Optothermal Switching of Cholesteric Liquid Crystals: A Study of Azobenzene Derivatives and Laser Wavelengths
<p>(<b>a</b>) Absorption spectral response of A1 of <math display="inline"> <semantics> <mrow> <mn>1</mn> <mo>×</mo> <msup> <mrow> <mn>10</mn> </mrow> <mrow> <mo>−</mo> <mn>5</mn> </mrow> </msup> <mi mathvariant="normal">M</mi> </mrow> </semantics> </math> in the tetrahydrofuran (THF) solution before and under 405-nm laser irradiation; (<b>b</b>,<b>c</b>) Typical POM images (picture area: 270 μm × 320 μm) of A1-doped CLC (15 wt% A1, 20 wt% ZLI811, and 65 wt% MDA3461) under (<b>b</b>) and stop (<b>c</b>) 405-nm laser exposure; (<b>d</b>) The transmission spectra of A1-doped CLC under different conditions of laser exposure.</p> "> Figure 2
<p>(<b>a</b>) Absorption spectral response of A2 of <math display="inline"> <semantics> <mrow> <mn>1</mn> <mo>×</mo> <msup> <mrow> <mn>10</mn> </mrow> <mrow> <mo>−</mo> <mn>5</mn> </mrow> </msup> <mi mathvariant="normal">M</mi> </mrow> </semantics> </math> in the THF solution before and under 405-nm laser irradiation; (<b>b</b>,<b>c</b>) Typical POM images (picture area: 270 μm × 320 μm) of A2-doped CLC (15 wt% A2, 20 wt% ZLI811, and 65 wt% MDA3461) under (<b>b</b>) and stop (<b>c</b>) 405-nm laser exposure; (<b>d</b>) The transmission spectra of A2-doped CLC under different conditions of laser exposure.</p> "> Figure 3
<p>(<b>a</b>) Absorption spectral response of A3 of <math display="inline"> <semantics> <mrow> <mn>1</mn> <mo>×</mo> <msup> <mrow> <mn>10</mn> </mrow> <mrow> <mo>−</mo> <mn>5</mn> </mrow> </msup> <mi mathvariant="normal">M</mi> </mrow> </semantics> </math> in the THF solution before and under 405-nm laser irradiation; (<b>b</b>,<b>c</b>) Typical POM images (picture area: 270 μm × 320 μm) of A3-doped CLC (15 wt% A3, 20 wt% ZLI811, and 65 wt% MDA3461) under (<b>b</b>) and stop (<b>c</b>) 405-nm laser exposure; (<b>d</b>) The transmission spectra of A3-doped CLC under different conditions of laser exposure.</p> "> Figure 4
<p>(<b>a</b>) Absorption spectral response of A4 of <math display="inline"> <semantics> <mrow> <mn>1</mn> <mo>×</mo> <msup> <mrow> <mn>10</mn> </mrow> <mrow> <mo>−</mo> <mn>5</mn> </mrow> </msup> <mi mathvariant="normal">M</mi> </mrow> </semantics> </math> in the THF solution before and under 405-nm laser irradiation; (<b>b</b>,<b>c</b>) Typical POM images (picture area: 270 μm × 320 μm) of A4-doped CLC (15 wt% A4, 20 wt% ZLI811, and 65 wt% MDA3461) under (<b>b</b>) and stop (<b>c</b>) 405-nm laser exposure; (<b>d</b>) The transmission spectra of A4-doped CLC under different conditions of laser exposure.</p> "> Figure 5
<p>Transmittance of Azo-doped CLC samples dependent on the heating temperature. The order of CT-lowering ability is A4 > A2 > A1 > A3.</p> "> Figure 6
<p>Temperature change of Azo-doped CLC samples under different conditions of laser exposure. The order of temperature change is A4 > A2 > A1 > A3.</p> "> Figure 7
