Production and Characterization of the Third-Generation Oxide Nanotubes on Ti-13Zr-13Nb Alloy
<p>The HKS 400 salt spray chamber during the NSS test according to ISO 9227:2017 [<a href="#B44-materials-15-02321" class="html-bibr">44</a>]: (<b>a</b>) Arrangement of collecting devices in the salt chamber; (<b>b</b>) Method of mounting the test samples in the holder (<b>c</b>).</p> "> Figure 2
<p>Current transients for the Ti-13Zr-13Nb electrode in 1 M C<sub>2</sub>H<sub>6</sub>O<sub>2</sub> + 4 wt% NH<sub>4</sub>F electrolyte during anodizing for: (<b>a</b>) 7200 s; (<b>b</b>) first 80 s.</p> "> Figure 3
<p>SEM image of the microstructure of the Ti-13Zr-13Nb alloy before and after anodizing in 1 M C<sub>2</sub>H<sub>6</sub>O<sub>2</sub> + 4 wt% NH<sub>4</sub>F electrolyte: (<b>a</b>) Etched; (<b>b</b>) Anodized at 5 V for 120 min; (<b>c</b>) Anodized at 10 V for 120 min.</p> "> Figure 4
<p>SEM image of the microstructure of SWNTs layer formed on the Ti-13Zr-13Nb alloy in 1 M C<sub>2</sub>H<sub>6</sub>O<sub>2</sub> + 4 wt% NH<sub>4</sub>F electrolyte under anodizing conditions: (<b>a</b>) 15 V for 120 min; (<b>b</b>) 20 V for 120 min; (<b>c</b>) 25 V for 120 min; (<b>d</b>) 30 V for 120 min; (<b>e</b>) 35 V for 120 min.</p> "> Figure 5
<p>The oxide nanotube diameter on the Ti-13Zr-13Nb alloy surface as a function of anodizing voltage (U) for 120 min in 1 M C<sub>2</sub>H<sub>6</sub>O<sub>2</sub> + 4 wt% NH<sub>4</sub>F electrolyte: (<b>a</b>) Outer diameter (D<sub>outer</sub>); (<b>b</b>) Inner diameter (D<sub>i</sub>).</p> "> Figure 6
<p>The thickness (L) of the oxide layer on the Ti-13Zr-13Nb alloy surface obtained by anodizing in 1 M C<sub>2</sub>H<sub>6</sub>O<sub>2</sub> + 4 wt% NH<sub>4</sub>F electrolyte at 5–35 V for 120 min, measured over distance x.</p> "> Figure 7
<p>The total surface area (A<sub>total</sub>) of SWNTs on the Ti-13Zr-13Nb alloy surface obtained by anodizing in 1 M C<sub>2</sub>H<sub>6</sub>O<sub>2</sub> + 4 wt% NH<sub>4</sub>F electrolyte at U of 15–35 V for 120 min.</p> "> Figure 8
<p>EDS spectrum for the Ti-13Zr-13Nb alloy surface: (<b>a</b>) Before anodizing; (<b>b</b>) After anodizing at 35 V for 120 min.</p> "> Figure 9
<p>The contact potential difference (CPD) map for the Ti-13Zr-13Nb alloy surface: (<b>a</b>) Before anodizing; (<b>b</b>) After anodizing at 15 V for 120 min; (<b>c</b>) After anodizing at 25 V for 120 min; (<b>d</b>) After anodizing at 35 V for 120 min.</p> "> Figure 10
<p>The arithmetic mean (CPD<sub>av</sub>) and root mean square of height irregularities (CPD<sub>rms</sub>) for the Ti-13Zr-13Nb alloy surface before and after anodizing.</p> "> Figure 11
<p>Roughness profile for the Ti-13Zr-13Nb alloy surface before and after anodizing at 15–35 V.</p> "> Figure 12
<p>Basic surface texture parameters for the Ti-13Zr-13Nb alloy surface before and after anodizing: (<b>a</b>) Ra; (<b>b</b>) Rz; (<b>c</b>) Rp; (<b>d</b>) Rv.</p> "> Figure 13
