Abstract
The cooling rate in molten metal gas atomization is the key determining factor for the microstructure of metal powders. Mathematical expressions for cooling rates often include the melt droplet diameter and a pre-exponential factor describing the materials and gas properties. A new mathematical cooling rate correlation for rapidly solidified melt droplets is proposed based on heat flow considerations during gas atomization. The model approach takes process conditions such as gas-to-melt mass flow ratio and the initial gas temperature into account. The mathematical formulation was experimentally developed using secondary dendrite arm spacing method. For this purpose, a Cu-6wt pct Sn alloy was atomized with close-coupled (CCA) and free-fall atomization (FFA). A novel approach was made to predict the pre-exponential factor that allows the transferability to other materials. Our correlation for the cooling rate and the pre-exponential factor was validated by experimental data from the literature. The novel correlation type is valid for two different atomizing systems (FFA and CCA), suggesting that it may be applicable to entirely different gas atomization systems.
Similar content being viewed by others
Change history
14 February 2019
Author notes two two typos in Equation 2.
Abbreviations
- a :
-
Constant to calculate the cooling rate through SDAS
- a i :
-
Model parameters
- c g :
-
Specific heat capacity of the gas, J kg−1 K−1
- \( c_{{{\text{p}}_{\text{L}} }} \) :
-
Specific heat capacity of the liquid melt droplet, J kg−1 K−1
- \( c_{{{\text{p}}_{\text{S}} }} \) :
-
Specific heat capacity of the solid melt droplet, J kg−1 K−1
- CR:
-
Cooling rate, K s−1
- D :
-
Nozzle outlet diameter, m
- d p :
-
Droplet diameter, m
- d 50,3 :
-
Mass median particle diameter, m
- f s :
-
Solid fraction
- h :
-
Heat transfer coefficient, W m−2 K−1
- k g :
-
Thermal conductivity of the gas, W m−1 K−1
- k l :
-
Thermal conductivity of the melt droplet, W m−1 K−1
- L :
-
Distance between first adjacent arm to the last, m
- m :
-
Constant to calculate the SDAS
- \( \dot{m}_{G} \) :
-
Gas mass flow rate, kg s−1
- \( \dot{m}_{L} \) :
-
Melt mass flow rate, kg s−1
- n:
-
Constant to calculate the cooling rate through SDAS
- n arms :
-
Number of counted arms to calculate SDAS, #
- p :
-
Atomization pressure, MPa
- q :
-
Heat flux, W m−2
- r :
-
r-axis, m
- R:
-
Residuum
- T 0 :
-
Ambient gas temperature (293 K)
- T G :
-
Gas temperature, K
- \( T_{{G_{0} }} \) :
-
Initial gas temperature, K
- T L :
-
Liquidus temperature, K
- T m :
-
Temperature of the melt droplet at solid fraction = 0.5, K
- T M :
-
Melt temperature, K
- T s :
-
Solidus temperature, K
- u d :
-
Droplet velocity, m s−1
- u g :
-
Gas velocity, m s−1
- z :
-
z-axis, m
- Δh :
-
Latent heat of fusion, J kg−1
- Δt :
-
Solidification time, s
- ΔT :
-
Temperature difference between melt droplet and surrounding gas, K
- ΔT M :
-
Superheated melt temperature, K
- Δu :
-
Relative velocity m s−1
- η :
-
Dynamic viscosity of the gas, N s m−2
- λ 1 :
-
Primary dendrite arm spacing, m
- λ 2 :
-
Secondary dendrite arm spacing, m
- ρ g :
-
Density of the gas, kg m−3
- ρ f :
-
Density of the melt droplet at solid fraction = 0.5 kg m−3
- σ g :
-
Geometric standard deviation
- ψ :
-
Materials and gas properties
- Bi:
-
Biot number
- CCA:
-
Close-coupled atomization
- FFA:
-
Free-fall atomization
- GMR:
-
Gas-to-melt mass flow ratio
- HG:
-
Hot gas atomization
- Nu:
-
Nusselt number
- Pr:
-
Prandtl number
- Re:
-
Reynolds number
- RT :
-
Atomization at ambient temperature
- SDAS:
-
Secondary dendrite arm spacing, m
References
E.J. Lavernia, J. Baram: J. Mater. Sci. Lett., 1989, vol. 8, pp. 612-614.
D.A. Porter, K.E. Easterling, M. Sherif: Phase transformations in metals and alloys, 3th ed., CRC press, Boca Raton, 2009.
A.A. Bogno, U. Dahlborg, M. Calvo-Dahlborg, C. Riveros, N. Ciftci, H. Henein, D. Sediako: J. Non. Cryst. Solids, 2016, vol. 432, pp. 466-470.
N. Ciftci, N. Ellendt, R. von Bargen, H. Henein, L. Mädler, V. Uhlenwinkel: J. Non. Cryst. Solids, 2014, vol. 394-395, pp. 36-42.
