Investigation of the Influence of Reduced Graphene Oxide Flakes in the Dielectric on Surface Characteristics and Material Removal Rate in EDM
<p>The reduced graphene oxide (RGO) in the dielectric.</p> "> Figure 2
<p>The surface texture and Abbott–Firestone curve after electrical discharge machining (<span class="html-italic">U<sub>c</sub></span> = 25 V, <span class="html-italic">I</span> = 2 A, <span class="html-italic">t</span><sub>on</sub> = 10 µs): (<b>a</b>) pure dielectric and (<b>b</b>) dielectric with 0.1% RGO.</p> "> Figure 3
<p>The surface texture and Abbott–Firestone curve after electrical discharge machining (<span class="html-italic">U<sub>c</sub></span> = 25 V, <span class="html-italic">I</span> = 13.5 A, <span class="html-italic">t</span><sub>on</sub> = 145 µs): (<b>a</b>) pure dielectric and (<b>b</b>) dielectric with 0.1% RGO.</p> "> Figure 4
<p>The recorded voltage and current waveforms: EDM fluid dielectric. (<b>a</b>) For conventional EDM in discharge time <span class="html-italic">t</span><sub>on</sub>, there is one discharge for the pure dielectric, <span class="html-italic">U</span><sub>0</sub> = 225 V, <span class="html-italic">U</span> = 25 V, <span class="html-italic">I</span> = 1.2 A, <span class="html-italic">t</span><sub>on</sub> = 10 µs, <span class="html-italic">t</span><sub>off</sub> = 8 µs, and (<b>b</b>) for EDM fluid with 0.1% RGO flakes in the dielectric, in one discharge time <span class="html-italic">t</span><sub>on</sub>, there can be several discharges, <span class="html-italic">U</span><sub>0</sub> = 200 V, <span class="html-italic">U<sub>C</sub></span> = 25 V, <span class="html-italic">I</span> = 1.5 A, <span class="html-italic">t</span><sub>on</sub> = 3 μs, t<sub>off</sub> = 13 μs.</p> "> Figure 5
<p>The metallographic structure (<b>a</b>) and surface morphology (<b>b</b>) of 55NiCrMoV7 tool steel.</p> "> Figure 6
<p>The metallographic structure of 55NiCrMoV7 tool steel after EDM; <span class="html-italic">Uc</span> = 25 V, <span class="html-italic">I</span> = 1 A, <span class="html-italic">t</span><sub>on</sub> = 5 µs, <span class="html-italic">t</span><sub>off</sub> = 5 µs: (<b>a</b>) pure dielectric and (<b>b</b>) dielectric with 0.1% RGO.</p> "> Figure 7
<p>The metallographic structure of 55NiCrMoV7 tool steel after EDM; <span class="html-italic">Uc</span> = 25 V, <span class="html-italic">I</span> = 8 A <span class="html-italic">t</span><sub>on</sub> = 75 µs, <span class="html-italic">t</span><sub>off</sub> = 25 µs: (<b>a</b>) pure dielectric and (<b>b</b>) dielectric with 0.1% RGO.</p> "> Figure 8
<p>Themetallographic structure of 55NiCrMoV7 tool steel after EDM: (<b>a</b>,<b>b</b>) <span class="html-italic">Uc</span> = 25 V, <span class="html-italic">I</span> = 13.5 A, <span class="html-italic">t</span><sub>on</sub> = 145 µs, <span class="html-italic">t</span><sub>off</sub> = 50 µs; (<b>a</b>) pure dielectric and (<b>b</b>) dielectric with 0.1% RGO.</p> "> Figure 9
<p>The metallographic structure of 55NiCrMoV7 tool steel after EDM.</p> "> Figure 10
<p>The Pareto chart of effects of significant factors in developed models: (<b>a</b>) <span class="html-italic">Ra</span> for EDM in the pure dielectric; (<b>b</b>) <span class="html-italic">Ra</span> for EDM with 0.1% RGO in the dielectric; (<b>c</b>) MRR for EDM in the pure dielectric; and (<b>d</b>) MRR for EDM with 0.1% RGO in the dielectric.</p> "> Figure 11
