Variation in Mechanical Properties of Ti-13Nb-13Zr Depending on Annealing Temperature
<p>Scanning electron microscopy (SEM) image of the initial Ti-13Nb-13Zr alloy fabricated through the solution treatment (ST).</p> "> Figure 2
<p>Mechanical properties of Ti-13Nb-13Zr alloys depending on the annealing temperature: (<b>a</b>) strength, (<b>b</b>) hardness, (<b>c</b>) Young’s modulus, and (<b>d</b>) mechanical compatibility.</p> "> Figure 3
<p>X-ray diffraction (XRD) line profile of Ti-13Nb-13Zr alloys depending on the annealing temperature.</p> "> Figure 4
<p>SEM micrograph and electron backscatter diffraction (EBSD) phase map of Ti-13Nb-13Zn alloys annealed at (<b>a</b>) 773 K and (<b>b</b>) 873 K. Red and green areas indicate <span class="html-italic">α</span>/<span class="html-italic">α</span>′ and <span class="html-italic">β</span> phase, respectively.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Funding
Conflicts of Interest
References
- Long, M.; Rack, H.J. Titanium alloys in total joint replacement--a materials science perspective. Biomaterials 1998, 19, 1621–1639. [Google Scholar] [CrossRef]
- Abbasi, M.; Ahmadi, F.; Farzin, M. Production of Ultrafine-Grained Titanium with Suitable Properties for Dental Implant Applications by RS-ECAP Process. Met. Mater. Int. 2020. [Google Scholar] [CrossRef]
- Niemeyer, T.C.; Grandini, C.R.; Pinto, L.M.C.; Angelo, A.C.D.; Schneider, S.G. Corrosion behavior of Ti–13Nb–13Zr alloy used as a biomaterial. J. Alloy Compd. 2009, 476, 172–175. [Google Scholar] [CrossRef]
- Barjaktarević, D.; Medjo, B.; Štefane, P.; Gubeljak, N.; Cvijović-Alagić, I.; Djokić, V.; Rakin, M. Tensile and Corrosion Properties of Anodized Ultrafine-Grained Ti–13Nb–13Zr Biomedical Alloy Obtained by High-Pressure Torsion. Met. Mater. Int. 2020. [Google Scholar] [CrossRef]
- ASTM F1713-08. Standard Specification for Wrought Titanium-13Niobium-13Zirconium Alloy for Surgical Implant Applications; ASTM: West Conshohocken, PA, USA, 2013. [Google Scholar]
- Geetha, M.; Kamachi Mudali, U.; Gogia, A.K.; Asokamani, R.; Raj, B. Influence of microstructure and alloying elements on corrosion behavior of Ti–13Nb–13Zr alloy. Corros. Sci. 2004, 46, 877–892. [Google Scholar] [CrossRef]
- Cvijović-Alagić, I.; Cvijović, Z.; Rakin, M. Damage behavior of orthopedic titanium alloys with martensitic microstructure during sliding wear in physiological solution. Int. J. Damage Mech. 2019. [Google Scholar] [CrossRef]
- Majumdar, P.; Singh, S.B.; Chakraborty, M. The role of heat treatment on microstructure and mechanical properties of Ti–13Zr–13Nb alloy for biomedical load bearing applications. J. Mech. Behav. Biomed. Mater. 2011, 4, 1132–1144. [Google Scholar] [CrossRef]
- Park, C.H.; Lee, C.S.; Kim, Y.J.; Jang, J.H.; Suh, J.Y.; Park, J.W. Improved pre-osteoblast response and mechanical compatibility of ultrafine-grained Ti-13Nb-13Zr alloy. Clin. Oral Implan. Res. 2011, 22, 735–742. [Google Scholar] [CrossRef]
- Lee, T.; Heo, Y.-U.U.; Lee, C.S. Microstructure tailoring to enhance strength and ductility in Ti-13Nb-13Zr for biomedical applications. Scr. Mater. 2013, 69, 785–788. [Google Scholar] [CrossRef]
- Lee, T.; Park, K.-T.T.; Lee, D.J.; Jeong, J.; Oh, S.H.; Kim, H.S.; Park, C.H.; Lee, C.S. Microstructural evolution and strain-hardening behavior of multi-pass caliber-rolled Ti-13Nb-13Zr. Mater. Sci. Eng. A 2015, 648, 359–366. [Google Scholar] [CrossRef]