<p>The Ti-13Zr-13Nb alloy surface before and after NSS test according to ISO 9227:2017 [<a href="#B44-materials-15-02321" class="html-bibr">44</a>]: (<b>a</b>) Non-anodized substrate; (<b>b</b>) After anodizing at 15 V for 120 min; (<b>c</b>) After anodizing at 25 V for 120 min; (<b>d</b>) After anodizing at 35 V for 120 min.</p> "> Figure 14
<p>Microhardness of the Ti-13Zr-13Nb alloy surface before and after the NSS test according to ISO 9227:2017 [<a href="#B44-materials-15-02321" class="html-bibr">44</a>] for non-anodized substrate (U = 0 V) and after anodizing at U of 5–35 V for 120 min.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Substrate Preparation
2.2. Production of SWNTs on Ti-13Zr-13Nb Alloy
2.3. Physicochemical Characteristics of SWNTs on Ti-13Zr-13Nb Alloy
2.4. Corrosion Test of SWNTs on Ti-13Zr-13Nb Alloy in Artificial Atmosphere
2.5. Micromechanical Properties of SWNTs on Ti-13Zr-13Nb Alloy
3. Results and Discussion
3.1. Formation of SWNTs on Ti-13Zr-13Nb Alloy
3.2. SEM Study of Microstructure
3.3. Chemical Composition of SWNTs on Ti-13Zr-13Nb Alloy
3.4. Electronic Properties of SWNTs on Ti-13Zr-13Nb Alloy
3.5. Geometric Structure of the Surface
3.6. Corrosion Resistance of SWNTs on Ti-13Zr-13Nb Alloy in an Artificial Atmosphere
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jakubowicz, J. (Ed.) Ti-Based Biomaterials. In Ti-Based Biomaterials; MDPI AG: Basel, Switzerland, 2020. [Google Scholar]
- Anene, F.; Jaafar, C.A.; Zainol, I.; Hanim, M.A.; Suraya, M. Biomedical materials: A review of titanium based alloys. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2020, 235, 3792–3805. [Google Scholar] [CrossRef]
- Froes, F.H.; Qian, M. (Eds.) Titanium in Medical and Dental Applications; Elsevier BV: Amsterdam, The Netherlands, 2018. [Google Scholar]
- Chen, Q.; Thouas, G.A. Metallic implant biomaterials. Mater. Sci. Eng. 2015, 87, 1–57. [Google Scholar] [CrossRef]
- Abdel-Hady Gepreel, M.; Niinomi, M. Biocompatibility of Ti-alloys for long-term implantation. J. Mech. Behav. Biomed. Mater. 2013, 20, 407–415. [Google Scholar] [CrossRef] [PubMed]
- Łosiewicz, B.; Osak, P.; Maszybrocka, J.; Kubisztal, J.; Stach, S. Effect of autoclaving time on corrosion resistance of sandblasted Ti G4 in artificial saliva. Materials 2020, 13, 4154. [Google Scholar] [CrossRef]
- Osak, P.; Maszybrocka, J.; Kubisztal, J.; Ratajczak, P.; Łosiewicz, B. Long-Term Assessment of the In Vitro Corrosion Resistance of Biomimetic ACP Coatings Electrodeposited from an Acetate Bath. J. Funct. Biomater. 2021, 12, 12. [Google Scholar] [CrossRef]
- Łosiewicz, B.; Osak, P.; Maszybrocka, J.; Kubisztal, J.; Bogunia, S.; Ratajczak, P.; Aniołek, K. Effect of Temperature on Electrochemically Assisted Deposition and Bioactivity of CaP Coatings on CpTi Grade 4. Materials 2021, 14, 5081. [Google Scholar] [CrossRef]
- Osak, P.; Maszybrocka, J.; Zubko, M.; Rak, J.; Bogunia, S.; Łosiewicz, B. Influence of Sandblasting Process on Tribological Properties of Titanium Grade 4 in Artificial Saliva for Dentistry Applications. Materials 2021, 14, 7536. [Google Scholar] [CrossRef]