<p>Plots of residuals for roughness <span class="html-italic">Ra</span> model, EDM in the pure dielectric: (<b>a</b>) normal plot of residuals, (<b>b</b>) residuals versus predicted values, and (<b>c</b>) residuals versus case number.</p> "> Figure 12
<p>Plots of residuals for roughness <span class="html-italic">Ra</span> model, EDM in the dielectric with 0.1% RGO: (<b>a</b>) normal plot of residuals, (<b>b</b>) residuals versus predicted values, and (<b>c</b>) residuals versus case number.</p> "> Figure 13
<p>Plots of residuals for MRR model, EDM in the pure dielectric: (<b>a</b>) normal plot of residuals, (<b>b</b>) residuals versus predicted values, and (<b>c</b>) residuals versus case number.</p> "> Figure 14
<p>Plots of residuals for MRR model, EDM in the dielectric with 0.1% RGO: (<b>a</b>) normal plot of residuals, (<b>b</b>) residuals versus predicted values, and (<b>c</b>) residuals versus case number.</p> "> Figure 15
<p>The estimated response surface plot for roughness <span class="html-italic">Ra</span>: (<b>a</b>) EDM in pure dielectric and (<b>b</b>) EDM in dielectric with 0.1% RGO.</p> "> Figure 16
<p>The estimated response surface plot for MRR: (<b>a</b>) EDM in pure dielectric and (<b>b</b>) EDM in dielectric with 0.1% RGO.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Analysis of Influence of RGO Flakes in Dielectric on Surface Integrity
3.2. Surface Response Methodology
- For EDM in the pure dielectricRa = 0.61 − 0.01 ton + 0.76 I − 0.033 I2 + 0.004 I tonMRR = −3.23 + 0.038 ton − 0.0003 ton2 + 1.48 I − 0.049 I2 + 0.008 I ton.
- For EDM in the dielectric with 0.1% RGO flakesRa = −1.73 + 0.027 ton − 0.0002 ton2 − 0.78 I − 0.035 I2 + 0.003 I tonMRR = −6.05 + 0.074 ton − 0.0006 ton2 + 2.69 I − 0.11 I2 + 0.01 I ton.
4. Conclusions
- Changing the dielectric properties by adding RGO flakes in EDM has a significant effect on the surface topography. A reduction in the discharge energy by dispersion on RGO flakes leads to the generation of craters with a smaller diameter and depth compared with those produced by machining without RGO in the dielectric.
- The results show that by using 0.1% RGO flakes in the dielectric for finishing EDM parameters, it is possible to obtain a 460% reduction of roughness Ra with a slight increase in MRR (12%). In the case of roughing EDM, the roughness Ra decreased by 60% with a 27% increase in MRR.
- An analysis of the metallographic structure indicated that using RGO flakes in the dielectric leads to a more uniform distribution of the recast layer on the surface. RGO flakes store the heat energy during the discharge and give it back to the dielectric after the discharge. The dielectric softly cools the molten material, which resolidifies on the surface of the workpiece in a uniform manner.
- The presence of RGO flakes on the dielectric reduces the electrical resistivity, which leads to an increased gap size. The easier flushing of the debris leads to more stable discharge. Furthermore, multiple discharges during one pulse increased the frequency of discharge, which overcomes the decrease in removed volume material by reducing the discharge energy.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ayesta, I.; Izquierdo, B.; Sanchez, J.A.; Ramos, J.M.; Plaza, S.; Pombo, I.; Ortega, N. Optimum electrode path generation for EDM manufacturing of aerospace components. Robot. Comput. Integr. Manuf. 2016, 37, 273–281. [Google Scholar] [CrossRef]