A.M. Mullis, I.N. McCarthy, R.F. Cochrane (2011) J. Mater. Process. Technol. vol. 211, pp. 1471-1477.
F. Deirmina, M. Pellizzari, M. Federici: Metall. Mater. Trans. A, 2017, vol. 48, pp. 1910-1920.
M. Vattur Sundaram, K.B. Surreddi, E. Hryha, A. Veiga, S. Berg, F. Castro, L. Nyborg (2017) Metall. Mater. Trans. A, vol. 49A, pp. 255-263.
D. Herzog, V. Seyda, E. Wycisk, C. Emmelmann: Acta Mater., 2016, vol. 117, pp. 371-392.
K.G. Prashanth, H. Shakur Shahabi, H. Attar, V.C. Srivastava, N. Ellendt, V. Uhlenwinkel, J. Eckert, S. Scudino (2015) Addit. Manuf. vol. 6, pp. 1-5.
S. Scudino, C. Unterdörfer, K.G. Prashanth, H. Attar, N. Ellendt, V. Uhlenwinkel, J. Eckert: Mater. Lett., 2015, vol. 156, pp 202-204.
M. Bram, M. Bitzer, H.P. Buchkremer, D. Stöver: J. Mater. Eng. Perform., 2012, vol. 21, pp. 2701-2712.
M.R. German: Materials, 2013, vol. 6, pp. 3641-3662.
D. Bergmann, U. Fritsching, K. Bauckhage: Int. J. Therm. Sci., 2000, vol. 39, pp. 53-62.
P.S. Grant, B. Cantor, L. Katgerman: Acta Metall. Mater., 1993, vol. 41, pp. 3097-3108.
P. Mathur, D. Apelian, A. Lawley: Acta Metall., 1989, vol. 37, pp. 429-443.
A.V. Freyberg, M. Buchholz, V. Uhlenwinkel, H. Henein: Metall. Mater. Trans. B, 2003, vol. 34, pp. 243-253.
N. Tiedje, P.N. Hansen, A.S. Pedersen: Metall. Mater. Trans. A, 1996, vol. 27, pp. 4085-4093.
D.M. Herlach, D.M. Matson: Solidification of containerless undercooled melts, 1st ed., Wiley-VCH, Weinheim, 2012.
C.T. Crowe: Computational Techniques for Two-Phase Flow and Heat Transfer, in: F. Kreith, R.F. Boehm (Eds.) Direct-Contact Heat Transfer, Springer Berlin Heidelberg, 1988, pp. 41-59.
N. Ellendt, N. Ciftci, C. Goodreau, V. Uhlenwinkel, L. Madler: IOP Conf. Ser. Mater. Sci. Eng., 2016, vol. 117, 012057.
W.E. Ranz, W.R. Marshall: Chem. Eng. Prog., 1952, vol. 48, pp. 141-146.
S. Whitaker: AIChE J., 1972 vol. 18, pp. 361-371.
J.K. Fiszdon: Int. J. Heat Mass Transfer, 1979, vol. 22, pp. 749-761.
V. Gnielinski: Forschung im Ingenieurwesen A, 1975, vol. 41, pp. 145-153.
P.R. Yearling, R.D. Gould: Convective heat and mass transfer from single evaporating water, methanol and ethanol droplets, American Society of Mechanical Engineers, New York, 1995.
N. Ellendt, A.M. Lumanglas, S.I. Moqadam, L. Mädler: Int. J. Therm. Sci., 2018, vol. 133, pp. 98-105.
A. Lampe, U. Fritsching: Hot gas atomization of complex liquids for powder production, in: U. Fritsching (Ed.), Process-Spray: Functional particles produced in spray processes, Springer, Berlin, 2016, pp. 751-794.
A.J. Yule, J.J. Dunkley: Atomization of melts: For production and spray deposition, 1st ed., Clarendon Press, Oxford, 1994.
R.M. Srivastava, J. Eckert, W. Löser, B.K. Dhindaw, L. Schultz: Mater. Trans. JIM, 2002, vol. 43, pp. 1670-1675.
X. Liang, E.J. Lavernia: Mater. Sci. Eng., A, 1993, vol. 161, pp. 221-235.
J.B. Wiskel, K. Navel, H. Henein, E. Maire: Can. Metall. Q., 2002, vol. 41, pp. 193-204.
E.-S. Lee, S. Ahn: Acta Metall. Mater., 1994, vol 42, pp. 3231-3243.
D. Liu, J. Zhao, H. Ye: Mater. Sci. Eng. A, 2004, vol. 372, pp. 229-234.
S.K. Pillai, T. Ando, Int. J. Therm. Sci., 2009, vol. 48, pp. 1494-1500.
P.R. Sahm, I. Egry, T. Volkmann: Schmelze, Erstarrung, Grenzflächen: Eine Einführung in die Physik und Technologie flüssiger und fester Metalle, Vieweg, Braunschweig, Wiesbaden, 2001.
