">Ssk</span>):(<b>a</b>) constant <span class="html-italic">t<sub>off</sub></span> = 50 µs; (<b>b</b>) constant <span class="html-italic">t<sub>on</sub></span> = 200 µs; (<b>c</b>) constant <span class="html-italic">I</span> = 15 A.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Conclusions
- (1)
- The higher the spark current, I, the higher the values of the spatial parameters (Sa, Sp, Sv, Sz) and the frequency parameter (Ssk).
- (2)
- The values of the spatial parameters (Sa, Sp, Sv, Sz) increase with increasing pulse-on time. The pulse-on time, however, has a negligible effect on the frequency parameter (Ssk).
- (3)
- Longer pulse-off times result in lower values of both the spatial and frequency parameters.
- (4)
- The lowest arithmetical mean height, Sa = 0.281 µm, was obtained at I = 5 A, ton = 50 µs, and toff = 50 µs. The highest value of Sa, i.e., 20.8 µm, was reported for I = 15 A, ton = 350 µs, and toff = 50 µs.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Świercz, R.; Oniszczuk-Świercz, D. Investigation of the Influence of Reduced Graphene Oxide Flakes in the Dielectric on Surface Characteristics and Material Removal Rate in EDM. Materials 2019, 12, 943. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Świercz, R.; Oniszczuk-Świercz, D. The Effects of Reduced Graphene Oxide Flakes in the Dielectric on Electrical Discharge Machining. Nanomaterials 2019, 9, 335. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bartkowiak, T.; Mendak, M.; Mrozek, K.; Wieczorowski, M. Analysis of Surface Microgeometry Created by Electric Discharge Machining. Materials 2020, 13, 3830. [Google Scholar] [CrossRef] [PubMed]
- Spadło, S.; Depczyński, W.; Młynarczyk, P. Selected properties of high velocity oxy liquid fuel (HVOLF)—Sprayed nanocrystallineWc-Co infralloy(TM) S7412 coatings modified by high energy electric pulse. Metalurgija 2017, 56, 412–414. [Google Scholar]
- Shanbhog, N.; Arunachalam, N.; Bakshi, S.R. Surface integrity studies on ZrB2 and graphene reinforced ZrB(2)ceramic matrix composite in EDM process. CIRP J. Manuf. Sci. Technol. 2022, 38, 401–413. [Google Scholar] [CrossRef]
- Rahimi, H.; Masoudi, S.; Tolouei-Rad, M. Experimental investigation of the effect of EDM parameters and dielectric type on the surface integrity and topography. Int. J. Adv. Manuf. Technol. 2022, 118, 1767–1778. [Google Scholar] [CrossRef]
- Kozak, J.; Ivanov, A.; Al-Naemi, F.; Gulbinowicz, Z. EDM electrode wear and its effect on processes accuracy and process modelling. In Proceedings of the 15th International Symposium on Electromachining, Pitsburgh, PA, USA, 23–27 April 2007; pp. 81–86. [Google Scholar]
- Kozak, J.; Gulbinowicz, Z. The Mathematical Modeling and Computer Simulation of Rotating Electrical Discharge Machining. In Proceedings of the World Congress on Engineering and Computer Science, San Francisco, CA, USA, 20–22 October 2009; Volume II, p. 943. [Google Scholar]
- Młynarczyk, P.; Spadło, S. Investigations of Electro-Discharge Mechanical Machining of Manganese Cast Steels. Arch. Foundry Eng. 2020, 20, 95–100. [Google Scholar]
- Świercz, R.; Oniszczuk-Świercz, D.; Chmielewski, T. Multi-Response Optimization of Electrical Discharge Machining Using the Desirability Function. Micromachines 2019, 10, 72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jarosz, K.; Nieslony, P.; Loschner, P. Investigation of the Effect of Process Parameters on Surface Roughness in EDM Machining of ORVAR (R) Supreme Die Steel. In Advances in Manufacturing Engineering and Materials; ICMEM 2018, Book Series Lecture Notes in Mechanical Engineering; Springer: Cham, Switzerland, 2019; pp. 333–340. [Google Scholar]
- Papazoglou, E.L.; Karmiris-Obratanski, P.; Karkalos, N.E.; Markopoulos, A.P. On the Use of Deformed Geometry in EDM Modelling: Comparative Study. Acta Phys. Pol. 2020, 138, 268–271. [Google Scholar] [CrossRef]
