Estimation of Post-Cracking Dissipation Capabilities of Fiber Reinforced Concretes in Three Point Bending Test Monitored with Application of Digital Image Correlation System
<p>Dimensions and static scheme of the flexural strength test (unit: mm).</p> "> Figure 2
<p>View of the test stand with the use of the ARAMIS 2M system by GOM.</p> "> Figure 3
<p>Interpretation of what we consider a macro-crack—on the example of material M0.</p> "> Figure 4
<p>The mean compressive strength of cubic samples at (<b>a</b>) 28 and (<b>b</b>) 56 days.</p> "> Figure 5
<p>(<b>a</b>) Splitting tensile test results (on cubic samples); (<b>b</b>) stiffness modulus, both after 28 days.</p> "> Figure 6
<p>Equilibrium paths in the case of the tested materials and subsequent repetitions—force as a function of: (<b>a</b>) displacement; (<b>b</b>) crack mouth opening displacement (<span class="html-italic">CMOD</span>).</p> "> Figure 7
<p>Limit of proportionality (LOP) of tested materials.</p> "> Figure 8
<p>Energy dissipated during cracking—expressed the area under the curve: (<b>a</b>) <span class="html-italic">F</span>-<span class="html-italic">u</span> (<math display="inline"><semantics> <mrow> <msubsup> <mi>W</mi> <mn>0</mn> <mi>u</mi> </msubsup> <mo stretchy="false">)</mo> </mrow> </semantics></math> and (<b>b</b>) <span class="html-italic">F</span>-<span class="html-italic">CMOD</span> (<math display="inline"><semantics> <mrow> <msubsup> <mi>W</mi> <mn>0</mn> <mrow> <mi>C</mi> <mi>M</mi> <mi>O</mi> <mi>D</mi> </mrow> </msubsup> </mrow> </semantics></math>), as well as (<b>c</b>) fracture energy <math display="inline"><semantics> <mrow> <msub> <mi>G</mi> <mi>F</mi> </msub> </mrow> </semantics></math>.</p> "> Figure 9
<p>Force, <span class="html-italic">CMOD</span> and summary macro-crack length as a function of displacement in case of material M0 accompanied by cracks development in five chosen stages (contour plots of equivalent Huber–Mises strains).</p> "> Figure 10
<p>Force, <span class="html-italic">CMOD</span> and summary macro-crack length as a function of displacement in case of material M1 accompanied by cracks development in five chosen stages (contour plots of equivalent Huber–Mises strains).</p> "> Figure 11
<p>Force, <span class="html-italic">CMOD</span> and summary macrocrack length as a function of displacement in case of material M2 accompanied by cracks development in five chosen stages (contour plots of equivalent Huber–Mises strains).</p> "> Figure 12
<p>Force, <span class="html-italic">CMOD</span> and summary macrocrack length as a function of displacement in case of material M3 accompanied by cracks development in five chosen stages (contour plots of equivalent Huber–Mises strains).</p> "> Figure 13
<p>Force, <span class="html-italic">CMOD</span> and summary macrocrack length as a function of displacement in case of material M4 accompanied by cracks development in five chosen stages (contour plots of equivalent Huber–Mises strains).</p> "> Figure 14
<p>Correlation between (<b>a</b>) summary crack length, (<b>b</b>) dissipated energy and fiber volume ratio.</p> ">
Abstract
:1. Introduction
2. Materials for Testing and Evaluation
- Coarse and fine aggregate dosing;
- Short mixing;
- Cement dosing;
- Two minutes of mixing in dry state;
- Dosing of water and superplasticizer;
- Mixing with water and dosing fibers up to 5 min.
3. Experimental Procedure
3.1. Standard Tests
3.2. Digital Image Correlation Application
3.3. Cracks Determination and Measurement Technique
4. Experimental Results and Discussion
4.1. Analysis of Standard Tests
4.2. Results of Three-Point Bending Tests with the Measurement of Crack Development Using DIC
4.3. Discussion of Obtained Results
5. Conclusions
- The use of digital image correlation methods allows not only qualitative but also quantitative assessment of the behavior of materials in post-critical states, especially in the case of the assessment of the development of cracks in the material.
- Thanks to the use of DIC, it is possible to distinguish micro- and macro-cracks and to observe the redistribution of the strain state during the entire loading process.