B. Cantor: Fundamentals of Rapid Solidification, in: P.R. Sahm, H. Jones, C.M. Adam (Eds.): Science and Technology of the Undercooled Melt: Rapid Solidification Materials and Technologies, Springer Netherlands, Dordrecht, 1986, pp. 3-28.
C.G. Levi, R. Mehrabian: Metall. Mater. Trans. A, 1982, vol. 13, pp. 221-234.
M.C. Flemings: Metall. Mater. Trans. B, 1974, vol. 5, pp. 2121-2134.
W. Kurz, D.J. Fisher: Fundamentals of solidification, 3th ed., Trans Tech Publications Ltd., Aedermannsdorf, 1989.
M. Rappaz, J.A. Dantzig: Solidfication, 2nd ed. EPFL Press, Lausanne, 2017.
H. Henein, V. Buchoud, R.-R. Schmidt, C. Watt, D. Malakov, C.-A. Gandin, G. Lesoult, V. Uhlenwinkel: Can. Metall. Q., 2010, vol. 49, pp. 275-292.
M. Imagumbai: ISIJ Int., 1994, vol. 34, pp. 986-991.
J.-O. Choi: Einfluss der Erstarrungsgeschwindigkeit auf Gefüge und Eigenschaften technischer Kupferlegierungen, Max-Planck-Institut für Metallforschung, Universität Stuttgart 1987.
L. Kallien: Herstellung schnell erstarrter und hochunterkühlter Metallpulver, Fakültät für Bergbau, Hüttenwesen und Geowissenschaften RWTH Aachen, VDI Verlag, 1988.
N. Ciftci, N. Ellendt, E. S. Barreto, L. Mädler, V. Uhlenwinkel: Adv. Powder Technol., 2018, vol. 29, pp. 380-385.
N. Ciftci, N. Ellendt, L. Mädler, V. Uhlenwinkel: W.P. (Ed.) EPMA, Hamburg, Germany, 2016.
D. Schwenck, N. Ellendt, J. Fischer-Bühner, P. Hofmann, V. Uhlenwinkel: Powder Metall., 2017, vol. 60, pp. 198-207.
H. Jones: Rapid Solidification Processing: Principles and Technologies, in R. Mehrabian, B.H. Kear, M. Cohen (Eds.): Rapid Solidification Processing, Claitor’s, Baton Rouge, 1978, pp. 28-45.
D. Eskin, Q. Du, D. Ruvalcaba, L. Katgerman: Mater. Sci. Eng. A, 2005, vol. 405, pp. 1-10.
J.A. Horwath, L.F. Mondolfo: Acta Metall., 1962, vol. 10, pp. 1037-1042.
G. Kasperovich, T. Volkmann, L. Ratke, D. Herlach: Metall. Mater. Trans. A, 2008, vol. 39, pp. 1183-1191.
J.A. Sarreal, G.J. Abbaschian: Metall. Mater. Trans. A, 1986, vol. 17, pp. 2063-2073.
A.M. Mullis, L. Farrell, R.F. Cochrane, N.J. Adkins: Metall. Mater. Trans. B, 2013, vol. 44, pp. 992-999.
R.B. Bird, W.E. Stewart, E.N. Lightfoot, Transport phenomena, John Wiley and Sons, New York, 1960.
A.J. Drehmann, D. Turnbull: Scr. Metall., 1981, vol. 15, pp. 543-548.
A.J. Drehmann, D. Turnbull (1982) Materials processing in the reduced gravity environment of space. In: G.E. Rindone (Ed.): MRS Symposia Proa., North-Holland, New York
F. Gillessen, D.M. Herlach, B. Feuerbacher: J. Less. Common Met., 1988, vol. 145, pp. 145-152.
S.W. He, Y. Liu, S. Guo: Rare Metal. Mat. Eng., 2009, vol. 38, pp. 353-356.
K. Li, C. Song, Q. Zhai, M. Stoica, J. Eckert: J. Mater. Res., 2014, vol. 29, pp. 527-534.
Acknowledgments
Financial support of subprojects S01 ‘Process to Generate Rapidly Cooled, Homogenous Samples’ and U01 ‘Generation of spherical microscopic samples with single droplet solidification’ of the Collaborative Research Center SFB 1232 “Farbige Zustände” by the German Research Foundation (DFG) is gratefully acknowledged. We also thank F. Peschel, R. Lehmann, S. Evers for their experimental support. Additionally, the authors wish to thank F. Mostaghimi, J. Eitzen, C. O’Fuarthain for useful discussions and their helpful comments on this work.
Author information
Authors and Affiliations
Corresponding author
Additional information
Manuscript submitted August 27, 2018.
Rights and permissions
About this article
Cite this article
Ciftci, N., Ellendt, N., Coulthard, G. et al. Novel Cooling Rate Correlations in Molten Metal Gas Atomization. Metall Mater Trans B 50, 666–677 (2019). https://doi.org/10.1007/s11663-019-01508-0
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11663-019-01508-0