Experimental Study for the Stripping of PTFE Coatings on Al-Mg Substrates Using Dry Abrasive Materials
<p>EN AW-5182 Al-Mg alloy substrate with PTFE coating.</p> "> Figure 2
<p>Diagram and assembly of abrasive particle spraying equipment.</p> "> Figure 3
<p>Stripping rate on PTFE coatings on EN AW-5182 substrate vs. spray pressure with different abrasives: (i) BC-brown corundum, (ii) WC-white corundum, (iii) G-glass microspheres, (iv) P-plastic particles, and (v) WS-walnut shell.</p> "> Figure 4
<p>Ra (<b>a</b>) and Rz (<b>b</b>) values after stripping PTFE coatings on the EN AW 5182 substrates with different abrasives: (i) BC-brown corundum, (ii) WC-white corundum, (iii) G-glass microspheres, (iv) P-plastic particles, and (v) WS-walnut Shell.</p> "> Figure 5
<p>Vickers hardness values with loads of 5 kg (HV5) after stripping PTFE coatings on an EN AW 5182 substrate with different abrasives at 0.4, 0.5, and 0.6 MPa: (i) BC-brown corundum, (ii) WC-white corundum, (iii) G-glass microspheres, (iv) P-plastic particles, and (v) WS-walnut Shell.</p> "> Figure 6
<p>Vickers hardness with loads 5, 10, 20, and 30 kp versus penetration depth in ENAW5182 aluminium substrate, after sandblasting with various abrasives between 0.4 to 0.6 MPa for PTFE stripping.</p> "> Figure 7
<p>SEM images of the various sandblasted samples. (<b>a</b>) State of delivery, (<b>b</b>) brown corundum, (<b>c</b>) white corundum, (<b>d</b>) glass microspheres, (<b>e</b>) plastic particles, and (<b>f</b>) walnut shell.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Stripping Rate
3.2. Surface Roughness
3.3. Hardness of Substrates
3.4. SEM Images
4. Conclusions
- The highest stripping rates (0.6–0.7 cm2/s) were obtained with brown and white corundum abrasives. This occurs both at 0.4, 0.5, and 0.6 MPa. The rates obtained by this route (1 step) are lower than those obtained by conventional techniques (2 steps), even though the process is more respectful to the environment.
- The roughness levels Ra (2.5–4 µm) and Rz (30–35 µm) suitable for a correct surface preparation and for a later coating and reuse of the substrate were obtained with the abrasiveness of glass microspheres and with plastic particles in the pressure ranges tested (0.4, 0.5, and 0.6 MPa).
- The optimal values to increase the hardness of the substrate (17–19 pcs of HV5 with respect to the recrystallized state) and greater depth of affectation (170 µm) were produced with the abrasives constituted by glass microspheres and plastic particles for all the values of the projection pressures (0.4, 0.5, and 0.6 MPa). A law has been proposed that relates Vickers hardness to hardened thickness by linear approximation.
- All abrasives tested increase hardness on the substrate (10–19 units of HV5) in the case of a one-step procedure, unlike the process constituted in two steps. By contrast, stripping rates are significantly lower than 0.5–0.7 vs 1 to 1.2 cm2/s.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Holmberg, K.; Matthews, A. Coatings Tribology: Properties, Mechanisms, Techniques and Applications in Surface Engineering; Elsevier Science: Amsterdam, The Netherlands, 2009; ISBN 9780080931463. [Google Scholar]