- Lee, T.; Lee, S.; Kim, I.-S.; Moon, Y.H.; Kim, H.S.; Park, C.H. Breaking the limit of Young’s modulus in low-cost Ti–Nb–Zr alloy for biomedical implant applications. J. Alloy Compd. 2020, 828, 154401. [Google Scholar] [CrossRef]
- Agrawal, A.; Choudhary, A. Perspective: Materials informatics and big data: Realization of the “fourth paradigm” of science in materials science. APL Mater. 2016, 4, 53208. [Google Scholar] [CrossRef] [Green Version]
- Majumdar, P.; Singh, S.B.; Chakraborty, M. Elastic modulus of biomedical titanium alloys by nano-indentation and ultrasonic techniques-A comparative study. Mater. Sci. Eng. A 2008, 489, 419–425. [Google Scholar] [CrossRef]
- Davidson, J.A.; Mishra, A.K.; Kovacs, P.; Poggie, R.A. New surface-hardened, low-modulus, corrosion-resistant Ti13Nb13Zr alloy for total hip arthroplasty. Biomed. Mater. Eng. 1994, 4, 231–243. [Google Scholar] [PubMed]
- Baptista, C.A.R.P.; Schneider, S.G.; Taddei, E.B.; da Silva, H.M. Fatigue behavior of arc melted Ti–13Nb–13Zr alloy. Int. J. Fatigue 2004, 26, 967–973. [Google Scholar] [CrossRef]
- Kobayashi, S.; Nakagawa, S.; Nakai, K.; Ohmori, Y. Phase Decomposition in a Ti-13Nb-13Zr Alloy during Aging at 600′C. Mater. Trans. 2002, 43, 2956–2963. [Google Scholar] [CrossRef]
- Lee, M.; Kim, I.; Moon, Y.H.; Yoon, H.S.; Park, C.H.; Lee, T. Kinetics of Capability Aging in Ti-13Nb-13Zr Alloy. Crystals 2020, 10, 693. [Google Scholar] [CrossRef]
- Hu, L.; Guo, S.; Meng, Q.; Zhao, X. Metastable β-type Ti-30Nb-1Mo-4Sn Alloy with Ultralow Young’s Modulus and High Strength. Metall. Mater. Trans. A 2014, 45, 547–550. [Google Scholar] [CrossRef]
- Zherebtsov, S.; Murzinova, M.; Salishchev, G.; Semiatin, S.L. Spheroidization of the lamellar microstructure in Ti–6Al–4V alloy during warm deformation and annealing. Acta Mater. 2011, 59, 4138–4150. [Google Scholar] [CrossRef]
- Park, C.H.; Won, J.W.; Park, J.-W.; Semiatin, S.L.; Lee, C.S. Mechanisms and Kinetics of Static Spheroidization of Hot-Worked Ti-6Al-2Sn-4Zr-2Mo-0.1Si with a Lamellar Microstructure. Metall. Mater. Trans. A 2012, 43, 977–985. [Google Scholar] [CrossRef] [Green Version]
- Mullins, W.W. The effect of thermal grooving on grain boundary motion. Acta Metall. 1958, 6, 414–427. [Google Scholar] [CrossRef]
- Hao, Y.L.; Niinomi, M.; Kuroda, D.; Fukunaga, K.; Zhou, Y.L.; Yang, R.; Suzuki, A. Young’s Modulus and Mechanical Properties of Ti-29Nb-13Ta-4.6Zr in Relation to a” Martensite. Metall. Mater. Trans. A 2002, 33A, 3137–3144. [Google Scholar] [CrossRef]
- Kim, H.S.; Bush, M.B. The effects of grain size and porosity on the elastic modulus of nanocrystalline materials. Nanostructured Mater. 1999, 11, 361–367. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, T. Variation in Mechanical Properties of Ti-13Nb-13Zr Depending on Annealing Temperature. Appl. Sci. 2020, 10, 7896. https://doi.org/10.3390/app10217896
Lee T. Variation in Mechanical Properties of Ti-13Nb-13Zr Depending on Annealing Temperature. Applied Sciences. 2020; 10(21):7896. https://doi.org/10.3390/app10217896
Chicago/Turabian StyleLee, Taekyung. 2020. "Variation in Mechanical Properties of Ti-13Nb-13Zr Depending on Annealing Temperature" Applied Sciences 10, no. 21: 7896. https://doi.org/10.3390/app10217896
APA StyleLee, T. (2020). Variation in Mechanical Properties of Ti-13Nb-13Zr Depending on Annealing Temperature. Applied Sciences, 10(21), 7896. https://doi.org/10.3390/app10217896