- Dąbrowski, L.; Paczkowski, T. Computer simulation of two-dimensional electrolyte flow in electrochemical machining. Elektrokhimiya 2005, 41, 102–110. [Google Scholar] [CrossRef]
- Singh, S.K.; Mali, H.S.; Unune, D.R.; Wojciechowski, S.; Wilczyński, D. Application of Generalized Regression Neural Network and Gaussian Process Regression for Modelling Hybrid Micro-Electric Discharge Machining: A Comparative Study. Processes 2022, 10, 755. [Google Scholar] [CrossRef]
- Han, F.; Jiang, J.; Yu, D. Influence of discharge current on machined surfaces by thermoanalysis in finish cut of WEDM. Int. J. Mach. Tools Manuf. 2007, 47, 1187–1196. [Google Scholar] [CrossRef]
- Depczyński, W.; Spadło, S.; Młynarczyk, P.; Ziach, E.; Hepner, P. The selected properties of porous layers formed by pulse microwelding technique. In Proceedings of the 24th International Conference on Metallurgy and Materials METAL 2015, Brno, Czech Republic, 3–5 June 2015; pp. 1087–1092. [Google Scholar]
- Taherkhani, A.; Ilani, M.A.; Ebrahimi, F.; Huu, P.N.; Long, B.T.; Dong, P.V.; Tam, N.C.; Minh, N.D.; Duc, N.V. Investigation of surface quality in Cost of Goods Manufactured (COGM) method of mu-Al2O3 Powder-Mixed-EDM process on machining of Ti-6Al-4V. Int. J. Adv. Manuf. Technol. 2021, 116, 1783–1799. [Google Scholar] [CrossRef]
- Kunieda, M.; Lauwers, B.; Rajurkar, K.P.; Schumacher, B.M. Advancing EDM through Fundamental Insight into the Process. CIRP Ann. Manuf. Technol. 2005, 54, 64–87. [Google Scholar] [CrossRef]
- Rajurkar, P.; Levy, G.; Malshe, A.; Sundaram, M.M.; McGeough, J.; Hu, X.; Resnick, R.; DeSilva, A. Micro and Nano Machining by Electro-Physical and Chemical Processes. CIRP Ann. Manuf. Technol. 2006, 55, 643–666. [Google Scholar] [CrossRef]
- Klocke, F.; Lung, D.; Antonoglou, G.; Thomaidis, D. The Effects of Powder Suspended Dielectrics on the Thermal Influenced Zone by Electrodischarge Machining with Small Discharge Energies. J. Mater. Process. Technol. 2004, 149, 191–197. [Google Scholar] [CrossRef]
- Giridharan, A.; Samuel, G.L. Modeling and analysis of crater formation during wire electrical discharge turning (WEDT) process. Int. J. Adv. Manuf. Technol. 2015, 77, 1229–1247. [Google Scholar] [CrossRef]
- Tosun, N.; Hasim, P. The Effect of Cutting Parameters on Wire Crater Sizes in Wire EDM. Int. J. Adv. Manuf. Technol. 2003, 21, 857–865. [Google Scholar] [CrossRef]
- Ozkavak, H.V.; Sofu, M.M.; Duman, B.; Bacak, S. Estimating surface roughness for different EDM processing parameters on Inconel 718 using GEP and ANN. CIRP J. Manuf. Sci. Technol. 2021, 33, 306–314. [Google Scholar] [CrossRef]
- Gostimirovic, M.; Kovac, P.; Sekulic, M. Influence of discharge energy on machining characteristics in EDM. J. Mech. Sci. Technol. 2012, 26, 173–179. [Google Scholar] [CrossRef]
- Mohanty, C.P.; Mahapatra, S.S.; Singh, M.R. An intelligent approach to optimize the EDM process parameters using utility concept and QPSO algorithm. Eng. Sci. Technol. Int. J. 2017, 20, 552–562. [Google Scholar] [CrossRef] [Green Version]
- Masuzawa, T.; Yamaguchi, M.; Fujino, M. Surface Finishing of Micropins Produced by WEDG. CIRP Ann. Manuf. Technol. 2005, 54, 171–174. [Google Scholar] [CrossRef]
- Guu, Y.H. AFM surface imaging of AISI D2 tool steel machined by the EDM process. Appl. Surf. Sci. 2005, 242, 245–250. [Google Scholar] [CrossRef]
- Paczkowski, T.; Zdrojewski, J. The Mechanism of ECM Technology Design for Curvilinear Surfaces. Procedia CIRP 2016, 42, 356–361. [Google Scholar] [CrossRef]
- Hlaváč, L.M.; Bańkowski, D.; Krajcarz, D.; Štefek, A.; Tyč, M.; Młynarczyk, P. Abrasive Waterjet (AWJ) Forces—Indicator of Cutting System Malfunction. Materials 2021, 14, 1683. [Google Scholar] [CrossRef] [PubMed]