- Manikandan, N.; Arulkirubakaran, D.; Palanisamy, D.; Raju, R. Influence of wire-EDM textured conventional tungsten carbide inserts in machining of aerospace materials (Ti–6Al–4V alloy). Mater. Manuf. Process. 2019, 34, 103–111. [Google Scholar] [CrossRef]
- Klocke, F.; Bergs, T.; Doebbeler, B.; Binder, M.; Seimann, M. Multi-Criteria Assessment of Machining Processes for Turbine Disc Slotting. J. Manuf. Mater. Process. 2018, 2, 32. [Google Scholar] [CrossRef]
- Świercz, R.; Oniszczuk-Świercz, D.; Dabrowski, L. Electrical discharge machining of difficult to cut materials. Arch. Mech. Eng. 2018, 65, 461–476. [Google Scholar]
- Muthuramalingam, T. Measuring the influence of discharge energy on white layer thickness in electrical discharge machining process. Measurement 2019, 131, 694–700. [Google Scholar] [CrossRef]
- Świercz, R.; Oniszczuk-Świercz, D. Experimental Investigation of Surface Layer Properties of High Thermal Conductivity Tool Steel after Electrical Discharge Machining. Metals 2017, 7, 550. [Google Scholar] [CrossRef]
- Hinduja, S.; Kunieda, M. Modelling of ECM and EDM processes. CIRP Ann. 2013, 62, 775–797. [Google Scholar] [CrossRef]
- Sabyrov, N.; Jahan, M.P.; Bilal, A.; Perveen, A. Ultrasonic Vibration Assisted Electro-Discharge Machining (EDM)—An Overview. Materials 2019, 12, 522. [Google Scholar] [CrossRef] [PubMed]
- Bilal, A.; Jahan, M.P.; Talamona, D.; Perveen, A. Electro-Discharge Machining of Ceramics: A Review. Micromachines 2019, 10, 10. [Google Scholar] [CrossRef]
- D’Urso, G.; Maccarini, G.; Quarto, M.; Ravasio, C.; Caldara, M. Micro-electro discharge machining drilling of stainless steel with copper electrode: The influence of process parameters and electrode size. Adv. Mech. Eng. 2016, 8. [Google Scholar] [CrossRef] [Green Version]
- Kozak, J.; Rozenek, M.; Dabrowski, L. Study of electrical discharge machining using powder-suspended working media. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2003, 217, 1597–1602. [Google Scholar] [CrossRef]
- Kunieda, M.; Kitamura, T. Observation of Difference of EDM Gap Phenomena in Water and Oil Using Transparent Electrode. Procedia CIRP 2018, 68, 342–346. [Google Scholar] [CrossRef]
- Yue, X.; Yang, X.; Kunieda, M. Influence of metal vapor jets from tool electrode on material removal of workpiece in EDM. Precis. Eng. 2018, 53, 278–288. [Google Scholar] [CrossRef]
- Oniszczuk-Świercz, D.; Świercz, R. Surface texture after wire electrical discharge machining. In Proceedings of the 26th International Conference on Metallurgy and Materials, Brno, Czech Republic, 24–26 May 2017; pp. 1400–1406. [Google Scholar]
- Oßwald, K.; Schneider, S.; Hensgen, L.; Klink, A.; Klocke, F. Experimental investigation of energy distribution in continuous sinking EDM. CIRP J. Manuf. Sci. Technol. 2017, 19, 36–43. [Google Scholar] [CrossRef]
- Guo, Y.B.; Klink, A.; Klocke, F. Multiscale Modeling of Sinking-EDM with Gaussian Heat Flux via user Subroutine. Procedia CIRP 2013, 6, 438–443. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.F.; Guo, Y.B. Thermal Modeling of EDM with Progression of Massive Random Electrical Discharges. Procedia Manuf. 2016, 5, 495–507. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Zhang, Y.; Zhang, G.; Li, W. Investigation on a novel surface microstructure wire electrode for improving machining efficiency and surface quality in WEDM. Int. J. Adv. Manuf. Technol. 2019. [Google Scholar] [CrossRef]