- Costa, B.C.; Tokuhara, C.; Rocha, L.A.; Oliveira, R.C.; Lisboa-Filho, P.N.; Pessoa, J. Vanadium ionic species from degradation of Ti-6Al-4V metallic implants: In vitro cytotoxicity and speciation evaluation. Mater. Sci. Eng. C 2019, 96, 730–739. [Google Scholar] [CrossRef]
- Stróż, A.; Goryczka, T.; Łosiewicz, B. Electrochemical formation of self-organized nanotubular oxide layers on niobium (Review). Curr. Nanosci. 2019, 15, 42–48. [Google Scholar] [CrossRef]
- Łosiewicz, B.; Stróż, A.; Osak, P.; Maszybrocka, J.; Gerle, A.; Dudek, K.; Balin, K.; Łukowiec, D.; Gawlikowski, M.; Bogunia, S. Production, Characterization and Application of Oxide Nanotubes on Ti–6Al–7Nb Alloy as a Potential Drug Carrier. Materials 2021, 14, 6142. [Google Scholar] [CrossRef]
- Aniołek, K.; Łosiewicz, B.; Kubisztal, J.; Osak, P.; Stróż, A.; Barylski, A.; Kaptacz, S. Mechanical properties, corrosion resistance and bioactivity of oxide layers formed by isothermal oxidation of Ti−6Al−7Nb alloy. Coatings 2021, 11, 505. [Google Scholar] [CrossRef]
- Szklarska, M.; Dercz, G.; Rak, J.; Simka, W.; Łosiewicz, B. The influence of passivation type on corrosion resistance of Ti15Mo alloy in simulated body fluids. Arch. Met. Mater. 2015, 60, 2687–2694. [Google Scholar] [CrossRef]
- Szklarska, M.; Dercz, G.; Simka, W.; Łosiewicz, B.A.c. impedance study on the interfacial properties of passivated Ti13Zr13Nb alloy in physiological saline solution. Surf. Interface Anal. 2014, 46, 698–701. [Google Scholar] [CrossRef]
- Long, X.; Jia, Q.P.; Li, Z.; Wen, S.X. Reverse analysis of constitutive properties of sintered silver particles from nanoindentations. Int. J. Solids Struct. 2020, 191–192, 351–362. [Google Scholar] [CrossRef]
- Durdu, S.; Cihan, G.; Yalcin, E.; Altinkok, A. Characterization and mechanical properties of TiO2 nanotubes formed on titanium by anodic oxidation. Ceram. Int. 2021, 47, 10972–10979. [Google Scholar] [CrossRef]
- Lee, M.; Kim, I.-S.; Moon, Y.H.; Yoon, H.S.; Park, C.H.; Lee, T. Kinetics of Capability Aging in Ti−13Nb−13Zr Alloy. Crystals 2020, 10, 693. [Google Scholar] [CrossRef]
- Łosiewicz, B.; Dercz, G.; Szklarska, M.; Simka, W.; Łężniak, M.; Krząkała, A.; Swinarew, A. Characterization of Electrophoretically Deposited Chitosan Coatings on Ti13Zr13Nb Alloy for Biomedical Applications. Solid State Phenom. 2013, 203–204, 212–215. [Google Scholar] [CrossRef]
- Bartmanski, M.; Pawłowski, Ł. Properties of chitosan/CuNPs coatings electrophoretically deposited on TiO2 nanotubular oxide layer of Ti13Zr13Nb alloy. Mater. Lett. 2022, 308, 130982. [Google Scholar] [CrossRef]
- Bartmański, M.; Pawłowski, Ł.; Zieliński, A.; Mielewczyk-Gryń, A.; Strugała, G.; Cieślik, B. Electrophoretic Deposition and Characteristics of Chitosan–Nanosilver Composite Coatings on a Nanotubular TiO2 Layer. Coatings 2020, 10, 245. [Google Scholar] [CrossRef] [Green Version]
