Impact of the Allowed Compositional Range of Additively Manufactured 316L Stainless Steel on Processability and Material Properties
<p>Drawing of a T-bone sample used for the tensile tests.</p> "> Figure 2
<p>Particle size density distribution functions.</p> "> Figure 3
<p>Morphologies of the starting powders; (<b>a</b>) A, (<b>b</b>) B, (<b>c</b>) C.</p> "> Figure 4
<p>Particle shape distributions.</p> "> Figure 5
<p>Porosities of the PBF-LB/M-processed samples.</p> "> Figure 6
<p>SEM micrographs of the microstructures of the samples: (<b>a</b>) A-PBF, (<b>b</b>) B-PBF, (<b>c</b>) C-PBF at low magnification; (<b>d</b>) A-PBF, (<b>e</b>) B-PBF, (<b>f</b>) C-PBF at high magnification.</p> "> Figure 7
<p>Pseudobinary section of the phase diagram of the alloying system Fe–Cr–Ni at 70 mass% Fe calculated using ThermoCalc.</p> "> Figure 8
<p>Representation of the DeLong diagram according to [<a href="#B1-materials-14-04074" class="html-bibr">1</a>] with positions of the used starting materials.</p> "> Figure 9
<p>XRD patterns of the PBF-LB/M samples.</p> "> Figure 10
<p>Solidification paths calculated using the Scheil–Gulliver approach; (<b>a</b>) A-PBF, (<b>b</b>) B-PBF, (<b>c</b>) C-PBF.</p> "> Figure 11
<p>Current density/potential curves of the PBF-LB/M-processed samples.</p> "> Figure 12
<p>Stress/strain curves of the PBF-LB/M-processed T-bone samples.</p> ">
Abstract
:1. Introduction
- What is the impact of the changes in chemical composition on the processability and the occurrence/types of defects?
- How is the microstructure formation affected by the variation in the chemical composition (in particular the Creq/Nieq-ratio) of AISI 316L steel?
- What is the impact on the corrosion resistance and mechanical properties of the produced parts?
- Is there a need for a new AM grade standard for type 316L austenitic stainless steel?
2. Materials and Methods
2.1. Used Starting Materials and Gas Atomization
2.2. Powder Feedstock Characterization
2.3. Samples Manufacturing by PBF-LB/M and Sample Designation
2.4. Metallography and Microscopy
2.5. Thermodynamic Calculations
2.6. Phase Analysis by X-ray Diffraction Experiments and Magneto Inductive Measurements
2.7. Corrosion Testing
2.8. Mechanical Testing
3. Results
3.1. Powder Characteristics
3.2. PBF-LB/M Densification and Microstructures
3.3. Corrosion Resistance of the PBF-LB/M Densified Powders
3.4. Mechanical Properties of the PBF-LB/M Densified Powders
3.5. Derivation of an Adapted Compositional Range of the Austenitic Stainless Steel Suitable for PBF-LB/M Processing
4. Conclusions
- The starting material with the highest Nieq owing to increased contents of the alloying elements Ni and N resulted in the highest porosity after the PBF-LB/M processing. The reduction of the Creq/Nieq ratio to 1.00 promoted the formation of solid-state cracks. These cracks are identified as ductility dip cracks. Their formation is ground in the fully austenitic solidification path;
- The solidification path seems to change between austenitic–ferritic and fully austenitic solidification mode in PBF-LB/M processing if the Creq/Nieq ratios are changed within the allowed range given by the ASTM A276 standard for the steel 316L. The obtained microstructures cannot be predicted by the DeLong diagram. The alloy with the highest Creq/Nieq ratio of 1.43 showed small amounts <1 vol.% of ferrite in the as-built state. The ferrite content is reduced by the intrinsic heat treatment at the bottom parts of the sample;
