Effect of Nickel and Titanium on Properties of Fe-Al-Si Alloy Prepared by Mechanical Alloying and Spark Plasma Sintering
<p>X-ray diffraction analysis (XRD) patterns of the tested bulk alloys that were produced by mechanical alloying and spark plasma sintering.</p> "> Figure 2
<p>Microstructure of the bulk FeAl35Si5 alloy (<b>a</b>), the FeAl35Si5Ni20 alloy (<b>b</b>), and the FeAl35Si5Ti20 alloy (<b>c</b>) that were produced by mechanical alloying and spark plasma sintering.</p> "> Figure 3
<p>Energy dispersive spectrometer (EDS) elemental map of the bulk FeAl35Si5 alloy.</p> "> Figure 4
<p>EDS elemental map of the bulk FeAl35Si5Ni20 alloy.</p> "> Figure 5
<p>EDS elemental map of the bulk FeAl35Si5Ti20 alloy.</p> "> Figure 6
<p>Wear tracks on the FeAl35Si5 alloy (<b>a</b>), the FeAl35Si5Ni20 alloy (<b>b</b>), and the FeAl35Si5Ti20 alloy (<b>c</b>), as documented by backscattered electrons (BSE)-SEM.</p> "> Figure 7
<p>Dependence of specific weight gain (g∙m<sup>−2</sup>) on the duration of cyclic oxidation at 800 °C in air.</p> "> Figure 8
<p>Dependence of the weight of delaminated oxides (g∙m<sup>−2</sup>) on the duration of cyclic oxidation at 800 °C in air.</p> "> Figure 9
<p>XRD patterns of the tested bulk alloys after cyclic oxidation at 800 °C for 400 h in air.</p> "> Figure 10
<p>Microstructure (secondary electrons (SE)-SEM) of the oxide layers on the bulk alloys after cyclic oxidation at 800 °C for 400 h in air: the FeAl35Si5 alloy (<b>a</b>), the FeAl35Si5Ni20 alloy (<b>b</b>), and the FeAl35Si5Ti20 alloy (<b>c</b>).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Microstructure and Phase Composition
3.2. Mechanical a Tribological Properties
3.3. High-Temperature Oxidation
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kratochvíl, P. The history of the search and use of heat resistant Pyroferal© alloys based on FeAl. Intermetallics 2008, 16, 587–591. [Google Scholar] [CrossRef]
- Zamanzade, M.; Barnoush, A.; Motz, C. A Review on the properties of iron aluminide intermetallics. Crystals 2016, 6, 10. [Google Scholar] [CrossRef] [Green Version]
- Voděrová, M.; Novák, P.; Marek, I.; Vojtěch, D. Microstructure and mechanical properties of rapidly solidified Al-Fe-X alloys. Key Eng. Mater. 2013, 592–593, 639–642. [Google Scholar] [CrossRef]
- Huttunen-Saarivirta, E. Microstructure, fabrication and properties of quasicrystalline Al–Cu–Fe alloys: A review. J. Alloy. Compd. 2004, 363, 154–178. [Google Scholar] [CrossRef]
- Hotař, A.; Kratochvíl, P. The corrosion resistance of iron aluminide Fe28Al3Cr0.02Ce (at%) in a molten glass. Intermetallics 2007, 15, 439–441. [Google Scholar] [CrossRef]
- Boulesteix, C.; Kolarik, V.; Pedraza, F. Steam oxidation of aluminide coatings under high pressure and for long exposures. Corros. Sci. 2018, 144, 328–338. [Google Scholar] [CrossRef] [Green Version]
- Audigié, P.; Encinas-Sánchez, V.; Juez-Lorenzo, M.; Rodríguez, S.; Gutiérrez, M.; Pérez, F.J.; Agüero, A. High temperature molten salt corrosion behavior of aluminide and nickel-aluminide coatings for heat storage in concentrated solar power plants. Surf. Coat. Technol. 2018, 349, 1148–1157. [Google Scholar] [CrossRef]
- Hotař, A.; Palm, M.; Kratochvíl, P.; Vodičková, V.; Daniš, S. High-temperature oxidation behaviour of Zr alloyed Fe3Al-type iron aluminide. Corros. Sci. 2012, 63, 71–81. [Google Scholar] [CrossRef]
- Kowalski, K.; Łosiewicz, B.; Budniok, A.; Kupka, M. Effect of alloying on corrosion resistance of B2 FeAl alloy in aqueous solution of sulfuric acid. Mater. Chem. Phys. 2011, 126, 314–318. [Google Scholar] [CrossRef]