- The introduction of a new parameter, which is the total length of the macro-crack, allows for a quantitative evaluation of the course of the cracking process of concretes reinforced with dispersed fibers. Results of this nature can be used to calibrate the constitutive models of the fracture mechanics, e.g., by using FEM and inverse analysis.
- The study showed a significant correlation between the total length of macro-cracks and the total volume fraction of reinforcement fibers in the material (R2 = 0.88). This conclusion was formulated on the basis of very limited data; therefore, its correctness should be verified in a wider research campaign.
- A certain correlation was also observed between the energy dissipated during the fracture process and the total volume fraction of the fibers. The coefficient of determination in this case has a lower value (R2 = 0.71).
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, V.C. Engineered Cementitious Composites (ECC); Springer: Berlin/Heidelberg, Germany, 2019; ISBN 9783662584378. [Google Scholar]
- Prisco, M.; Colombo, M. Frc Thin Walled Structures: Opportunities and Threats; RILEM: Guinares, Portugal, 2012; pp. 1–26. [Google Scholar]
- Walvaren, J.C. Model Code 2010, Final Drafts; FIB Bull: Lausanne, Switzerland, 2012; pp. 1–2. [Google Scholar]
- Hofstetter, G.; Mang, H.A. Computational plasticity of reinforced and prestressed concrete structures. Comput. Mech. 1996, 17, 242–254. [Google Scholar] [CrossRef]
- Blanco, A.; Cavalaro, S.; de la Fuente, A.; Grünewald, S.; Blom, C.B.M.; Walraven, J.C. Application of FRC constitutive models to modelling of slabs. Mater. Struct. Constr. 2015, 48, 2943–2959. [Google Scholar] [CrossRef] [Green Version]
- Zainal, S.M.I.S.; Hejazi, F.; Aziz, F.N.A.A.; Jaafar, M.S. Constitutive modeling of new synthetic hybrid fibers reinforced concrete from experimental testing in uniaxial compression and tension. Crystals 2020, 10, 885. [Google Scholar] [CrossRef]
- Blanco, A.; Pujadas, P.; Cavalaro, S.; De La Fuente, A.; Aguado, A. Constitutive model for fibre reinforced concrete based on the Barcelona test. Cem. Concr. Compos. 2014, 53, 327–340. [Google Scholar] [CrossRef] [Green Version]
- Zignago, D.; Barbato, M.; Hu, D. Constitutive Model of Concrete Simultaneously Confined by FRP and Steel for Finite-Element Analysis of FRP-Confined RC Columns. J. Compos. Constr. 2018, 22, 04018064. [Google Scholar] [CrossRef]
- Szwed, A.; Szerszen, M.M. Calibration of design formulas for flexure of beams made of composite materials. In Computer Systems Aided Science and Engineering Work in Transport, Mechanics and Electrical Engineering, Monograph No. 122; Publishing Office of Technical University of Radom: Radom, Poland, 2008; pp. 529–534. [Google Scholar]
- Szerszen, M.; Szwed, A.; Li, V.C. Flexural response of reinforced beam with high ductility concrete material. In Proceedings of the International Symposium on Brittle Matrix Composites 8, Warsaw, Poland, 23–25 October 2006; Brandt, A.M., Li, V.C., Marshall, I.H., Eds.; ZTUREK RSI and Woodhead Publishing: Warsaw, Poland; pp. 262–274. [Google Scholar]
- Yang, K.; Yan, Q.; Zhang, C. Three-dimensional mesoscale numerical study on the mechanical behaviors of SFRC tunnel lining segments. Tunn. Undergr. Sp. Technol. 2021, 113, 103982. [Google Scholar] [CrossRef]
- Galeote, E.; Blanco, A.; Cavalaro, S.H.P.; de la Fuente, A. Correlation between the Barcelona test and the bending test in fibre reinforced concrete. Constr. Build. Mater. 2017, 152, 529–538. [Google Scholar] [CrossRef] [Green Version]