- Roy, T.; Dutta, R.K. Integrated fuzzy AHP and fuzzy TOPSIS methods for multi-objective optimization of electro discharge machining process. Soft Comput. 2018. [Google Scholar] [CrossRef]
- Ming, W.; Zhang, Z.; Wang, S.; Huang, H.; Zhang, Y.; Zhang, Y.; Shen, D. Investigating the energy distribution of workpiece and optimizing process parameters during the EDM of Al6061, Inconel718, and SKD11. Int. J. Adv. Manuf. Technol. 2017, 92, 4039–4056. [Google Scholar] [CrossRef]
- Vagaská, A.; Gombár, M. Comparison of usage of different neural structures to predict AAO layer thickness. Teh. Vjesn. 2017, 24, 333–339. [Google Scholar]
- Świercz, R.; Oniszczuk-Świercz, D.; Chmielewski, T. Multi-Response Optimization of Electrical Discharge Machining Using the Desirability Function. Micromachines 2019, 10, 72. [Google Scholar] [CrossRef] [PubMed]
- Salacinski, T.; Winiarski, M.; Chmielewski, T.; Świercz, R. Surface finishing using ceramic fibre brush tools. In Proceedings of the 26th International Conference on Metallurgy and Materials, Brno, Czech Republic, 24–26 May 2017; pp. 1220–1226. [Google Scholar]
- Spadło, S.; Młynarczyk, P. Analysis of the mechanical interactions of the filament brush electrode on the formation of the surface roughness. In Proceedings of the 25th International Conference on Metallurgy and Materials, Brno, Czech Republic, 25–27 May 2016; pp. 1169–1174. [Google Scholar]
- Ruszaj, A.; Gawlik, J.; Skoczypiec, S. Electrochemical Machining—Special Equipment and Applications in Aircraft Industry. Manag. Prod. Eng. Rev. 2016, 7, 34–41. [Google Scholar] [CrossRef]
- Hryniewicz, T.; Rokosz, K.; Rokicki, R.; Prima, F. Nanoindentation and XPS studies of Titanium TNZ alloy after electrochemical polishing in a magnetic field. Materials 2015, 8, 205–215. [Google Scholar] [CrossRef] [PubMed]
- Gombár, M.; Vagaská, A.; Harničárová, M.; Valíček, J.; Kušnerová, M.; Czán, A.; Kmec, J. Experimental Analysis of the Influence of Factors Acting on the Layer Thickness Formed by Anodic Oxidation of Aluminium. Coatings 2019, 9, 57. [Google Scholar] [CrossRef]
- Młynarczyk, P.; Spadło, S. The analysis of the effects formation iron—Tungsten carbide layer on aluminum alloy by electrical discharge alloying process. In Proceedings of the 25th International Conference on Metallurgy and Materials, Brno, Czech Republic, 25–27 May 2016; pp. 1109–1114. [Google Scholar]
- Golański, D.; Dymny, G.; Kujawińska, M.; Chmielewski, T. Experimental investigation of displacement/strain fields in metal coatings deposited on ceramic substrates by thermal spraying. Solid State Phenom. 2016, 240, 174–182. [Google Scholar] [CrossRef]
- Zhang, J.H.; Lee, T.C.; Wu, C.L.; Tang, C.Y. Surface integrity and modification of electro-discharge machined alumina-based ceramic composite. J. Mater. Process. Technol. 2002, 123, 75–79. [Google Scholar] [CrossRef]
- D’Urso, G.; Giardini, C.; Quarto, M. Characterization of surfaces obtained by micro-EDM milling on steel and ceramic components. Int. J. Adv. Manuf. Technol. 2018, 97, 2077–2085. [Google Scholar] [CrossRef]
- Wang, J.; Han, F.; Cheng, G.; Zhao, F. Debris and bubble movements during electrical discharge machining. Int. J. Mach. Tools Manuf. 2012, 58, 11–18. [Google Scholar] [CrossRef]
- Murray, J.W.; Sun, J.; Patil, D.V.; Wood, T.A.; Clare, A.T. Physical and electrical characteristics of EDM debris. J. Mater. Process. Technol. 2016, 229, 54–60. [Google Scholar] [CrossRef] [Green Version]