- Li, H.; Zhang, J.; Young, D.J. Oxidation of Fe–Si, Fe–Al and Fe–Si–Al alloys in CO2–H2O gas at 800 °C. Corros. Sci. 2012, 54, 127–138. [Google Scholar] [CrossRef]
- Sikka, V.K.; Wilkening, D.; Liebetrau, J.; Mackey, B. Melting and casting of FeAl-based cast alloy. Mater. Sci. Eng. A 1998, 258, 229–235. [Google Scholar] [CrossRef] [Green Version]
- Kratochvíl, P.; Dobeš, F.; Vodičková, V. The effect of silicon on the structure of Fe-40 at.% Al type alloys with high contents of carbon (1.9–3.8 at.%). Intermetallics 2009, 17, 39–45. [Google Scholar] [CrossRef]
- Kopeček, J.; Haušild, P.; Jurek, K.; Jarošová, M.; Drahokoupil, J.; Novák, P.; Šíma, V. Precipitation in the Fe-38 at.% Al-1 at.% C alloy. Intermetallics 2010, 18, 1327–1331. [Google Scholar] [CrossRef]
- Yan, L.; Tan, Z.; Ji, G.; Li, Z.; Fan, G.; Schryvers, D.; Shan, A.; Zhang, D. A quantitative method to characterize the Al 4 C 3 -formed interfacial reaction: The case study of MWCNT/Al composites. Mater. Charact. 2016, 112, 213–218. [Google Scholar] [CrossRef]
- Novák, P.; Zelinková, M.; Šerák, J.; Michalcová, A.; Novák, M.; Vojtěch, D. Oxidation resistance of SHS Fe–Al–Si alloys at 800 °C in air. Intermetallics 2011, 19, 1306–1312. [Google Scholar] [CrossRef]
- Novak, P.; Vanka, T.; Nova, K.; Stoulil, J.; Prusa, F.; Kopecek, J.; Hausild, P.; Laufek, F. Structure and properties of Fe-Al-Si alloy prepared by mechanical alloying. Materials 2019, 12, 2463. [Google Scholar] [CrossRef] [Green Version]
- Novak, P.; Nova, K. Oxidation behavior of Fe-Al, Fe-Si and Fe-Al-Si intermetallics. Materials 2019, 12, 1748. [Google Scholar] [CrossRef] [Green Version]
- Nová, K.; Novák, P.; Průša, F.; Kopeček, J.; Čech, J. Synthesis of intermetallics in Fe-Al-Si system by mechanical alloying. Metals 2018, 9, 20. [Google Scholar] [CrossRef] [Green Version]
- Grilli, M.L.; Bellezze, T.; Gamsjäger, E.; Rinaldi, A.; Novak, P.; Balos, S.; Piticescu, R.R.; Ruello, M.L. Solutions for critical raw materials under extreme conditions: A review. Materials 2017, 10, 285. [Google Scholar] [CrossRef] [Green Version]
- Vojtěch, D.; Bártová, B.; Kubatík, T. High temperature oxidation of titanium—Silicon alloys. Mater. Sci. Eng. A 2003, 361, 50–57. [Google Scholar] [CrossRef]
- Ivanov, E.G. Thermodynamic analysis of phase transformations during aluminizing. Met. Sci. Heat Treat. 1979, 21, 449–452. [Google Scholar] [CrossRef]
- Průša, F.; Šesták, J.; Školáková, A.; Novák, P.; Haušild, P.; Karlík, M.; Minárik, P.; Kopeček, J.; Laufek, F. Application of SPS consolidation and its influence on the properties of the FeAl20Si20 alloys prepared by mechanical alloying. Mater. Sci. Eng. A 2019, 761, 138020. [Google Scholar] [CrossRef]
- Novák, P.; Šerák, J.; Vojtěch, D.; Zelinková, M.; Mejzlíková, L.; Michalcová, A. Effect of alloying elements on microstructure and properties of Fe-Al and Fe-Al-Si alloys produced by reactive sintering. Key Eng. Mater. 2011, 465, 407–410. [Google Scholar] [CrossRef]
- Vojtěch, D.; Novák, P.; Macháč, P.; Morťaniková, M.; Jurek, K. Surface protection of titanium by Ti5Si3 silicide layer prepared by combination of vapour phase siliconizing and heat treatment. J. Alloy. Compd. 2008, 464, 179–184. [Google Scholar] [CrossRef]
- Novák, P.; Vojtěch, D.; Šerák, J. Wear and corrosion resistance of a plasma-nitrided PM tool steel alloyed with niobium. Surf. Coat. Technol. 2006, 200, 5229–5236. [Google Scholar] [CrossRef]
- Spark Plasma Sintering Technology. Available online: http://www.fct-systeme.de/en/content/Spark_Plasma_Sintertechnologie (accessed on 12 January 2020).