- The formation of defects caused by the low Creq/Nieq ratio of 1.00 decreases the corrosion resistance due to an increase in surface area and promotion of crevice corrosion phenomena;
- Furthermore, the formation of cracks promoted by the low Creq/Nieq ratio of 1.00 decreases the elongation at fracture;
- In PBF-LB/M processing, Creq/Nieq ratios should be restricted to values higher than 1.30. Thereby, the Ni content should be limited in particular to ensure the crack-free PBF-LB/M production of 316L type steel. Reduced Ni contents enable the usage of higher N contents without promoting the formation of gas pores by the outgassing of N2. A recommendation on more suited alloy limits is given.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Godina, R.; Ribeiro, I.; Matos, F.; Ferreira, B.T.; Carvalho, H.; Peças, P. Impact Assessment of Additive Manufacturing on Sustainable Business Models in Industry 4.0 Context. Sustainability 2020, 12, 7066. [Google Scholar] [CrossRef]
- Herzog, D.; Seyda, V.; Wycisk, E.; Emmelmann, C. Additive manufacturing of metals. Acta Mater. 2016, 117, 371–392. [Google Scholar] [CrossRef]
- Wong, K.V.; Hernandez, A. A Review of Additive Manufacturing. ISRN Mech. Eng. 2012, 2012, 208760. [Google Scholar] [CrossRef] [Green Version]
- Boes, J.; Röttger, A.; Theisen, W. Microstructure and properties of high-strength C + N austenitic stainless steel processed by laser powder bed fusion. Addit. Manuf. 2020, 32, 101081. [Google Scholar] [CrossRef]
- DebRoy, T.; Wei, H.L.; Zuback, J.S.; Mukherjee, T.; Elmer, J.W.; Milewski, J.O.; Beese, A.M.; Wilson-Heid, A.D.; De, A.; Zhang, W. Additive manufacturing of metallic components—Process, structure and properties. Prog. Mater. Sci. 2018, 92, 112–224. [Google Scholar] [CrossRef]
- Mercelis, P.; Kruth, J. Residual stresses in selective laser sintering and selective laser melting. Rapid Prototyp. J. 2006, 12, 254–265. [Google Scholar] [CrossRef]
- Zhang, B.; Li, Y.; Bai, Q. Defect Formation Mechanisms in Selective Laser Melting: A Review. Chin. J. Mech. Eng. 2017, 30, 515–527. [Google Scholar] [CrossRef] [Green Version]
- Geenen, K. Werkstofftechnische Charakterisierung Austenitischer und Martensitischer Stähle nach dem Selektiven Laserschmelzen: Bildung der Mikrostruktur und Eigenschaften. Ph.D. Thesis, Ruhr-Universität Bochum, Bochum, Germany, 2018. [Google Scholar]
- Sander, J. Selektives Laserschmelzen Hochfester Werkzeugstähle. Ph.D. Thesis, Technische Universität Dresden, Dresden, Germany, 2018. [Google Scholar]
- Wang, Y.M.; Voisin, T.; McKeown, J.; Ye, J.; Calta, N.; Li, Z.; Zeng, Z.; Zhang, Y.; Chen, W.; Roehling, T.T.; et al. Additively manufactured hierarchical stainless steels with high strength and ductility. Nat. Mater. 2018, 17, 63–71. [Google Scholar] [CrossRef] [Green Version]
- Sabzi, H.E.; Maeng, S.; Liang, X.; Simonelli, M.; Aboulkhair, N.T.; Rivera-Díaz-Del-Castillo, P.E. Controlling crack formation and porosity in laser powder bed fusion: Alloy design and process optimisation. Addit. Manuf. 2020, 34, 101360. [Google Scholar] [CrossRef]