- Hayakawa, S.; Kusafuka, Y.; Itoigawa, F.; Nakamura, T. Observation of Material Removal from Discharge Spot in Electrical Discharge Machining. Procedia CIRP 2016, 42, 12–17. [Google Scholar] [CrossRef]
- Ayesta, I.; Flaño, O.; Izquierdo, B.; Sanchez, J.A.; Plaza, S. Experimental Study on Debris Evacuation during Slot EDMing. Procedia CIRP 2016, 42, 6–11. [Google Scholar] [CrossRef]
- Tanjilul, M.; Ahmed, A.; Kumar, A.S.; Rahman, M. A study on EDM debris particle size and flushing mechanism for efficient debris removal in EDM-drilling of Inconel 718. J. Mater. Process. Technol. 2018, 255, 263–274. [Google Scholar] [CrossRef]
- Wang, Z.; Tong, H.; Li, Y.; Li, C. Dielectric flushing optimization of fast hole EDM drilling based on debris status analysis. Int. J. Adv. Manuf. Technol. 2018, 97, 2409–2417. [Google Scholar] [CrossRef]
- Talla, G.; Gangopadhayay, S.; Biswas, C. State of the art in powder-mixed electric discharge machining: A review. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2017, 231, 2511–2526. [Google Scholar] [CrossRef]
- Wu, Z.; Luo, F.; Guo, D.; Wu, X.; Xu, B.; Lei, J.; Liang, X.; Diao, D. Micro-EDM by using laminated 3D microelectrodes with deionized water containing B4C powder. Int. J. Adv. Manuf. Technol. 2018, 99, 2893–2902. [Google Scholar] [CrossRef]
- Kumar, A.; Mandal, A.; Dixit, A.R.; Das, A.K.; Kumar, S.; Ranjan, R. Comparison in the performance of EDM and NPMEDM using Al2O3 nanopowder as an impurity in DI water dielectric. Int. J. Adv. Manuf. Technol. 2019, 100, 1327–1339. [Google Scholar] [CrossRef]
- Surekha, B.; Lakshmi, T.S.; Jena, H.; Samal, P. Response surface modelling and application of fuzzy grey relational analysis to optimise the multi response characteristics of EN-19 machined using powder mixed EDM. Aust. J. Mech. Eng. 2019, 0, 1–11. [Google Scholar] [CrossRef]
- Ou, S.-F.; Wang, C.-Y. Effects of bioceramic particles in dielectric of powder-mixed electrical discharge machining on machining and surface characteristics of titanium alloys. J. Mater. Process. Technol. 2017, 245, 70–79. [Google Scholar] [CrossRef]
- Prakash, C.; Kansal, H.K.; Pabla, B.S.; Puri, S. Experimental investigations in powder mixed electric discharge machining of Ti–35Nb–7Ta–5Zrβ-titanium alloy. Mater. Manuf. Process. 2017, 32, 274–285. [Google Scholar] [CrossRef]
- Sahu, S.K.; Jadam, T.; Datta, S.; Nandi, G. Effect of using SiC powder-added dielectric media during electro-discharge machining of Inconel 718 superalloys. J. Braz. Soc. Mech. Sci. Eng. 2018, 40, 330. [Google Scholar] [CrossRef]
- Tijo, D.; Masanta, M. Mechanical performance of in-situ TiC-TiB2 composite coating deposited on Ti-6Al-4V alloy by powder suspension electro-discharge coating process. Surf. Coat. Technol. 2017, 328, 192–203. [Google Scholar] [CrossRef]
- Xie, Z.J.; Mai, Y.J.; Lian, W.Q.; He, S.L.; Jie, X.H. Titanium carbide coating with enhanced tribological properties obtained by EDC using partially sintered titanium electrodes and graphite powder mixed dielectric. Surf. Coat. Technol. 2016, 300, 50–57. [Google Scholar] [CrossRef]
- Wang, J.; Mu, X.; Sun, M. The Thermal, Electrical and Thermoelectric Properties of Graphene Nanomaterials. Nanomaterials 2019, 9, 218. [Google Scholar] [CrossRef] [PubMed]
- Cesano, F.; Scarano, D. Graphene and Other 2D Layered Hybrid Nanomaterial-Based Films: Synthesis, Properties, and Applications. Coatings 2018, 8, 419. [Google Scholar] [CrossRef]