- Gérard, B. Application of thermal spraying in the automobile industry. Surf. Coatings Technol. 2006, 201, 2028–2031. [Google Scholar] [CrossRef]
- Miller, R.A. Thermal barrier coatings for aircraft engines: History and directions. J. Therm. Spray Technol. 1997, 6, 35–42. [Google Scholar] [CrossRef]
- Cooper, I.; Tice, P. Food contact coatings—European legislation and future predictions. Surf. Coatings Int. Part B Coatings Int. 2001, 84, 105. [Google Scholar] [CrossRef]
- Dehghanghadikolaei, A.; Fotovvati, B. Coating Techniques for Functional Enhancement of Metal Implants for Bone Replacement: A Review. Materials 2019, 12, 1795. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Møller, V.B.; Dam-Johansen, K.; Frankær, S.M.; Kiil, S. Acid-resistant organic coatings for the chemical industry: A review. J. Coatings Technol. Res. 2017, 14, 279–306. [Google Scholar] [CrossRef]
- Ebnesajjad, S.; Khaladkar, P.R. Fluoropolymer Applications in the Chemical Processing Industries: The Definitive User’s Guide and Handbook; Plastics Design Library; Elsevier Science: Amsterdam, The Netherlands, 2017; ISBN 9780323461153. [Google Scholar]
- Rodríguez-Alabanda, Ó.; Romero, P.; Guerrero-Vaca, G. Evaluation of Substrates of Al-Mg and Aluminized Steel Coated With Non-Stick Fluoropolymers after the Removal of the Coating. Materials 2018, 11, 2309. [Google Scholar] [CrossRef] [Green Version]
- Gardiner, J. Fluoropolymers: Origin, Production, and Industrial and Commercial Applications. Aust. J. Chem. 2015, 68, 13. [Google Scholar] [CrossRef]
- Thomas, P. The use of fluoropdymers for non-stick cooking utensils. Surf. Coat. lnt. 1998, 12, 604–609. [Google Scholar] [CrossRef]
- Teng, H. Overview of the Development of the Fluoropolymer Industry. Appl. Sci. 2012, 2, 496–512. [Google Scholar] [CrossRef]
- McKeen, L.W. Fluorinated Coatings and Finishes Handbook: The Definitive User’s Guide; Plastics Design Library; William Andrew, Inc.: New York, NY, USA, 2006; ISBN 9780815517245. [Google Scholar]
- Rodríguez-Alabanda, Ó.; Romero, P.E.; Soriano, C.; Sevilla, L.; Guerrero-Vaca, G. Study on the main influencing factors in the removal process of non-stick fluoropolymer coatings using Nd:YAG Laser. Polymers 2019, 11, 123. [Google Scholar] [CrossRef] [Green Version]
- Guerrero, G.R.; Sevilla, L.; Soriano, C. Laser and pyrolysis removal of fluorinated ethylene propylene thin layers applied on en AW-5251 aluminium substrates. Appl. Surf. Sci. 2015, 353, 686–692. [Google Scholar] [CrossRef]
- Drobny, J.G. Technology of Fluoropolymers, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2010; Volume 71, ISBN 9781420063172. [Google Scholar]
- Echt, A.; Dunn, K.H.; Mickelsen, R.L. Automated Abrasive Blasting Equipment for Use on Steel Structures. Appl. Occup. Environ. Hyg. 2000, 15, 713–720. [Google Scholar] [CrossRef] [PubMed]
- Yildizli, K.; Karamiş, M.B.; Nair, F. Erosion mechanisms of nodular and gray cast irons at different impact angles. Wear 2006, 261, 622–633. [Google Scholar] [CrossRef]
- Childers, S.; Watsnr, D.C.; Stumpff, P.; Tirpak, J.D. Evaluation of the Effects of A Plastic Bead Paint Removal Process on Properties of Aircraft Structural Materials. 1985. Available online: https://pdfs.semanticscholar.org/10a4/b844dbf083f91c0ffd3577ba83486217325c.pdf (accessed on 5 November 2019).