- Bartmanski, M.; Zieliński, A.; Majkowska-Marzec, B.; Strugała, G. Effects of solution composition and electrophoretic deposition voltage on various properties of nanohydroxyapatite coatings on the Ti13Zr13Nb alloy. Ceram. Int. 2018, 44, 19236–19246. [Google Scholar] [CrossRef]
- Bartmański, M.; Pawłowski, Ł.; Mielewczyk-Gryń, A.; Strugała, G.; Rokosz, K.; Gaiaschi, S.; Chapon, P.; Raaen, S.; Zieliński, A. The Influence of Nanometals, Dispersed in the Electrophoretic Nanohydroxyapatite Coatings on the Ti13Zr13Nb Alloy, on Their Morphology and Mechanical Properties. Materials 2021, 14, 1638. [Google Scholar] [CrossRef] [PubMed]
- Bartmański, M.; Pawłowski, Ł.; Belcarz, A.; Przekora, A.; Ginalska, G.; Strugała, G.; Cieślik, B.M.; Pałubicka, A.; Zieliński, A. The Chemical and Biological Properties of Nanohydroxyapatite Coatings with Antibacterial Nanometals, Obtained in the Electrophoretic Process on the Ti13Zr13Nb Alloy. Int. J. Mol. Sci. 2021, 22, 3172. [Google Scholar] [CrossRef] [PubMed]
- Bartmański, M.; Pawłowski, Ł.; Strugała, G.; Mielewczyk-Gryń, A.; Zieliński, A. Properties of Nanohydroxyapatite Coatings Doped with Nanocopper, Obtained by Electrophoretic Deposition on Ti13Zr13Nb Alloy. Materials 2019, 12, 3741. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bartmanski, M.; Cieslik, B.; Glodowska, J.; Kalka, P.; Pawlowski, L.; Pieper, M.; Zielinski, A. Electrophoretic deposition (EPD) of nanohydroxyapatite—nanosilver coatings on Ti13Zr13Nb alloy. Ceram. Int. 2017, 43, 11820–11829. [Google Scholar] [CrossRef]
- Bartmanski, M.; Zielinski, A.; Jazdzewska, M.; Głodowska, J.; Kalka, P. Effects of electrophoretic deposition times and nanotubular oxide surfaces on properties of the nanohydroxyapatite/nanocopper coating on the Ti13Zr13Nb alloy. Ceram. Int. 2019, 45, 20002–20010. [Google Scholar] [CrossRef]
- Dziaduszewska, M.; Shimabukuro, M.; Seramak, T.; Zieliński, A.; Hanawa, T. Effects of Micro-Arc Oxidation Process Parameters on Characteristics of Calcium-Phosphate Containing Oxide Layers on the Selective Laser Melted Ti13Zr13Nb Alloy. Coatings 2020, 10, 745. [Google Scholar] [CrossRef]
- Dziaduszewska, M.; Wekwejt, M.; Bartmański, M.; Pałubicka, A.; Gajowiec, G.; Seramak, T.; Osyczka, A.M.; Zieliński, A. The Effect of Surface Modification of Ti13Zr13Nb Alloy on Adhesion of Antibiotic and Nanosilver-Loaded Bone Cement Coatings Dedicated for Application as Spacers. Materials 2019, 12, 2964. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zieliński, A.; Sobieszczyk, S.; Serbiński, W.; Seramak, T.; Ossowska, A. Materials Design for the Titanium Scaffold Based Implant. Solid State Phenom. 2011, 183, 225–232. [Google Scholar] [CrossRef]
- Ossowska, A.; Olive, J.-M. Zielinski, A.; Wojtowicz, A. Effect of double thermal and electrochemical oxidation on titanium alloys for medical applications. Appl. Surf. Sci. 2021, 563, 150340. [Google Scholar] [CrossRef]