- Stobinski, L.; Lesiak, B.; Malolepszy, A.; Mazurkiewicz, M.; Mierzwa, B.; Zemek, J.; Jiricek, P.; Bieloshapka, I. Graphene oxide and reduced graphene oxide studied by the XRD, TEM and electron spectroscopy methods. J. Electron Spectrosc. Relat. Phenom. 2014, 195, 145–154. [Google Scholar] [CrossRef]
- Świercz, R.; Oniszczuk-Świercz, D. The Effects of Reduced Graphene Oxide Flakes in the Dielectric on Electrical Discharge Machining. Nanomaterials 2019, 9, 335. [Google Scholar] [CrossRef] [PubMed]
- Tyagi, R.; Das, A.K.; Mandal, A. Electrical discharge coating using WS2 and Cu powder mixture for solid lubrication and enhanced tribological performance. Tribol. Int. 2018, 120, 80–92. [Google Scholar] [CrossRef]
- Legutko, S.; Krolczyk, G.; Królczyk, J. Quality evaluation of surface layer in highly accurate manufacturing. Manuf. Technol. 2014, 14, 50–56. [Google Scholar]
- Skowrońska, B.; Szulc, J.; Chmielewski, T.; Sałaciński, T.; Świercz, R. Properties and microstructure of hybride PLASMA+MAG welded joints of thermomechanically treated S700MC steel. In Proceedings of the 27th International Conference on Metallurgy and Material, Brno, Czech Republic, 23–25 May 2018; pp. 849–854. [Google Scholar]
- Kunieda, M.; Lauwers, B.; Rajurkar, K.P.; Schumacher, B.M. Advancing EDM through Fundamental Insight into the Process. CIRP Ann. Manuf. Technol. 2005, 54, 64–87. [Google Scholar] [CrossRef]
- Chow, H.-M.; Yan, B.-H.; Huang, F.-Y.; Hung, J.-C. Study of added powder in kerosene for the micro-slit machining of titanium alloy using electro-discharge machining. J. Mater. Process. Technol. 2000, 101, 95–103. [Google Scholar] [CrossRef]
- Gatto, A.; Bassoli, E.; Denti, L.; Iuliano, L. Bridges of debris in the EDD process: Going beyond the thermo-electrical model. J. Mater. Process. Technol. 2013, 213, 349–360. [Google Scholar] [CrossRef]
- Shabgard, M.; Khosrozadeh, B. Investigation of carbon nanotube added dielectric on the surface characteristics and machining performance of Ti–6Al–4V alloy in EDM process. J. Manuf. Process. 2017, 25, 212–219. [Google Scholar] [CrossRef]
- Mu, X.; Zhou, M.; Ye, Q. Improving surface integrity and surface roughness by forming multi-discharging channels from one pulse in EDM. Int. J. Adv. Manuf. Technol. 2019. [Google Scholar] [CrossRef]
- Rani, J.R.; Thangavel, R.; Oh, S.-I.; Lee, Y.S.; Jang, J.-H. An Ultra-High-Energy Density Supercapacitor; Fabrication Based on Thiol-functionalized Graphene Oxide Scrolls. Nanomaterials 2019, 9, 148. [Google Scholar] [CrossRef]
Chemical Composition (%) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
C | Mn | Si | P | S | Cr | Ni | Mo | W | V | Co | Cu |
0.5–0.6 | 0.5–0.8 | 0.15–0.4 | MAX 0.03 | MAX 0.03 | 0.5–0.8 | 1.4–1.8 | 0.15–0.25 | MAX 0.3 | MAX 0.1 | MAX 0.3 | MAX 0.3 |
Electrode | Copper Cross Section 12 × 12 mm |
---|---|
Material | 55NiCrMoV7 tool steel |
Polarization of electrode | Positive polarity |
Discharge current Ic (A) | 1.7, 2, 8, 13.5, 14 |
Open voltage U0 (V) | 225 V |
Discharge voltage (V) | 25 |
Pulse time ton (μs) | 5, 10, 75, 145, 150 |
Time interval toff (μs) | 0.3 ton |
RGO in dielectric (%) | 0, 0.1 |
Manufacturing depth (mm) | 0.2 |
Ex. no. | EDM Parameters | Pure Dielectric | Dielectric with 0.1% RGO | ||||
---|---|---|---|---|---|---|---|
Pulse Duration ton (μs) | Discharge Current Ic (A) | Discharge Energy (mJ) | Ra (μm) | MRR (mm3/min) | Ra (μm) | MRR (mm3/min) | |
1 | 10 | 2 | 0.5 | 2.09 | 0.64 | 0.37 | 0.72 |
2 | 10 | 13.5 | 3.4 | 5.43 | 9.6 | 2.8 | 12.46 |
3 | 145 | 2 | 7.2 | 1.86 | 0.42 | 0.64 | 0.74 |