- Bodukuri, A.K.; Chandramouli, S.; Eswaraiah, K.; Laxman, J. Experimental Investigation and optimization of EDM process parameters on Aluminum metal matrix composite. Mater. Today Proc. 2018, 5, 24731–24740. [Google Scholar] [CrossRef]
- Kumar, P.; Parkash, R. Experimental investigation and optimization of EDM process parameters for machining of aluminum boron carbide (Al-B4C) composite. Mach. Sci. Technol. 2016, 20, 330–348. [Google Scholar] [CrossRef]
- Arooj, S.; Shah, M.; Sadiq, S.; Jaffery, S.; Khushnood, S. Effect of Current in the EDM Machining of Aluminum 6061 T6 and its Effect on the Surface Morphology. Arab. J. Sci. Eng. 2014, 39, 4187–4199. [Google Scholar] [CrossRef]
- Młynarczyk, P.; Spadło, S. The analysis of the effects formation iron—Tungsten carbide layer on aluminum alloy by electrical discharge alloying process. In Proceedings of the 25th International Conference on Metallurgy and Materials METAL 2016, Brno, Czech Republic, 25–27 May 2016; pp. 1109–1114. [Google Scholar]
- Świercz, R.; Oniszczuk-Świercz, D. Influence of electrical discharge pulse energyon the surface integrity of tool steel 1.2713. In Proceedings of the 26th International Conference on Metallurgy and Materials, Brno, Czech Republic, 24–26 May 2017; pp. 1450–1455. [Google Scholar]
- Ipekci, A.; Kam, M.; Argun, K. Surface Roughness Performance of Cu Electrode on Hardened AISI 4140 Steels in EDM Process. J. Chin. Soc. Mech. Eng. 2022, 43, 355–362. [Google Scholar]
- Karmiris-Obratanski, P.; Papazoglou, E.L.; Leszczynska-Madej, B.; Karkalos, N.E.; Markopoulos, A.P. An Optimalization Study on the Surface Texture and Machining Parameters of 60CrMoV18-5 Steel by EDM. Materials 2022, 15, 3559. [Google Scholar] [CrossRef]
- Singh, A.K.; Singhal, D.; Kumar, R. Machining of aluminum 7075 alloy using EDM process: An ANN validation. Mater. Today Proc. 2020, 26, 2839–2844. [Google Scholar] [CrossRef]
- Barua, B.M.; Rahang, M. Surface modification of Al-7075 using Cu-CNT green tool in EDM. Surf. Eng. 2022, 38, 261–270. [Google Scholar] [CrossRef]
- Patel, N.K.; Choudhary, T. Investigational exploration of EDM process parameters on MRR and surface roughness of AISI304 stainless steel. Mater. Today Proc. 2021, 47, 6262–6268. [Google Scholar] [CrossRef]
- Młynarczyk, P.; Krajcarz, D.; Bańkowski, D. The selected properties of the micro electrical discharge alloying process using tungsten electrode on aluminum. Procedia Eng. 2017, 192, 603–608. [Google Scholar] [CrossRef]
- Bai, F.S.; Li, X.L.; Liu, Y.F.; Wang, Y.T.; Liu, N.; Ma, Y.M. The Effects of Discharge Parameters on the Surface Morphology of Nickel Microspheres by EDM Combined with Ultrasonic Field. In Advanced Materials Research; Trans Tech Publications Ltd.: Stafa-Zurich, Switzerland, 2014; Volume 887–888, pp. 126–131. [Google Scholar] [CrossRef]
- Soni, J.S.; Chakraverti, G. Surface characteristics of titanium with rotary EDM. Bull. Mater. Sci. 1993, 16, 213–227. [Google Scholar] [CrossRef]
- PN EN ISO 25178-6:2011; Specyfikacje Geometrii Wyrobów (GPS)—Struktura Geometryczna Powierzchni: Przestrzenna—Część 6: Klasyfikacja Metod Pomiaru Struktury Geometrycznej Powierzchni. PKN: Warsaw, Poland, 2011.
- Adamczak, S.; Zmarzły, P. Research of the influence of the 2D and 3D surface roughness parameters of bearing raceways on the vibration level. J. Phys. Conf. Ser. 2019, 1183, 012001. [Google Scholar] [CrossRef]
- Adamczak, S.; Miko, E.; Cus, F. A model of surface roughness constitution in the metal cutting process applying tools with defined stereometry. Stroj. Vestn. J. Mech. Eng. 2009, 55, 45–54. [Google Scholar]
- Available online: https://pl.wikipedia.org/wiki/Alnico (accessed on 22 April 2022).
- Available online: https://magnesy.pl/magnesy-alnico (accessed on 22 April 2022).