- Yadroitsev, I.; Gusarov, A.; Yadroitsava, I.; Smurov, I. Single track formation in selective laser melting of metal powders. J. Mater. Process. Technol. 2010, 210, 1624–1631. [Google Scholar] [CrossRef]
- Prashanth, K.; Eckert, J. Formation of metastable cellular microstructures in selective laser melted alloys. J. Alloys Compd. 2017, 707, 27–34. [Google Scholar] [CrossRef]
- Saeidi, K. Stainless Steels Fabricated by Laser Melting: Scaled-Down Structural Hierarchies and Microstructural Heterogeneities. Ph.D. Thesis, Stockholm University, Stockholm, Sweden, 2016. [Google Scholar]
- Saeidi, K.; Gao, X.; Zhong, Y.; Shen, Z. Hardened austenite steel with columnar sub-grain structure formed by laser melting. Mater. Sci. Eng. A 2015, 625, 221–229. [Google Scholar] [CrossRef]
- A01 Committee. ASTM A276/A276-17: Specification for Stainless Steel Bars and Shapes; ASTM International: West Conshohocken, PA, USA, 2017. [Google Scholar]
- Berns, H.; Theisen, W. Eisenwerkstoffe: Stahl und Gusseisen, 4th ed.; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Lange, G.; Pohhl, M. (Eds.) Systematische Beurteilung Technischer Schadensfälle, 6th ed.; Wiley-VCH: Weinheim, Germany, 2014. [Google Scholar]
- David, S.; Vitek, J.; Reed, R.; Hebble, T. Effect of Rapid Solidification on Stainless Steel Weld Metal Microstructures and Its Implications on the Schaeffler Diagram; Oak Ridge National Lab.: Oak Ridge, TN, USA, 1987. [Google Scholar]
- Vitek, J.M.; Dasgupta, A.; David, S.A. Microstructural modification of austenitic stainless steels by rapid solidification. Met. Mater. Trans. A 1983, 14, 1833–1841. [Google Scholar] [CrossRef]
- Ciftci, N.; Ellendt, N.; Coulthard, G.; Barreto, E.S.; Mädler, L.; Uhlenwinkel, V. Novel Cooling Rate Correlations in Molten Metal Gas Atomization. Met. Mater. Trans. A 2019, 50, 666–677. [Google Scholar] [CrossRef]
- Rietveld, H.M. A profile refinement method for nuclear and magnetic structures. J. Appl. Crystallogr. 1969, 2, 65–71. [Google Scholar] [CrossRef]
- Lutterotti, L.; Gialanella, S. X-ray diffraction characterization of heavily deformed metallic specimens. Acta Mater. 1998, 46, 101–110. [Google Scholar] [CrossRef]
- Lutterotti, L.; Scardi, P. Simultaneous structure and size–strain refinement by the Rietveld method. J. Appl. Crystallogr. 1990, 23, 246–252. [Google Scholar] [CrossRef]
- Hosseini, V.A.; Hurtig, K.; Eyzop, D.; Östberg, A.; Janiak, P.; Karlsson, L. Ferrite content measurement in super duplex stainless steel welds. Weld. World 2019, 63, 551–563. [Google Scholar] [CrossRef] [Green Version]
- Röttger, A.; Boes, J.; Theisen, W.; Thiele, M.; Esen, C.; Edelmann, A.; Hellmann, R. Microstructure and mechanical properties of 316L austenitic stainless steel processed by different SLM devices. Int. J. Adv. Manuf. Technol. 2020, 108, 769–783. [Google Scholar] [CrossRef]
- PKrakhmalev, P.; Fredriksson, G.; Svensson, K.; Yadroitsev, I.; Yadroitsava, I.; Thuvander, M.; Peng, R. Microstructure, Solidification Texture, and Thermal Stability of 316 L Stainless Steel Manufactured by Laser Powder Bed Fusion. Metals 2018, 8, 643. [Google Scholar] [CrossRef] [Green Version]
- Krakhmalev, P.; Yadroitsava, I.; Fredriksson, G.; Yadroitsev, I. In situ heat treatment in selective laser melted martensitic AISI 420 stainless steels. Mater. Des. 2015, 87, 380–385. [Google Scholar] [CrossRef]