<p>(<b>a</b>) POM images (picture area: 270 μm × 320 μm) and (<b>b</b>) transmission spectra of AQ dye-doped CLC containing A4 molecules (3 wt% AQ dye, 15 wt% A4, 20 wt% S811 and 62 wt% MDA3461) under different conditions of 660-nm wavelength laser exposure. The laser intensity was 100 mW/cm<sup>2</sup>.</p> "> Figure 8
<p>Transmission spectra of the sample without the addition of (<b>a</b>) AQ dye and (<b>b</b>) A4 under different conditions of laser exposure.</p> "> Figure 9
<p>(<b>a</b>) Switching performance of AQ-A4-doped CLC under alternative on–off laser irradiation (660 nm); (<b>b</b>) time-dependent transmittance change under laser exposure; and (<b>c</b>) time-dependent change as turning off the laser light.</p> "> Figure 10
<p>(<b>a</b>) POM images (picture area: 270 μm × 320 μm) and (<b>b</b>) transmission spectra of AQ dye-doped CLC containing A1 molecules (3 wt% AQ dye, 15 wt% A1, 20 wt% S811, and 62 wt% MDA3461) under different conditions of 660-nm wavelength laser exposure. The laser intensity was 100 mW/cm<sup>2</sup>.</p> "> Figure 11
<p>(<b>a</b>) POM images (picture area: 270 μm × 320 μm) and (<b>b</b>) transmission spectra of AQ dye-doped CLC containing A2 molecules (3 wt% AQ dye, 15 wt% A2, 20 wt% S811, and 62 wt% MDA3461) under different conditions of 660-nm wavelength laser exposure. The laser intensity was 100 mW/cm<sup>2</sup>.</p> "> Figure 12
<p>(<b>a</b>) POM images (picture area: 270 μm × 320 μm) and (<b>b</b>) transmission spectra of AQ dye-doped CLC containing A3 molecules (3 wt% AQ dye, 15 wt% A3, 20 wt% S811, and 62 wt% MDA3461) under different conditions of 660-nm wavelength laser exposure. The laser intensity was 100 mW/cm<sup>2</sup>.</p> "> Figure 13
<p>Structures of the LC-like Azo derivatives and their abbreviations.</p> ">
Abstract
:1. Introduction
2. Results and Discussion
3. Experimental Section
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Zhao, Y.; Ikeda, T. Smart Light-Responsive Materials: Azobenzene-Containing Polymers and Liquid Crystals, 1st ed.; Wiley-Interscience: Hoboken, NJ, USA, 2009. [Google Scholar]
- Hatae, Y.; Moritsugu, M.; Ogata, T.; Kurihara, S.; Nonaka, T. Photochemical Modulation of the Wavelength of Lasing from a Dye-Doped Cholesteric Liquid Crystal. Mol. Cryst. Liq. Cryst. 2005, 443, 87–94. [Google Scholar] [CrossRef]
- Chilaya, G.; Chanishvili, A.; Petriashvili, G.; Barberi, R.; Bartolino, R.; Cipparrone, G.; Mazzulla, A.; Shibaev, P.V. Reversible Tuning of Lasing in Cholesteric Liquid Crystals Controlled by Light-Emitting Diodes. Adv. Mater. 2007, 19, 565–568. [Google Scholar] [CrossRef]
- Hsiao, V.K.S.; Zheng, Y.B.; Juluri, B.K.; Huang, T.J. Light-Driven Plasmonic Switches Based on Au Nanodisk Arrays and Photoresponsive Liquid Crystals. Adv. Mater. 2008, 20, 3528–3532. [Google Scholar] [CrossRef]
- Tabiryan, N.V.; Nersisyan, S.R. Large-angle beam steering using all-optical liquid crystal spatial light modulators. Appl. Phys. Lett. 2004, 84, 5145–5147. [Google Scholar] [CrossRef]