- Faíña, A.; Souto, D.; Deibe, A.; López-Peña, F.; Duro, R.J.; Fernández, X. Development of a climbing robot for grit blasting operations in shipyards. Proc. IEEE Int. Conf. Robot. Autom. 2009, 200–205. [Google Scholar] [CrossRef]
- Carvalhão, M.; Dionísio, A. Evaluation of mechanical soft-abrasive blasting and chemical cleaning methods on alkyd-paint graffiti made on calcareous stones. J. Cult. Herit. 2015, 16, 579–590. [Google Scholar] [CrossRef]
- Guerrero, G. Análisis comparativo de los procesos de eliminación de recubrimientos antiadherentes fluoropoliméricos en superficies metálicas entre tecnologías láser y pirolíticas. Ph.D. Thesis, Universidad de Málaga, Málaga, Spain, April 2013. [Google Scholar]
- Linke, B.S. A review on properties of abrasive grits and grit selection. Int. J. Abras. Technol. 2015, 7, 46. [Google Scholar] [CrossRef]
- Hu, Z.; Marshall, C.; Bicker, R.; Taylor, P. Automatic surface roughing with 3D machine vision and cooperative robot control. Rob. Auton. Syst. 2007, 55, 552–560. [Google Scholar] [CrossRef]
- Souto, D.; Faiña, A.; Deibe, A.; Lopez-Peña, F.; Duro, R.J. A robot for the unsupervised grit-blasting of ship hulls. Int. J. Adv. Robot. Syst. 2012, 9, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Dechezleprêtre, A.; Sato, M. The impacts of environmental regulations on competitiveness. Rev. Environ. Econ. Policy 2017, 11, 183–206. [Google Scholar] [CrossRef] [Green Version]
- Flynn, M.R.; Susi, P. A review of engineering control technology for exposures generated during abrasive blasting operations. J. Occup. Environ. Hyg. 2004, 1, 680–687. [Google Scholar] [CrossRef]
- King, R.G. Surface Treatment & Finishing of Aluminium; Pergamon Materials Engineering Practice Series; Elsevier Science: Amsterdam, The Netherlands, 2014; ISBN 9781483296203. [Google Scholar]
- Karbouj, R.; Desloges, I.; Nortier, P. A simple pre-treatment of aluminium cookware to minimize aluminium transfer to food. Food Chem. Toxicol. 2009, 47, 571–577. [Google Scholar] [CrossRef] [PubMed]
- Materiales Metálicos. Ensayo de Dureza Vickers. Parte 1: Método de ensayo; Asociación Española de Normalización, UNE: Madrid, Spain, 2006; AENOR UNE-EN ISO 6507-1:2006. [Google Scholar]
- Reitz, W.E. Coating-removal techniques: Advantages and disadvantages. JOM 1994, 46, 55–59. [Google Scholar] [CrossRef]
- Geng, S.; Sun, J.; Guo, L. Effect of sandblasting and subsequent acid pickling and passivation on the microstructure and corrosion behavior of 316L stainless steel. Mater. Des. 2015, 88, 1–7. [Google Scholar] [CrossRef]
- Li, D.; Liu, B.; Man, Y.; Xu, K. Effects of a Modified Sandblasting Surface Treatment on Topographic and Chemical Properties of Titanium Surface. Implant Dent. 2001, 10, 59–64. [Google Scholar] [CrossRef]
- Guerrero, G.R.; Sevilla, L.; Soriano, C. Ablación láser de recubrimientos de politetrafluoretileno (PTFE) aplicados sobre sustratos EN AW-5251. Rev. Metal. 2014, 50, e027. [Google Scholar] [CrossRef] [Green Version]
- Draganovská, D.; Ižaríková, G.; Guzanová, A.; Brezinová, J. General Regression Model for Predicting Surface Topography after Abrasive Blasting. Metals 2018, 8, 938. [Google Scholar] [CrossRef] [Green Version]
- Fernández-Abia, A.I.; Barreiro, J.; López de Lacalle, L.N.; González-Madruga, D. Effect of mechanical pre-treatments in the behaviour of nanostructured PVD-coated tools in turning. Int. J. Adv. Manuf. Technol. 2014, 73, 1119–1132. [Google Scholar] [CrossRef]
- Lewiński, J.; Niżankowski, C. The Influence of the Parameters of the Thin Walled Metal Sheets Shot Peening on the Technological Quality of Work Surfaces. Student’s Conference 2017, Czech Technical University in Prague, Faculty of Mechanical Engineering. 2017, pp. 1–4. Available online: https://stc.fs.cvut.cz/history/2017/sbornik/papers/pdf/6616.pdf?_=1492168543 (accessed on 5 November 2019).
