[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Computational plasticity of reinforced and prestressed concrete structures

  • Original
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

This paper contains a summary of a survey of computational mechanics of reinforced and prestressed concrete structures. It begins with a description of some very important experimental results. Subsequently, mathematical models for the simulation of the material behavior are reviewed briefly, followed by an exemplary overview over the finite element method (FEM) for reinforced and prestressed concrete structures. The apparent success of constitutive models for concrete, resting on the theory of plasticity, is based, to a great extent, on the excellent works of the late Prof. J. C. Simo, representing milestones of progress in computational plasticity. The survey is completed by two examples of numerical analyses of reinforced and prestressed concrete structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bouma, A. L.; Van Riel, A. C.; Van Koten, H.; Beranek W. J. 1961: Investigations on models of eleven cylindrical shells made of reinforced and prestressed concrete, Proceedings of the symposium on shell research, Delft, North-Holland, Amsterdam, 79–101

  • Ngo D.; Scordelis A. C. 1967: Finite element analysis of reinforced concrete beams, ACI Journal, 64: 152–163

    Google Scholar 

  • Kupfer H.; Hilsdorf H. K.; Rüsch H. 1669: Behavior of concrete under biaxial stresses. ACI Journal, 66: 656–666

    Google Scholar 

  • LiuT. C. Y.; Nilson A. H.; Slate F. O. 1972: Biaxial stress-strain relations for concrete. Journal of the structural division, ASCE, 98: 1025–1034

    Google Scholar 

  • Kupfer H. 1973: Das Verhalten des Betons unter mehrachsiger Kurzzeitbelastung unter besonderer Berücksichtigung der zweiachsigen Beanspruchung. Deutscher Ausschuß für Stahlbeton, Heft 229, W. Ernst u. Sohn, Berlin

    Google Scholar 

  • Willam, K. J.; Warnke, E. P. 1975: Constitutive model for the triaxial behavior of concrete. Proceedings of the international association for bridge and structural engineering, 19

  • Bažant Z. P. 1976: Instability, Ductility, and Size effect in strain-softening concrete. Journal of the engineering mechanics division, ASCE, 102: 331–344

    Google Scholar 

  • Hillerborg A.; Modéer M.; Peterson P. E. 1976: Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. cement and concrete research, 6: 773–782

    Google Scholar 

  • Epstein M.; Murray D. W. 1978: A biaxial constitutive law for concrete incorporated in BOSOR code, Computers and structures, 9: 57–63

    Google Scholar 

  • Murray D. W.; Chitnuyanondh L.; Rijub-Agha K. Y.; Wong C. 1979: Concrete plasticity theory for biaxial stress analysis, Journal of the engineering mechanics division, ASCE, 105: 989–1005

    Google Scholar 

  • Elwi A. A.; Murray D. W. 1979: A 3D hypoelastic concrete constitutive relationship. Journal of the engineering mechanics division, ASCE, 105: 623–641

    Google Scholar 

  • Bažant Z. P.; Kim S. S. 1979: Plastic-fracturing theory for concrete, Journal of the engineering mechanics division, ASCE, 105: 407–428, with Errata in 106

    Google Scholar 

  • Bažant Z. P.; Cedolin L. 1979: Blunt crack band propagation in finite element analysis. Journal of the engineering mechanics division, ASCE, 105: 297–315

    Google Scholar 

  • Bažant, Z. P.; Shieh, C. L. 106: Hysteretic fracturing endochronic theory for concrete. Journal of the engineering mechanics division, ASCE, 106: 929–950

  • Bažant Z. P.; Panula L. 1980: Creep and shrinkage characterization for analyzing prestressed concrete structures, PCI Journal, 25: 86–122

    Google Scholar 

  • Gerstle K. H. 1981: Simple formulation of biaxial concrete behavior. ACI-Journal, 78: 62–68

    Google Scholar 

  • Vecchio F. J.; Collins M. P. 1982: The response of reinforced concrete to in-plane shear and normal stresses. Publication No. 82-03, Department of Civil Engineering, University of Toronto, Toronto

    Google Scholar 

  • Bažant Z. P.; Wittmann F. H. (eds.). 1982: Creep and shrinkage in concrete structures, John Wiley and Sons, New York

    Google Scholar 

  • Bažant Z. P. 1982: comment on orthotropic models for concrete and geomaterials, Journal of engineering mechanics, 109: 849–865

    Google Scholar 

  • VanMier J. G. M. 1984: Complete stress-strain behavior and damaging status of concrete under multiaxial conditions. Proceedings of the international conference on concrete under multiaxial conditions, RILEM-CEB-CNRS, Presses de'l Université Paul Sabatier, Toulouse, 75–85.