- Průša, F.; Proshchenko, O.; Školáková, A.; Kučera, V.; Laufek, F. Properties of FeAlSi-X-Y Alloys (X,Y=Ni, Mo) prepared by mechanical alloying and spark plasma sintering. Materials 2020, 13, 292. [Google Scholar] [CrossRef] [Green Version]
- Bei, G.; Greil, P. Oxidation-induced crack healing in MAX phase containing ceramic composites. In Advanced Ceramic Materials; Scrivener Publishing LLC: Beverly, MA, USA, 2016; pp. 231–260. [Google Scholar] [CrossRef]
- Compilation of thermochemical data. In Thermochemical Data of Pure Substances; VCH Verlagsgesellschaft mbH: Weinheim, Germany, 1995; pp. 33–34. [CrossRef]
Alloy Designation | Percentage by Weight (wt. %) | ||||
---|---|---|---|---|---|
Fe | Al | Si | Ni | Ti | |
FeAl35Si5 | 40 | 35 | 5 | 0 | 0 |
FeAl35Si5Ni20 | 40 | 35 | 5 | 20 | 0 |
FeAl35Si5Ti20 | 40 | 35 | 5 | 0 | 20 |
Alloy Designation | d(110) of FeAl (× 10−10 m) | Crystallite Size of FeAl (× 10−10 m) |
---|---|---|
FeAl35Si5 | 2.0402 | 293 |
FeAl35Si5Ni20 | 2.0329 | 396 |
FeAl35Si5Ti20 | 2.0863 | 314 |
Alloy Designation | Hardness (HV 1) | Wear Rate (× 10−6 mm3∙N−1∙m−1) | Friction Coefficient (-) |
---|---|---|---|
FeAl35Si5 | 819 ± 20 | 18.3 ± 0.6 | 0.567 |
FeAl35Si5Ni20 | 914 ± 19 | 10.0 ± 0.3 | 0.365 |
FeAl35Si5Ti20 | 963 ± 13 | 63.7 ± 1.5 | 0.667 |
Alloy Designation | Parabolic Rate Constant (× 10−6∙g2∙m−4∙s−1) |
---|---|
FeAl35Si5 | 1.86 |
FeAl35Si5Ni20 | 4.94 |
FeAl35Si5Ti20 | 8.11 |
Alloy Designation | Percentage by Weight (wt. %) | |||||
---|---|---|---|---|---|---|
Al | O | Fe | Si | Ni | Ti | |
FeAl35Si5 | 52.3 ± 2.4 | 39.1 ± 0.7 | 8.1 ± 1.8 | 0.5 ± 0.2 | - | - |
FeAl35Si5Ni20 | 49.3 ± 0.6 | 45.5 ± 0.8 | 3.8 ± 0.7 | 1.0 ± 0.3 | 0.4 ± 0.2 | - |
FeAl35Si5Ti20 | 41.6 ± 1.2 | 42.7 ± 1.9 | 6.3 ± 2.0 | 4.0 ± 0.8 | - | 5.4 ± 1.2 |
Oxide Formula | ΔGf(800 °C) (kJ∙mol−1) |
---|---|
Al2O3 | −889 |
Fe2O3 | −491 |
NiO | −140 |
TiO2 | −750 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Novák, P.; Barták, Z.; Nová, K.; Průša, F. Effect of Nickel and Titanium on Properties of Fe-Al-Si Alloy Prepared by Mechanical Alloying and Spark Plasma Sintering. Materials 2020, 13, 800. https://doi.org/10.3390/ma13030800
Novák P, Barták Z, Nová K, Průša F. Effect of Nickel and Titanium on Properties of Fe-Al-Si Alloy Prepared by Mechanical Alloying and Spark Plasma Sintering. Materials. 2020; 13(3):800. https://doi.org/10.3390/ma13030800
Chicago/Turabian StyleNovák, Pavel, Zdeněk Barták, Kateřina Nová, and Filip Průša. 2020. "Effect of Nickel and Titanium on Properties of Fe-Al-Si Alloy Prepared by Mechanical Alloying and Spark Plasma Sintering" Materials 13, no. 3: 800. https://doi.org/10.3390/ma13030800
APA StyleNovák, P., Barták, Z., Nová, K., & Průša, F. (2020). Effect of Nickel and Titanium on Properties of Fe-Al-Si Alloy Prepared by Mechanical Alloying and Spark Plasma Sintering. Materials, 13(3), 800. https://doi.org/10.3390/ma13030800