- Lameiras, R.; Barros, J.A.O.; Azenha, M. Influence of casting condition on the anisotropy of the fracture properties of Steel Fibre Reinforced Self-Compacting Concrete (SFRSCC). Cem. Concr. Compos. 2015, 59, 60–76. [Google Scholar] [CrossRef] [Green Version]
- Saravanakumar, P.; Sivakamidevi, M.; Meena, K.; Yamini, S.P. An experimental study on hybrid fiber reinforced concrete beams subjected to torsion. Mater. Today: Proc. 2021, 45, 6818–6821. [Google Scholar]
- Babar, A.; Syed, S.R.; Iqrar, H.; Maria, I. Influence of different fibers on mechanical and durability performance of concrete with silica fume. Struct. Concr. 2021, 22, 318–333. [Google Scholar]
- Yi, L.; Yueqi, S.; Kiang, H.T.; Xiaotian, Z.; Junlei, S. Pore structure and splitting tensile strength of hybrid Basalt–Polypropylene fiber reinforced concrete subjected to carbonation. Constr. Build. Mater. 2021, 297, 123779. [Google Scholar]
- Miloud, B. Permeability and porosity characteristics of steel fiber reinforced concrete. Asian J. Civ. Eng. (Build. Hous.) 2005, 6, 317–330. [Google Scholar]
- Meyyappan, P.; Ganesan, N. Establishing Relationship of Porosity and Strength of Fibre Reinforced Concrete. Int. J. Innov. Technol. Explor. Eng. 2019, 9, 82–85. [Google Scholar]
- Guerini, V.; Conforti, A.; Plizzari, G.; Kawashima, S. Influence of steel and macro-synthetic fibers on concrete properties. Fibers 2018, 6, 47. [Google Scholar] [CrossRef] [Green Version]
- Krzywiński, K.; Chajec, A.; Sadowski, Ł. The effect of the concentration of steel fibres on the properties of industrial floors. Tech. Trans. 2019, 4, 115–132. [Google Scholar] [CrossRef] [Green Version]
- Al-Baghdadi, H.M.; Al-Merib, F.H.; Ibrahim, A.A.; Hassan, R.F.; Hussein, H.H. Effects of Coarse Aggregate Maximum Size on Synthetic/Steel Fiber Reinforced Concrete Performance with Different Fiber Parameters. Buildings 2021, 11, 158. [Google Scholar] [CrossRef]
- Figueired, A.D.; Ceccato, M.R. Workability Analysis of Steel Fiber Reinforced Concrete Using Slump and Ve-Be Test. Mater. Res. 2015, 18, 1284–1290. [Google Scholar] [CrossRef] [Green Version]
- Ye, J.; Cui, C.; Yu, J.; Yu, K.; Dong, F. Effect of polyethylene fiber content on workability and mechanical-anisotropic properties of 3D printed ultra-high ductile concrete. Constr. Build. Mater. 2021, 281, 122586. [Google Scholar] [CrossRef]
- Choi, S.-W.; Choi, J.; Lee, S.-C. Probabilistic Analysis for Strain-Hardening Behavior. Fibers 2018, 6, 47. [Google Scholar] [CrossRef] [Green Version]
- Marti, P.; Pfyl, T.; Sigrist, V.; Ulaga, T. Harmonized Test Procedures for Steel Fiber-Reinforced Concrete. Mater. J. 1999, 96, 676–685. [Google Scholar]
- Voo, Y.L.; Foster, S. Variable Engagement Model for the Design of Fibre Reinforced Concrete Structures. In Advanced Materials for Construction of Bridges, Buildings, and Other Structures III; ECI Digital Archives: Davos, Switzerland, 2003. [Google Scholar]
- Park, G.K.; Park, G.J.; Park, J.J.; Lee, N.; Kim, S.W. Residual tensile properties and explosive spalling of high-performance fiber-reinforced cementitious composites exposed to thermal damage. Materials 2021, 14, 1608. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.C.; Cho, J.Y.; Vecchio, F.J. Diverse embedment model for steel fiber-reinforced concrete in tension: Model development. ACI Mater. J. 2011, 108, 516–525. [Google Scholar] [CrossRef]