- Voisin, T.; Forien, J.-B.; Perron, A.; Aubry, S.; Bertin, N.; Samanta, A.; Baker, A.; Wang, Y.M. New insights on cellular structures strengthening mechanisms and thermal stability of an austenitic stainless steel fabricated by laser powder-bed-fusion. Acta Mater. 2021, 203, 116476. [Google Scholar] [CrossRef]
- Kruth, J.; Froyen, L.; Van Vaerenbergh, J.; Mercelis, P.; Rombouts, M.; Lauwers, B. Selective laser melting of iron-based powder. J. Mater. Process. Technol. 2004, 149, 616–622. [Google Scholar] [CrossRef]
- Shrestha, S.; Starr, T.; Chou, K. A Study of Keyhole Porosity in Selective Laser Melting: Single-Track Scanning with Micro-CT Analysis. J. Manuf. Sci. Eng. 2019, 141, 1–23. [Google Scholar] [CrossRef]
- Boes, J.; Röttger, A.; Becker, L.; Theisen, W. Processing of gas-nitrided AISI 316L steel powder by laser powder bed fusion—Microstructure and properties. Addit. Manuf. 2019, 30, 100836. [Google Scholar] [CrossRef]
- Lippold, J.C. Welding Metallurgy and Weldability; Wiley & Sons: Hoboken, NJ, USA, 2014. [Google Scholar]
- Shankar, V.; Gill, T.P.S.; Mannan, S.L.; Sundaresan, S. Solidification cracking in austenitic stainless steel welds. Sadhana 2003, 28, 359–382. [Google Scholar] [CrossRef]
- Boellinghaus, T.; Lippold, J.C.; Cross, C.E. (Eds.) Cracking Phenomena in Welds IV: Elevated Temperature, Solid-State Cracking in Welds, 1st ed.; Springer International Publishing: Cham, Switzerland, 2016. [Google Scholar]
- Lippold, J.C.; Kiser, S.D.; DuPont, J.N. Welding Metallurgy and Weldability of Nickel-Base Alloys; Wiley and Sons: Hoboken, NJ, USA, 2013. [Google Scholar]
- Ramirez, A.J.; Lippold, J. High temperature behavior of Ni-base weld metal: Part I. Ductility and microstructural characterization. Mater. Sci. Eng. A 2004, 380, 259–271. [Google Scholar] [CrossRef]
- Ramirez, A.; Lippold, J. High temperature behavior of Ni-base weld metal: Part II – Insight into the mechanism for ductility dip cracking. Mater. Sci. Eng. A 2004, 380, 245–258. [Google Scholar] [CrossRef]
- Zhang, Y.C.; Nakagawa, H.; Matsuda, F. Weldability of Fe–36%Ni Alloy (Report VI); Trans. JWRI 14; Joining and Welding Research Institute, Osaka University: Osaka, Japan, 1985; pp. 125–134. [Google Scholar]
- DeLong, W.T. Ferrite in austenitic stainless steel weld metal. Weld. J. 1974, 53, 273–286. [Google Scholar]
- Choo, H.; Sham, K.-L.; Bohling, J.; Ngo, A.; Xiao, X.; Ren, Y.; Depond, P.J.; Matthews, M.J.; Garlea, E. Effect of laser power on defect, texture, and microstructure of a laser powder bed fusion processed 316L stainless steel. Mater. Des. 2019, 164, 107534. [Google Scholar] [CrossRef]
- Sun, Z.; Tan, X.; Tor, S.B.; Yeong, W.Y. Selective laser melting of stainless steel 316L with low porosity and high build rates. Mater. Des. 2016, 104, 197–204. [Google Scholar] [CrossRef]
- Faulkner, R.G.; Williams, J.A.; Sanchez, E.G.; Marshall, A.W. Influence of Co, Cu and W on microstructure of 9%Cr steel weld metals. Mater. Sci. Technol. 2003, 19, 347–354. [Google Scholar] [CrossRef]
- Zhang, Z.; Jing, H.; Xu, L.; Han, Y.; Zhao, L. Investigation on microstructure evolution and properties of duplex stainless steel joint multi-pass welded by using different methods. Mater. Des. 2016, 109, 670–685. [Google Scholar] [CrossRef]