- Dudek, D. Badania Wpływu Warunków Drążenia Elektroerozyjnego Trepanacyjnegona Efekty Obróbki. Ph.D. Thesis, Kielce Univesity of Technology, Kielce, Poland, 2016. [Google Scholar]
Element | Al | Ti | Fe | Co | Ni | Cu |
---|---|---|---|---|---|---|
Average (wt.%) | 17.9 | 0.9 | 35.1 | 26.2 | 15.3 | 4.6 |
Number of Experiment | Code Values | Actual Values—Input | ||||
---|---|---|---|---|---|---|
I | ton | toff | I, A | ton, µs | toff, µs | |
1 | 0 | 0 | 0 | 15 | 200 | 50 |
2 | 0 | 0 | 0 | 15 | 200 | 50 |
3 | 0 | 0 | 0 | 15 | 200 | 50 |
4 | 0 | 1 | 1 | 15 | 350 | 90 |
5 | 0 | 1 | −1 | 15 | 350 | 10 |
6 | 0 | −1 | 1 | 15 | 50 | 90 |
7 | 0 | −1 | −1 | 15 | 50 | 10 |
8 | 1 | 0 | 1 | 25 | 200 | 90 |
9 | 1 | 0 | −1 | 25 | 200 | 10 |
10 | 1 | 1 | 0 | 25 | 350 | 50 |
11 | 1 | −1 | 0 | 25 | 50 | 50 |
12 | −1 | −1 | 0 | 5 | 50 | 50 |
13 | −1 | 1 | 0 | 5 | 350 | 50 |
14 | −1 | 0 | 1 | 5 | 200 | 90 |
15 | −1 | 0 | −1 | 5 | 200 | 50 |
Input Parameters | ||||||||
---|---|---|---|---|---|---|---|---|
No. | I, A | ton, µs | toff, µs | Sa, µm | Sp, µm | Sv, µm | Sz, µm | Ssk |
1 | 10 | 200 | 50 | 13.4 | 70.4 | 43.3 | 114 | 0.355 |
2 | 10 | 200 | 50 | 15.4 | 68.7 | 47.4 | 116 | 0.368 |
3 | 10 | 200 | 50 | 12.6 | 60.7 | 46.9 | 108 | 0.342 |
4 | 10 | 350 | 90 | 11.2 | 51.4 | 38.0 | 89.4 | 0.27 |
5 | 10 | 350 | 10 | 13.7 | 119.0 | 67.0 | 186 | 0.674 |
6 | 10 | 50 | 90 | 12.8 | 68.9 | 49.3 | 118 | 0.219 |
7 | 10 | 50 | 10 | 17.3 | 81.0 | 48 | 129 | 0.432 |
8 | 5 | 200 | 90 | 0.467 | 1.65 | 4.41 | 6.06 | −1.95 |
9 | 15 | 200 | 10 | 20.6 | 89.3 | 70.0 | 159 | 0.300 |
10 | 15 | 350 | 50 | 20.8 | 89.2 | 74.5 | 164 | 0.029 |
11 | 15 | 50 | 50 | 12.0 | 65.8 | 49.5 | 115 | 0.353 |
12 | 5 | 50 | 50 | 0.281 | 0.90 | 0.8 | 1.74 | 0.067 |
13 | 5 | 350 | 50 | 11.2 | 51.4 | 38.0 | 89.4 | 0.270 |
14 | 15 | 200 | 90 | 16.1 | 98.0 | 57.1 | 155 | 0.468 |
15 | 5 | 200 | 10 | 2.29 | 10.8 | 11.9 | 22.7 | 0.245 |
I, A | ton, µs | toff, µs | |
---|---|---|---|
Sa, µm | 0.81 | 0.21 | −0.20 |
Sp, µm | 0.76 | 0.26 | −0.22 |
Sv, µm | 0.83 | 0.30 | −0.20 |
Sz, µm | 0.80 | 0.28 | −0.22 |
Ssk | 0.39 | 0.03 | −0.41 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bańkowski, D.; Młynarczyk, P. Influence of EDM Process Parameters on the Surface Finish of Alnico Alloys. Materials 2022, 15, 7277. https://doi.org/10.3390/ma15207277
Bańkowski D, Młynarczyk P. Influence of EDM Process Parameters on the Surface Finish of Alnico Alloys. Materials. 2022; 15(20):7277. https://doi.org/10.3390/ma15207277
Chicago/Turabian StyleBańkowski, Damian, and Piotr Młynarczyk. 2022. "Influence of EDM Process Parameters on the Surface Finish of Alnico Alloys" Materials 15, no. 20: 7277. https://doi.org/10.3390/ma15207277
APA StyleBańkowski, D., & Młynarczyk, P. (2022). Influence of EDM Process Parameters on the Surface Finish of Alnico Alloys. Materials, 15(20), 7277. https://doi.org/10.3390/ma15207277