- Lee, S.C.; Cho, J.Y.; Vecchio, F.J. Simplified diverse embedment model for steel fiber-reinforced concrete elements in tension. ACI Mater. J. 2013, 110, 403–412. [Google Scholar] [CrossRef]
- Kytinou, V.K.; Chalioris, C.E.; Karayannis, C.G.; Elenas, A. Effect of steel fibers on the hysteretic performance of concrete beams with steel reinforcement-tests and analysis. Materials 2020, 13, 2923. [Google Scholar] [CrossRef] [PubMed]
- Chajec, A.; Sadowski, Ł. The effect of steel and polypropylene fibers on the properties of horizontally formed concrete. Materials 2020, 13, 5827. [Google Scholar] [CrossRef] [PubMed]
- Lemaitre, J.; Chaboche, J.L. Mechanics of Solid Materials; Cambridge University Press: Cambridge, UK, 1990. [Google Scholar]
- Hibbit, Karlsson & Sorensen, Inc. ABAQUS/Standard User’s Manual; Hibbitt, Karlsson & Sorensen, Incorporated: Pawtucket, RI, USA, 2001. [Google Scholar]
- Brocks, W. Introduction to Fracture and Damage Mechanics; Politecnico di Milano: Milan, Italy, 2012; p. 60. [Google Scholar]
- Neimitz, A. Mechanika Pękania; Wydawnictwo Naukowe PWN: Warszawa, Poland, 1998. [Google Scholar]
- GOM mbH. ARAMIS v6 User Manual; GOM mbH: Braunschweig, Germany, 2009. [Google Scholar]
- Ajdukiewicz, C.; Gajewski, M.; Mossakowski, P. Zastosowanie systemu optycznej korelacji obrazu “Aramis” do identyfikacji rys w elementach betonowych. Logistyka 2010, 6, 28–35. [Google Scholar]
- Domenico, D.; Urso, S.; Borsellino, C.; Spinella, N.; Recupero, A. Bond behavior and ultimate capacity of notched concrete beams with externally-bonded FRP and PBO-FRCM systems under different environmental conditions. Constr. Build. Mater. 2020, 265, 121208. [Google Scholar] [CrossRef]
- Larsen, I.L.; Thorstensen, R.T. The influence of steel fibres on compressive and tensile strength of ultra high performance concrete: A review. Constr. Build. Mater. 2020, 256, 119459. [Google Scholar] [CrossRef]
- Meng, W.; Khayat, K.H. Effect of Hybrid Fibers on Fresh Properties, Mechanical Properties, and Autogenous Shrinkage of Cost-Effective UHPC. J. Mater. Civ. Eng. 2018, 30, 04018030. [Google Scholar] [CrossRef]
- Le Hoang, A.; Fehling, E. Influence of steel fiber content and aspect ratio on the uniaxial tensile and compressive behavior of ultra high performance concrete. Constr. Build. Mater. 2017, 153, 790–806. [Google Scholar] [CrossRef]
- Ali, B.; Kurda, R.; Herki, B.; Alyousef, R.; Mustafa, R.; Mohammed, A.; Raza, A.; Ahmed, H.; Ul-Haq, M.F. Effect of varying steel fiber content on strength and permeability characteristics of high strength concrete with micro silica. Materials 2020, 13, 5739. [Google Scholar] [CrossRef] [PubMed]
- Ding, X.; Li, C.; Zhao, M.; Li, J.; Geng, H.; Lian, L. Tensile behavior of self-compacting steel fiber reinforced concrete evaluated by different test methods. Crystals 2021, 11, 251. [Google Scholar] [CrossRef]
- Suksawang, N.; Wtaife, S.; Alsabbagh, A. Evaluation of elastic modulus of fiber-reinforced concrete. ACI Mater. J. 2018, 115, 239–249. [Google Scholar] [CrossRef] [Green Version]
- Sucharda, O.; Bilek, V.; Smirakova, M.; Kubosek, J.; Cajka, R. Comparative evaluation of mechanical properties of fibre-reinforced concrete and approach to modelling of bearing capacity ground slab. Period. Polytech. Civ. Eng. 2017, 61, 972–986. [Google Scholar] [CrossRef] [Green Version]
- JCI-S-001-2003, Japan Concrete Institute Standard. Method of Test for Fracture Energy of Concrete by Use of Notched Beam; JCI: Tokyo, Japan, 2003. [Google Scholar]