- Ossowska, A.; Beutner, R.; Scharnweber, D.; Zielinski, A. Properties of composite oxide layers on the Ti13Nb13Zr alloy. Surf. Eng. 2017, 33, 841–848. [Google Scholar] [CrossRef]
- Ossowska, A.; Zieliński, A.; Olive, J.-M.; Wojtowicz, A.; Szweda, P. Influence of Two-Stage Anodization on Properties of the Oxide Coatings on the Ti–13Nb–13Zr Alloy. Coatings 2020, 10, 707. [Google Scholar] [CrossRef]
- Ossowska, A.; Sobieszczyk, S.; Supernak, M.; Zielinski, A. Morphology and properties of nanotubular oxide layer on the “Ti–13Zr–13Nb” alloy. Surf. Coat. Technol. 2014, 258, 1239–1248. [Google Scholar] [CrossRef]
- Ossowska, A.; Zieliński, A.; Supernak, M. Formation of High Corrosion Resistant Nanotubular Layers on Titanium Alloy Ti13Nb13Zr. Solid State Phenom. 2011, 183, 137–142. [Google Scholar] [CrossRef]
- Stróż, A.; Dercz, G.; Chmiela, B.; Łosiewicz, B. Electrochemical synthesis of oxide nanotubes on biomedical Ti13Nb13Zr alloy with potential use as bone implant. AIP Conf. Proc. 2019, 2083, 030004. [Google Scholar] [CrossRef]
- Handzlik, P.; Gutkowski, K. Synthesis of oxide nanotubes on Ti13Nb13Zr alloy by the electrochemical method. J. Porous Mater. 2019, 26, 1631–1637. [Google Scholar] [CrossRef] [Green Version]
- Smołka, A.; Dercz, G.; Rodak, K.; Łosiewicz, B. Evaluation of corrosion resistance of nanotubular oxide layers on the Ti13Zr13Nb alloy in physiological saline solution. Arch. Metall. Mater. 2015, 60, 2681–2686. [Google Scholar] [CrossRef]
- Smołka, A.; Rodak, K.; Dercz, G.; Dudek, K.; Łosiewicz, B. Electrochemical Formation of Self-Organized Nanotubular Oxide Layers on Ti13Zr13Nb Alloy for Biomedical Applications. Acta Phys. Pol. 2014, 125, 932–935. [Google Scholar] [CrossRef]
- Stróż, A.; Dercz, G.; Chmiela, B.; Stróż, D.; Łosiewicz, B. Electrochemical formation of second generation TiO2 nanotubes on Ti13Nb13Zr alloy for biomedical applications. Acta Phys. Pol. 2016, 130, 1079–1080. [Google Scholar] [CrossRef]
- Stróż, A.; Łosiewicz, B.; Zubko, M.; Chmiela, B.; Balin, K.; Dercz, G.; Gawlikowski, M.; Goryczka, T. Production, structure and biocompatible properties of oxide nanotubes on Ti13Nb13Zr alloy for medical applications. Mater. Charact. 2017, 132, 363–372. [Google Scholar] [CrossRef]
- ASTM F1713-08(2021)e1; Standard Specification for Wrought Titanium-13Niobium-13Zirconium Alloy for Surgical Implant Applications (UNS R58130). ASTM International: West Conshohocken, PA, USA, 2021.
- ISO 4287:1997; Geometrical Product Specifications (GPS)—Surface Texture: Profile Method—Terms, Definitions and Surface Texture Parameters. ISO: Geneva, Switzerland, 1997.
- ISO 9227:2017(en); Corrosion Tests in Artificial Atmospheres—Salt Spray Tests. ISO: Geneva, Switzerland, 2017.
- ISO 6507-1:2018(en); Metallic Materials—Vickers Hardness Test—Part 1: Test Method. ISO: Geneva, Switzerland, 2018.
- ISO 6507-2:2018; Metallic Materials—Vickers Hardness Test—Part 2: Verification and Calibration of Testing Machines. ISO: Geneva, Switzerland, 2018.