- Schaeffler, A.L. Constitution Diagram for Stainless Steel Weld Metal. Metal Prog. 1949, 56, 680. [Google Scholar]
- Krell, J.; Röttger, A.; Geenen, K.; Theisen, W. General investigations on processing tool steel X40CrMoV5-1 with selective laser melting. J. Mater. Process. Technol. 2018, 255, 679–688. [Google Scholar] [CrossRef]
- Jägle, E.A.; Sheng, Z.; Wu, L.; Lu, L.; Risse, J.; Weisheit, A.; Raabe, D. Precipitation Reactions in Age-Hardenable Alloys During Laser Additive Manufacturing. JOM 2016, 68, 943–949. [Google Scholar] [CrossRef] [Green Version]
- Kelly, T.F.; Cohen, M.; Sande, J.B.V. Rapid solidification of a droplet-processed stainless steel. Met. Mater. Trans. A 1984, 15, 819–833. [Google Scholar] [CrossRef]
- Geenen, K.; Röttger, A.; Theisen, W. Corrosion behavior of 316L austenitic steel processed by selective laser melting, hot-isostatic pressing, and casting. Mater. Corros. 2017, 68, 764–775. [Google Scholar] [CrossRef]
- Boes, J. Grundlegende Untersuchungen zur Entwicklung von Hochlegierten Stählen für die Additive Fertigung. Ph.D. Thesis, Ruhr-Universität Bochum, Bochum, Germany, 2021. [Google Scholar]
- Otero, E.; Pardo, A.; Sáenz, E.; Utrilla, M.; Hierro, P. A study of the influence of nitric acid concentration on the corrosion resistance of sintered austenitic stainless steel. Corros. Sci. 1996, 38, 1485–1493. [Google Scholar] [CrossRef]
- Yu, Y.; Shironita, S.; Souma, K.; Umeda, M. Effect of chromium content on the corrosion resistance of ferritic stainless steels in sulfuric acid solution. Heliyon 2018, 4, e00958. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gavriljuk, V.G.; Berns, H. High Nitrogen Steels: Structure, Properties, Manufacture, Applications; Springer: Berlin/Heidelberg, Germany, 1999. [Google Scholar]
- Jiang, Z.; Li, H.; Chen, Z.; Huang, Z.; Zou, D.; Liang, L. The Nitrogen Solubility in Molten Stainless Steel. Steel Res. Int. 2005, 76, 740–745. [Google Scholar] [CrossRef]
- Hengsbach, F.; Koppa, P.; Duschik, K.; Holzweissig, M.J.; Burns, M.; Nellesen, J.; Tillmann, W.; Tröster, T.; Hoyer, K.-P.; Schaper, M. Duplex stainless steel fabricated by selective laser melting—Microstructural and mechanical properties. Mater. Des. 2017, 133, 136–142. [Google Scholar] [CrossRef]
- Papula, S.; Song, M.; Pateras, A.; Chen, X.-B.; Brandt, M.; Easton, M.; Yagodzinskyy, Y.; Virkkunen, I.; Hänninen, H. Selective Laser Melting of Duplex Stainless Steel 2205: Effect of Post-Processing Heat Treatment on Microstructure, Mechanical Properties, and Corrosion Resistance. Materials 2019, 12, 2468. [Google Scholar] [CrossRef] [PubMed] [Green Version]
C | Si | Mn | P | S | Cr | Mo | Ni | N | |
---|---|---|---|---|---|---|---|---|---|
min. | - | - | - | - | - | 16.0 | 2.00 | 10.0 | 0.00 |
max. | 0.03 | 0.75 | 2.00 | 0.045 | 0.03 | 18.0 | 3.00 | 14.0 | 0.10 |
Material | C | Si | Mn | Cr | Ni | Mo | N | P | S | O | Creq | Nieq | Cr/Ni |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A | 0.01 | 0.83 | 0.72 | 16.55 | 13.38 | 2.46 | 0.03 | 0.02 | 0.02 | 0.03 | 20.27 | 15.04 | 1.35 |
B | 0.03 | 0.79 | 1.71 | 17.46 | 10.13 | 3.01 | 0.11 | 0.01 | 0.01 | 0.02 | 21.66 | 15.18 | 1.43 |