- RILEM Committee on Fracture Mechanics of Concrete-Test Methods (RILEM 50-FMC). Determination of the fracture energy of mortar and concrete by means of three-point bend test on notched beams. Mater. Struct. 1985, 18, 285290. [Google Scholar]
- RILEM TC 162-TDF. Test and design methods for steel fibrereinforced concrete: Bending test, Final Recommendation. Mater. Struct. 2002, 35, 579582. [Google Scholar]
- Restuccia, L.; Ferro, G.A. Promising low cost carbon-based materials to improve strength and toughness in cement composites. Constr. Build. Mater. 2016, 126, 1034–1043. [Google Scholar] [CrossRef]
- Wang, Z.; Gou, J.; Gao, D. Experimental study on the fracture parameters of concrete. Materials 2021, 14, 129. [Google Scholar] [CrossRef]
- Liao, L.; Zhao, J.; Zhang, F.; Li, S.; Wang, Z. Experimental study on compressive properties of SFRC under high strain rate with different fiber content and aspect ratio. Constr. Build. Mater. 2020, 261, 119906. [Google Scholar] [CrossRef]
Material | Shape | Length mm | Diameter µm | Tensile Strength N/mm2 | Elasticity Modulus N/mm2 | Density kg/m3 |
---|---|---|---|---|---|---|
Polypropylene | Straight and bunch | 12 ± 1.5 | 34 ± 1.7 | 365 | 4800 | 910 |
Steel fiber 4D-80/60BG | Hooked end | 61 ± 2 | 750 ± 20 | 1800 ± 270 | 200,000 | 7850 |
Compound | Mix Composition kg/m3 | ||||
---|---|---|---|---|---|
M0 | M1 | M2 | M3 | M4 | |
Cement | 410 | 410 | 410 | 410 | 410 |
Sand 0/2 mm | 650 | 650 | 650 | 650 | 650 |
Granite 2/8 mm | 748 | 748 | 748 | 748 | 748 |
Granite 8/16 mm | 410 | 410 | 410 | 410 | 410 |
Water | 163 | 163 | 163 | 163 | 163 |
Superplasticizer | 4.1 | 4.1 | 4.1 | 4.1 | 4.1 |
Polypropylene fibers | 0 | 1.64 | 0 | 1.64 | 1.64 |
Steel fibers 4D-80/60BG | 0 | 0 | 25 | 25 | 74 |
Volumetric content of fibers, (PP + S)% | 0 | 0.2 + 0 | 0.3 + 0 | 0.2 + 0.3 | 0.2 + 0.9 |
CMOD (mm) | M0 | M1 | M2 | M3 | M4 |
---|---|---|---|---|---|
Frj (MPa) | Frj (MPa) | Frj (MPa) | Frj (MPa) | Frj (MPa) | |
0.5 | 0.2 | 1.0 | 3.4 | 4.9 | 10.8 |
1.5 | 0.0 | 0.1 | 4.6 | 5.7 | 11.5 |
2.5 | 0.0 | 0.0 | 5.0 | 5.9 | 10.6 |
3.5 | 0.0 | 0.0 | 4.9 | 5.3 | 10.0 |
4.0 | 0.0 | 0.0 | 4.7 | 5.0 | 9.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trinh-Duc, D.; Piotrowski, A.; Ajdukiewicz, C.; Woyciechowski, P.; Gajewski, M. Estimation of Post-Cracking Dissipation Capabilities of Fiber Reinforced Concretes in Three Point Bending Test Monitored with Application of Digital Image Correlation System. Materials 2021, 14, 5088. https://doi.org/10.3390/ma14175088
Trinh-Duc D, Piotrowski A, Ajdukiewicz C, Woyciechowski P, Gajewski M. Estimation of Post-Cracking Dissipation Capabilities of Fiber Reinforced Concretes in Three Point Bending Test Monitored with Application of Digital Image Correlation System. Materials. 2021; 14(17):5088. https://doi.org/10.3390/ma14175088
Chicago/Turabian StyleTrinh-Duc, Duyen, Andrzej Piotrowski, Cezary Ajdukiewicz, Piotr Woyciechowski, and Marcin Gajewski. 2021. "Estimation of Post-Cracking Dissipation Capabilities of Fiber Reinforced Concretes in Three Point Bending Test Monitored with Application of Digital Image Correlation System" Materials 14, no. 17: 5088. https://doi.org/10.3390/ma14175088
APA StyleTrinh-Duc, D., Piotrowski, A., Ajdukiewicz, C., Woyciechowski, P., & Gajewski, M. (2021). Estimation of Post-Cracking Dissipation Capabilities of Fiber Reinforced Concretes in Three Point Bending Test Monitored with Application of Digital Image Correlation System. Materials, 14(17), 5088. https://doi.org/10.3390/ma14175088