- ISO 6507-3:2018; Metallic Materials—Vickers Hardness Test—Part 3: Calibration of Reference Blocks. ISO: Geneva, Switzerland, 2018.
- Raja, K.S.; Gandhi, T.; Misra, M. Effect of water content of ethylene glycol as electrolyte for synthesis of ordered titania nanotubes. Electrochem. Commun. 2007, 9, 1069–1076. [Google Scholar] [CrossRef]
- Roy, P.; Berger, S.; Schmuki, P. TiO2 Nanotubes: Synthesis and applications. Angew. Chem. Int. Ed. 2011, 50, 2904–2939. [Google Scholar] [CrossRef] [PubMed]
- Stępień, M.; Handzlik, P.; Fitzner, K. Electrochemical synthesis of oxide nanotubes on Ti6Al7Nb alloy and their interaction with the simulated body fluid. J. Solid State Electrochem. 2016, 20, 2651–2661. [Google Scholar] [CrossRef] [Green Version]
- Aïnouche, L.; Hamadou, L.; Kadri, A.; Benbrahim, N.; Bradai, D. Interfacial barrier layer properties of three generations of TiO2 nanotube arrays. Electrochim. Acta 2014, 133, 597–609. [Google Scholar] [CrossRef]
- Bohner, M.; Miron, R.J. A proposed mechanism for material-induced heterotopic ossification. Mater. Today 2019, 22, 132–141. [Google Scholar] [CrossRef]
- Schneider, S.G.; Nunes, C.A.; Rogero, S.P.; Higa, O.Z.; Bressiani, J.C. Mechanical properties and cytotoxic evaluation of the Ti−13Nb−13Zr alloy. Biomecánica 2000, 8, 84–87. [Google Scholar] [CrossRef]
- Lee, T. Variation in Mechanical Properties of Ti−13Nb−13Zr Depending on Annealing Temperature. Appl. Sci. 2020, 10, 7896. [Google Scholar] [CrossRef]
- Wu, S.; Wang, S.; Liu, W.; Yu, X.; Wang, G.; Chang, Z.; Wen, D. Microstructure and properties of TiO2 nanotube coatings on bone plate surface fabrication by anodic oxidation. Surf. Coat. Technol. 2019, 374, 362–373. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
NaCl concentration (collected solution) | 52.4(6) g L−1 |
pH (collected solution) | 6.6(1) |
test temperature | 34.8(7) °C |
test time | 168.0(1) h |
average collection rate for a horizontal collecting area of 80 cm2 | 1.4(1) mL h−1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Łosiewicz, B.; Skwarek, S.; Stróż, A.; Osak, P.; Dudek, K.; Kubisztal, J.; Maszybrocka, J. Production and Characterization of the Third-Generation Oxide Nanotubes on Ti-13Zr-13Nb Alloy. Materials 2022, 15, 2321. https://doi.org/10.3390/ma15062321
Łosiewicz B, Skwarek S, Stróż A, Osak P, Dudek K, Kubisztal J, Maszybrocka J. Production and Characterization of the Third-Generation Oxide Nanotubes on Ti-13Zr-13Nb Alloy. Materials. 2022; 15(6):2321. https://doi.org/10.3390/ma15062321
Chicago/Turabian StyleŁosiewicz, Bożena, Sandra Skwarek, Agnieszka Stróż, Patrycja Osak, Karolina Dudek, Julian Kubisztal, and Joanna Maszybrocka. 2022. "Production and Characterization of the Third-Generation Oxide Nanotubes on Ti-13Zr-13Nb Alloy" Materials 15, no. 6: 2321. https://doi.org/10.3390/ma15062321
APA StyleŁosiewicz, B., Skwarek, S., Stróż, A., Osak, P., Dudek, K., Kubisztal, J., & Maszybrocka, J. (2022). Production and Characterization of the Third-Generation Oxide Nanotubes on Ti-13Zr-13Nb Alloy. Materials, 15(6), 2321. https://doi.org/10.3390/ma15062321