    Google Scholar 

  • Ortiz M.; Popov E. P. 1985: Accuracy and stability of integration algorithms for elastoplastic constitutive relations, International journal for numerical methods in engineering, 21: 1561–1576

    Google Scholar 

  • Simo J. C.; Taylor R. L. 1985: Consistent tangent operators for rate independent elastoplasticity. Computational methods in applied mechanics and engineering, 48: 101–118

    Google Scholar 

  • Han D. J.; Chen W. F. 1987: Constitutive modelling in analysis of concrete structures. Journal of engineering mechanics, 113: 577–593

    Google Scholar 

  • Simo, J. C.; Hughes, T. J. R.: Elastoplasticity and viscoplasticity-Computational aspects, Springer, in press

  • Bažant Z. P.; Prat P. C. 1988: Microplane model for brittle-plastic material—I. Theory and II. Verification, Journal of Engineering Mechanics, 114: 1672–1702

    Google Scholar 

  • Walter, H. 1988: Finite Elemente Berechnungen von Flächentragwerken aus Stahl-und Spannbeton unter Berücksichtigung von Langzeitverformungen und Zustand II. Doctoral Dissertation, University of Technology of Viena, Vienna

  • Simo J. C.; Kennedy J. G.; Govindjee S. 1988: Unconditionally stable return mapping algorithms for non-smooth multi-surface plasticity amenable to exact linearization. International Journal for numerical methods in engineering, 26: 2161–2185

    Google Scholar 

  • Rots, J. G.; Blaauwendraad, J. 1989: Crack models for concrete: Discrete or smeared? Fixed multi-directional or rotating? Heron, 34, No. 1, Delft

  • Simo J. C.; Kennedy J.-G.; Taylor R. L. 1989: Complementary mixed finite element formulations for elastoplasticity. Computer methods in applied mechanics and engineering, 74: 177–206

    Google Scholar 

  • Smith S. S.; Willam K. J.; Gerstle K. H.; Sture S. 1989: Concrete over the top, or: Is there life after peak?, ACI Materials Journal, 86: 491–497

    Google Scholar 

  • Crisfield M. A.; Wills J. 1989: Analysis of R/C panels using different concrete models, Journal of engineering mechanics, 115: 578–597

    Google Scholar 

  • Lubliner J. 1990: Plasticity theory, Macmillan, New York

    Google Scholar 

  • Dahlblom O.; Ottosen N. S. 1990: Smeared crack analysis using generalized fictitious crack model, Journal of engineering mechanics, 116: 55–76

    Google Scholar 

  • Lanig N.; Stöckl S.; Kupfer H. 1991: Versuche zum Kriechen und zur Restfestigkeit von Beton bei mehrachsiger Beanspruchung. Deultscher Ausschuß für Stahlbeton, Heft 420, Beuth Verlag, Berlin, 1–81

    Google Scholar 

  • Meschke G.; Mang H. A.; Kosza P. 1991: Finite element analysis of cracked cooling tower shell, Journal of structural engineering, 117: 2620–2639

    Google Scholar 

  • Eberhrdsteiner, J. 1991: Synthese aus konstitutivem Modellieren von Beton mittels dreiaxialer, nichtlinear-elastischer Werkstoffgesetze und Finite-Elemente-Analysen dickwandiger Stahlbetonkonstruktionen. Doctoral dissertation, Dissertationen der technischen Universität Wien, No. 48, Verband der wissenschaftlichen Gesellschaften Österreichs (VWGÖ), Vienna

  • Meschke, G. 1991: Synthese aus konstitutivem Modellieren von Beton mittels dreiaxialer, elasto-plastischer Werkstoffmodelle und finite Elemente Analysen dickwandiger Stahlbetonkonstruktionen. Doctoral dissertation, Dissertationen der technischen Universität Wien, No. 49, Verband der wissenschaftlichen Gesellschaften Österreichs (VWGÖ), Vienna

  • MARC general purpose finite element program, User information manual, Rev. K5.2, MARC analysis research corporation, Palo alto, 1992

    Google Scholar 

  • Feenstra, P. H.; de Borst, R. 1993: Aspects of robust computational modeling for plain and reinforced concrete. Heron, 38, No. 4, Delft

  • Welscher, S. 1993: Implementierung und Anwendung eines elasto-plastischen Werkstoffmodells für Beton. Master's thesis, Institute for strength of materials, University of Technology of Vienna, Vienna

  • Hofstetter G.; Mang H. A. 1995: Computational mechanics of reinforced concrete structures, Friedr. Vieweg and Sohn verlagsgesellschaft mbH, Braunschweig/Wiesbaden

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by S. N. Atluri, 18 August 1995

Dedicated to J. C. Simo

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hofstetter, G., Mang, H.A. Computational plasticity of reinforced and prestressed concrete structures. Computational Mechanics 17, 242–254 (1996). https://doi.org/10.1007/BF00364827

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00364827

Keywords