C | 0.03 | 0.82 | 1.73 | 15.53 | 13.88 | 2.17 | 0.11 | 0.01 | 0.01 | 0.02 | 18.99 | 18.93 | 1.00 |
Laser Power in W | Scanning Speed in mm/s | Layer Thickness in µm | Hatch Distance in µm | Laser Spot Size in µm | Scan Strategy | Tilt Angle | Protection Gas |
---|---|---|---|---|---|---|---|
150 | 800 | 30 | 80 | 50 | stripes (10 mm) | 37° | Ar |
Powder | Carney Flow Time in s | Angle of Repose in ° | Hausner Ratio | Minimum Particle Size in µm | Maximum Particle Size in µm |
---|---|---|---|---|---|
A | 3.5 | 32 | 1.22 | 4.77 | 85.64 |
B | 8.5 | 54 | 1.18 | 5.59 | 103.26 |
C | 4.0 | 40 | 1.20 | 5.06 | 86.26 |
Sample | Position | Ferrite Content in vol.% | |
---|---|---|---|
Magnetic Measurement | Rietveld Method | ||
A-PBF | top | 0.00 | 0.00 |
bottom | 0.00 | 0.00 | |
B-PBF | top | 0.72 ± 0.07 | 0.50 ± 0.07 |
bottom | 0.38 ± 0.02 | 0.18 ± 0.00 | |
C-PBF | top | 0.00 | 0.00 |
bottom | 0.00 | 0.00 |
Material | Open Circuit Potential in mV | Passivation Potential in mV | Passivation Current Density in µA/cm2 | Activation Potential in mV | Breakdown Potential in mV | Passive Current Density in µA/cm2 |
---|---|---|---|---|---|---|
A-PBF | −262 | −214 | 1.74 | −62 | 918 | 0.76 |
B-PBF | −255 | −142 | 1.30 | −68 | 908 | 0.91 |
C-PBF | −277 | −243 | 4.10 | −90 | 906 | 1.33 |
Sample | Hardness in HV1 | Yield Strength Rp0.2 in MPa | Tensile Strength Rm in MPa | Elongation at Fracture A5 in % |
---|---|---|---|---|
A-PBF | 183.8 ± 2.6 | 481.8 ± 20.4 | 594.4 ± 22.2 | 51.1 ± 0.3 |
B-PBF | 253.2 ± 8.1 | 593.3 ± 20.0 | 758.3 ± 19.1 | 51.3 ± 0.5 |
C-PBF | 234.0 ± 15.0 | 527.6 ± 15.08 | 684.6 ± 12.2 | 30.0 ± 0.3 |
C | Si | Mn | Cr | Mo | Ni | N | Fe | |
---|---|---|---|---|---|---|---|---|
min. | - | - | - | 17.0 | 2.00 | ~10.00 | - | bal. |
max. | 0.03 | 0.75 | 2.00 | 18.0 | 3.00 | ~10.00 | 0.10 | bal. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Großwendt, F.; Becker, L.; Röttger, A.; Chehreh, A.B.; Strauch, A.L.; Uhlenwinkel, V.; Lentz, J.; Walther, F.; Fechte-Heinen, R.; Weber, S.; et al. Impact of the Allowed Compositional Range of Additively Manufactured 316L Stainless Steel on Processability and Material Properties. Materials 2021, 14, 4074. https://doi.org/10.3390/ma14154074
Großwendt F, Becker L, Röttger A, Chehreh AB, Strauch AL, Uhlenwinkel V, Lentz J, Walther F, Fechte-Heinen R, Weber S, et al. Impact of the Allowed Compositional Range of Additively Manufactured 316L Stainless Steel on Processability and Material Properties. Materials. 2021; 14(15):4074. https://doi.org/10.3390/ma14154074
Chicago/Turabian StyleGroßwendt, Felix, Louis Becker, Arne Röttger, Abootorab Baqerzadeh Chehreh, Anna Luise Strauch, Volker Uhlenwinkel, Jonathan Lentz, Frank Walther, Rainer Fechte-Heinen, Sebastian Weber, and et al. 2021. "Impact of the Allowed Compositional Range of Additively Manufactured 316L Stainless Steel on Processability and Material Properties" Materials 14, no. 15: 4074. https://doi.org/10.3390/ma14154074
APA StyleGroßwendt, F., Becker, L., Röttger, A., Chehreh, A. B., Strauch, A. L., Uhlenwinkel, V., Lentz, J., Walther, F., Fechte-Heinen, R., Weber, S., & Theisen, W. (2021). Impact of the Allowed Compositional Range of Additively Manufactured 316L Stainless Steel on Processability and Material Properties. Materials, 14(15), 4074. https://doi.org/10.3390/ma14154074