- Wang, S.; Li, Y.; Yao, M.; Wang, R. Compressive residual stress introduced by shot peening. J. Mater. Process. Technol. 1998, 73, 64–73. [Google Scholar] [CrossRef]
- Curtis, S.; De Los Rios, E.R.; Rodopoulos, C.A.; Levers, A. Analysis of the effects of controlled shot peening on fatigue damage of high strength aluminium alloys. Int. J. Fatigue 2002, 25, 59–66. [Google Scholar] [CrossRef]
- Jackson, M.J.; Davim, J.P. Machining with Abrasives; Jackson, M.J., Davim, J.P., Eds.; Springer: Boston, MA, USA, 2011; ISBN 978-1-4419-7301-6. [Google Scholar]
- Haldar, B.; Adak, D.K.; Ghosh, D.; Karmakar, A.; Habtamu, E.; Ahmed, M.; Das, S. Present status and some critical issues of abrasive jet materials processing: A review. Procedia Manuf. 2018, 20, 523–529. [Google Scholar] [CrossRef]
- Calignano, F.; Manfredi, D.; Ambrosio, E.P.; Iuliano, L.; Fino, P. Influence of process parameters on surface roughness of aluminum parts produced by DMLS. Int. J. Adv. Manuf. Technol. 2013, 67, 2743–2751. [Google Scholar] [CrossRef] [Green Version]
- Veloz, N.F. Practical Aspects of Using Walnut Shells for Cleaning Outdoor Sculpture. APT Bull. J. Preserv. Technol. 1993, 25, 70–76. [Google Scholar] [CrossRef]
- Hashimoto, F.; Yamaguchi, H.; Krajnik, P.; Wegener, K.; Chaudhari, R.; Hoffmeister, H.-W.; Kuster, F. Abrasive fine-finishing technology. CIRP Ann. 2016, 65, 597–620. [Google Scholar] [CrossRef]
Si | Fe | Cu | Mn | Mg | Cr | Zn | Ti | Other | Al |
---|---|---|---|---|---|---|---|---|---|
0.10 | 0.20 | – | 0.40 | 4.08 | 0.15 | – | 0.05 | – | Rest |
Products (Whitford) | Temperature (°C)/Time (min) | Thickness Layer 1 (µm)/Thickness Layer 2 + 3 (µm) | Colour |
---|---|---|---|
Layer 1: Quantum2 7131 | 120–150/5 | 13.5 ± 3.5/36.1 ± 3.2 | Black |
Layer 2 + 3: Quantum2 7232 + Eclipse 7353 | 410/15 |
Abrasive | Mohs Hardness | Grain Size (µm) | Specific Weight (g/cm3) |
---|---|---|---|
Brown Corundum | 9 | 600–425 | 3.94 |
White Corundum | 9 | 425–300 | 3.98 |
Glass Microspheres | 6 | 300–200 | 2.5 |
Plastic Particles | 4 | 450–300 | 1.52 |
Walnut Shell | 2.5–3 | 240–100 | 1.2–1.4 |
Abrasive Types | Ratio between HV (Vickers Hardness) and p (Depth-µm) | pmax (µm) |
---|---|---|
Brown corundum (BC) | HV = −0.1110 × p + 87.167 | 146.2 |
White corundum (WC) | HV = −0.1074 × p + 87.807 | 152,9 |
Glass microspheres (G) | HV = −0.1469 × p + 96.755 | 172.7 |
Plastic particles (P) | HV = −0.1520 × p + 94.849 | 154.4 |
Walnut shell (WS) | HV = −0.0985 × p + 85.941 | 147.82 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guerrero-Vaca, G.; Carrizo-Tejero, D.; Rodríguez-Alabanda, Ó.; Romero, P.E.; Molero, E. Experimental Study for the Stripping of PTFE Coatings on Al-Mg Substrates Using Dry Abrasive Materials. Materials 2020, 13, 799. https://doi.org/10.3390/ma13030799
Guerrero-Vaca G, Carrizo-Tejero D, Rodríguez-Alabanda Ó, Romero PE, Molero E. Experimental Study for the Stripping of PTFE Coatings on Al-Mg Substrates Using Dry Abrasive Materials. Materials. 2020; 13(3):799. https://doi.org/10.3390/ma13030799
Chicago/Turabian StyleGuerrero-Vaca, Guillermo, David Carrizo-Tejero, Óscar Rodríguez-Alabanda, Pablo E. Romero, and Esther Molero. 2020. "Experimental Study for the Stripping of PTFE Coatings on Al-Mg Substrates Using Dry Abrasive Materials" Materials 13, no. 3: 799. https://doi.org/10.3390/ma13030799
APA StyleGuerrero-Vaca, G., Carrizo-Tejero, D., Rodríguez-Alabanda, Ó., Romero, P. E., & Molero, E. (2020). Experimental Study for the Stripping of PTFE Coatings on Al-Mg Substrates Using Dry Abrasive Materials. Materials, 13(3), 799. https://doi.org/10.3390/ma13030799