- Hrozhyk, U.A.; Serak, S.V.; Tabiryan, N.V.; Bunning, T.J. Photoinduced Isotropic State of Cholesteric Liquid Crystals: Novel Dynamic Photonic Materials. Adv. Mater. 2007, 19, 3244–3247. [Google Scholar] [CrossRef]
- Si, G.; Leong, E.S.P.; Jiang, X.; Lv, J.; Lin, J.; Dai, H.; Liu, Y.J. All-optical, polarization-insensitive light tuning properties in silver nanorod arrays covered with photoresponsive liquid crystals. Phys. Chem. Chem. Phys. 2015, 17, 13223–13227. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.J.; Si, G.Y.; Leong, E.S.P.; Xiang, N.; Danner, A.J.; Teng, J.H. Light-Driven Plasmonic Color Filters by Overlaying Photoresponsive Liquid Crystals on Gold Annular Aperture Arrays. Adv. Mater. 2012, 24, OP131–OP135. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.J.; Cai, Z.; Leong, E.S.P.; Zhao, X.S.; Teng, J.H. Optically switchable photonic crystals based on inverse opals partially infiltrated by photoresponsive liquid crystals. J. Mater. Chem. 2012, 22, 7609–7613. [Google Scholar] [CrossRef]
- Fu, W.-H.; Hsiao, V.K.S.; Tang, J.-Y.; Wu, M.-H.; Chen, Z. All fiber-optic sensing of light using side-polished fiber overlaid with photoresponsive liquid crystals. Sens. Actuators B Chem. 2011, 156, 423–427. [Google Scholar] [CrossRef]
- Seki, T.; Morikawa, Y.; Uekusa, T.; Nagano, S. Photoresponsive Liquid Crystals for Tuning and Aligning Nanostructures. Mol. Cryst. Liq. Cryst. 2009, 510. [Google Scholar] [CrossRef]
- Ikeda, T.; Tsutsumi, O. Optical Switching and Image Storage by Means of Azobenzene Liquid-Crystal Films. Science 1995, 268, 1873–1875. [Google Scholar] [CrossRef]
- Kurihara, S.; Nomiyama, S.; Nonaka, T. Photochemical Switching between a Compensated Nematic Phase and a Twisted Nematic Phase by Photoisomerization of Chiral Azobenzene Molecules. Chem. Mater. 2000, 12, 9–12. [Google Scholar] [CrossRef]
- Kurihara, S.; Yoneyama, D.; Nonaka, T. Photochemical Switching Behavior of Liquid-Crystalline Networks: Effect of Molecular Structure of Azobenzene Molecules. Chem. Mater. 2001, 13, 2807–2812. [Google Scholar] [CrossRef]
- Sung, J.-H.; Hirano, S.; Tsutsumi, O.; Kanazawa, A.; Shiono, T.; Ikeda, T. Dynamics of Photochemical Phase Transition of Guest/Host Liquid Crystals with an Azobenzene Derivative as a Photoresponsive Chromophore. Chem. Mater. 2002, 14, 385–391. [Google Scholar] [CrossRef]
- Park, N.-H.; Park, S.-L.; Suh, K.-D. Photochromic characteristics of monodisperse microcapsules containing azobenzene derivative-doped nematic liquid crystals. Liq. Cryst. 2002, 29, 1253–1258. [Google Scholar] [CrossRef]
- Matczyszyn, K.; Sworakowski, J. Phase Change in Azobenzene Derivative-Doped Liquid Crystal Controlled by the Photochromic Reaction of the Dye. J. Phys. Chem. B 2003, 107, 6039–6045. [Google Scholar] [CrossRef]
- Yeh, H.-C.; Chen, G.-H.; Lee, C.-R.; Mo, T.-S. Optically switchable biphotonic gratings based on dye-doped cholesteric liquid crystal films. Appl. Phys. Lett. 2007, 90, 261103. [Google Scholar] [CrossRef]
- Lin, H.-C.; Wang, J.-R.; Wu, W.-Y.; Fuh, A.Y.-G. Biphotonic effect of azo-dye-doped liquid crystals using the sequential Z-scan technique. Opt. Commun. 2008, 281, 3183–3189. [Google Scholar] [CrossRef]