4 | 145 | 13.5 | 48 | 12.29 | 22.64 | 7.72 | 28.77 |
5 | 5 | 8 | 1 | 3.92 | 5.21 | 2.4 | 8.16 |
6 | 150 | 8 | 30 | 8.05 | 12.86 | 5.79 | 17.62 |
7 | 75 | 1.7 | 3.2 | 1.73 | 0.48 | 0.44 | 0.64 |
8 | 75 | 14 | 26.2 | 9.04 | 17.64 | 7.12 | 23.21 |
9 | 75 | 8 | 15 | 6.95 | 11.58 | 5.03 | 17.08 |
10 | 75 | 8 | 15 | 7.35 | 11.95 | 4.82 | 17.62 |
Source | Sum of Squares | Degrees of Freedom | Mean Square | F-Value | Prob > f | Contribution % |
---|---|---|---|---|---|---|
Model | 109.404 | 4 | 27.351 | 17.680 | <0.0001 | |
ton | 19.288 | 1 | 19.288 | 62.31 | 0.0005 | 17.63 |
I | 74.425 | 1 | 74.425 | 240.44 | <0.0001 | 68.03 |
I2 | 3.113 | 1 | 3.113 | 10.06 | 0.0247 | 2.85 |
I ton | 12.578 | 1 | 12.578 | 40.64 | 0.0014 | 11.50 |
Error | 1.547 | 5 | 0.309 | |||
Total SS | 110.951 | 9 | R-sqr = 0.98 | R-adj = 0.97 |
Source | Sum of Squares | Degrees of Freedom | Mean Square | F-Value | Prob > f | Contribution % |
---|---|---|---|---|---|---|
Model | 67.8361 | 5 | 13.567 | 13.432 | <0.0001 | |
ton | 12.298 | 1 | 12.298 | 48.67 | 0.0022 | 18.13 |
ton2 | 2.1401 | 1 | 2.140 | 8.46 | 0.0436 | 3.15 |
I | 44.421 | 1 | 44.421 | 175.79 | 0.0001 | 65.48 |
I2 | 3.564 | 1 | 3.564 | 14.10 | 0.0198 | 5.25 |
I ton | 5.413 | 1 | 5.413 | 21.42 | 0.0098 | 7.98 |
Error | 1.010 | 4 | 0.252 | |||
Total SS | 68.82661 | 9 | R-sqr = 0.98 | R-adj = 0.96 |
Source | Sum of Squares | Degrees of Freedom | Mean Square | F-Value | Prob > f | Contribution % |
---|---|---|---|---|---|---|
Model | 519.063 | 5 | 103.812 | 62.6131 | <0.0001 | |
to | 69.715 | 1 | 69.715 | 168.16 | 0.0002 | 13.43 |
ton2 | 7.242 | 1 | 7.242 | 17.47 | 0.0139 | 1.40 |
I | 391.122 | 1 | 391.122 | 943.42 | <0.0001 | 75.35 |
I2 | 6.999 | 1 | 6.999 | 16.88 | 0.0147 | 1.35 |
I ton | 43.985 | 1 | 43.985 | 106.09 | 0.0005 | 8.47 |
Error | 1.658 | 4 | 0.414 | |||
Total SS | 520.721 | 9 | R-sqr = 0.99 | R-adj = 0.99 |
Source | Sum of Squares | Degrees of Freedom | Mean Square | F-Value | Prob > f | Contribution % |
---|---|---|---|---|---|---|
Model | 885.6370 | 5 | 177.1274 | 47.309 | <0.0001 | |
ton | 110.568 | 1 | 110.568 | 118.124 | 0.0004 | 12.48 |
ton2 | 21.083 | 1 | 21.083 | 22.524 | 0.0089 | 2.38 |
I | 652.421 | 1 | 652.421 | 697.001 | <0.0001 | 73.67 |
I2 | 35.193 | 1 | 35.193 | 37.598 | 0.0035 | 3.97 |
I ton | 66.372 | 1 | 66.372 | 70.908 | 0.0010 | 7.49 |
Error | 3.744 | 4 | 0.936 | |||
Total SS | 889.381 | 9 | R-sqr = 0.99 | R-adj = 0.99 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Świercz, R.; Oniszczuk-Świercz, D. Investigation of the Influence of Reduced Graphene Oxide Flakes in the Dielectric on Surface Characteristics and Material Removal Rate in EDM. Materials 2019, 12, 943. https://doi.org/10.3390/ma12060943
Świercz R, Oniszczuk-Świercz D. Investigation of the Influence of Reduced Graphene Oxide Flakes in the Dielectric on Surface Characteristics and Material Removal Rate in EDM. Materials. 2019; 12(6):943. https://doi.org/10.3390/ma12060943
Chicago/Turabian StyleŚwiercz, Rafał, and Dorota Oniszczuk-Świercz. 2019. "Investigation of the Influence of Reduced Graphene Oxide Flakes in the Dielectric on Surface Characteristics and Material Removal Rate in EDM" Materials 12, no. 6: 943. https://doi.org/10.3390/ma12060943
APA StyleŚwiercz, R., & Oniszczuk-Świercz, D. (2019). Investigation of the Influence of Reduced Graphene Oxide Flakes in the Dielectric on Surface Characteristics and Material Removal Rate in EDM. Materials, 12(6), 943. https://doi.org/10.3390/ma12060943