- Kawamoto, M.; Aoki, T.; Shiga, N.; Wada, T. Thermo and Photoresponsive Behavior of Liquid-Crystalline Helical Structures with the Aid of Dual Molecular Motions. Chem. Mater. 2009, 21, 564–572. [Google Scholar] [CrossRef]
- Garcia-Amoros, J.; Szymczyk, A.; Velasco, D. Nematic-to-isotropic photo-induced phase transition in azobenzene-doped low-molar liquid crystals. Phys. Chem. Chem. Phys. 2009, 11, 4244–4250. [Google Scholar] [CrossRef] [PubMed]
- Hsiao, V.K.S.; Chang, W.-T. Photo-induced control of bubble domains in chiral–nematic liquid crystal by a violet laser beam. Liq. Cryst. 2009, 36, 927–931. [Google Scholar] [CrossRef]
- Huang, S.-Y.; Chen, Y.-S.; Jau, H.-C.; Li, M.-S.; Liu, J.-H.; Yang, P.-C.; Fuh, A.Y.-G. Biphotonic effect-induced phase transition in dye-doped cholesteric liquid crystals and their applications. Opt. Commun. 2010, 283, 1726–1731. [Google Scholar] [CrossRef]
- Tamaoki, N.; Kamei, T. Reversible photo-regulation of the properties of liquid crystals doped with photochromic compounds. J. Photochem. Photobiol. C 2010, 11, 47–61. [Google Scholar] [CrossRef]
- Wu, M.-H.; Chu, C.-C.; Cheng, M.-C.; Hsiao, V.K.S. Reversible Phase Transition and Rapid Switching of Azobenzene-Doped Cholesteric Liquid Crystals with a Single Laser. Mol. Cryst. Liq. Cryst. 2012, 557, 176–189. [Google Scholar] [CrossRef]
- Cheng, M.C.; Huang, T.C.; Lee, C.Y.; Hsiao, V.K.S. Laser induced tuning of cholesteric liquid crystal without alignment layers. Opt. Commun. 2014, 332, 50–54. [Google Scholar] [CrossRef]
- Natarajan, L.V.; White, T.J.; Wofford, J.M.; Tondiglia, V.P.; Sutherland, R.L.; Siwecki, S.A.; Bunning, T.J. Laser initiated thermal tuning of a cholesteric liquid crystal. Appl. Phys. Lett. 2010, 97, 011107. [Google Scholar] [CrossRef]
- Tsai, B.-K.; Chen, C.-H.; Hung, C.-H.; Hsiao, V.K.S.; Chu, C.-C. Photoswitchable fluorescence on/off behavior between cis- and trans-rich azobenzenes. J. Mater. Chem. 2012, 22, 20874–20877. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, T.-C.; Chen, Y.-Y.; Chu, C.-C.; Hsiao, V.K.S. Optothermal Switching of Cholesteric Liquid Crystals: A Study of Azobenzene Derivatives and Laser Wavelengths. Materials 2015, 8, 6071-6084. https://doi.org/10.3390/ma8095293
Huang T-C, Chen Y-Y, Chu C-C, Hsiao VKS. Optothermal Switching of Cholesteric Liquid Crystals: A Study of Azobenzene Derivatives and Laser Wavelengths. Materials. 2015; 8(9):6071-6084. https://doi.org/10.3390/ma8095293
Chicago/Turabian StyleHuang, Tai-Chieh, Yen-Yu Chen, Chih-Chien Chu, and Vincent K. S. Hsiao. 2015. "Optothermal Switching of Cholesteric Liquid Crystals: A Study of Azobenzene Derivatives and Laser Wavelengths" Materials 8, no. 9: 6071-6084. https://doi.org/10.3390/ma8095293
APA StyleHuang, T.-C., Chen, Y.-Y., Chu, C.-C., & Hsiao, V. K. S. (2015). Optothermal Switching of Cholesteric Liquid Crystals: A Study of Azobenzene Derivatives and Laser Wavelengths. Materials, 8(9), 6071-6084. https://doi.org/10.3390/ma8095293