The Molecular Weight of Enzymatically Modified Pectic Oligosaccharides from Apple Pomace as a Determinant for Biological and Prebiotic Activity
<p>HPSEC separation of the F02 AP hydrolysate fraction (Mw < 10 kDa).</p> "> Figure 2
<p>Monosaccharide compositions [%] for POS fractions with different molecular masses. All values are mean ± standard deviation (SD) for triplicate experiments. Values denoted by different letters indicate statistically significant differences between the different MW samples within the same monosaccharide type, ANOVA (<span class="html-italic">p</span> < 0.05).</p> "> Figure 3
<p>Anomeric region of <sup>1</sup>H NMR spectrum of POS fractions.</p> "> Figure 4
<p><sup>13</sup>C NMR spectrum of POS fractions.</p> "> Figure 5
<p>Glucosidic region of HSQC (heteronuclear multiple bond correlation) NMR of POS fractions: (<b>A</b>)—MW < 10 kDa; (<b>B</b>)—MW 10–30 kDa; (<b>C</b>)—MW 30–100 kDa; (<b>D</b>)—TOCSY spectrum of MW < 10 kDa fraction.</p> "> Figure 6
<p>Prebiotic activity index (evaluated by comparison with untreated apple pectin). Data represent means from three replicates in one experiment. Error bars denote SD. Values denoted by different letters indicate statistically significant differences between the oligosaccharide MW samples tested within the same microorganism type, ANOVA (<span class="html-italic">p</span> < 0.05).</p> "> Figure 7
<p>Influence of molecular mass of POSs used as a carbohydrate source on the number of cultured pathogen bacteria. Data represent means from three replicates in one experiment. Error bars denote SD. Values denoted by different letters indicate statistically significant differences between the oligosaccharide MW samples tested within the same microorganism type, ANOVA (<span class="html-italic">p</span> < 0.05).</p> "> Figure 8
<p>Adherence of bacterial strains to collagen in the presence of apple preparations. Data represent means from four replicates (±SD), where a negative percentage value indicates inhibition of adherence compared to the control sample, and a positive percentage value indicates simulation of adherence compared to the control sample. * Results statistically different from the control (strain in PBS) (ANOVA, <span class="html-italic">p</span> < 0.05).</p> "> Figure 9
<p>Adherence of bacterial strains to mucous in the presence of apple preparations. Data represent means from four repeats (±SD), where a negative percentage value indicates inhibition of adherence compared to the control sample, and a positive percentage value indicates simulation of adherence compared to the control sample. * Results statistically different from the control (strain in PBS), (ANOVA, <span class="html-italic">p</span> < 0.05).</p> "> Figure 10
<p>PCA biplot showing the relationships between the molecular weight, prebiotic activity, and chemical composition of POS, with adherence to collagen (A—<span class="html-italic">E. coli</span> ATCC 10536, B—<span class="html-italic">S. typhimurium</span> ATCC 14028, C—<span class="html-italic">E. facealis</span> ATCC 29212, D—<span class="html-italic">L. monocytogenes</span> ATCC 19115, E—<span class="html-italic">L. plantarum</span> 0981, F—<span class="html-italic">L. brevis</span> 0984, G—<span class="html-italic">Bifidobacterium</span> ssp. 76/1/1, H—<span class="html-italic">Bifidobacterium</span> ssp. 71/1/2), adherence to mucous (I—<span class="html-italic">E. coli</span> ATCC 10536, J—<span class="html-italic">S</span>. Typhimurium ATCC 14028, K—<span class="html-italic">E. facealis</span> ATCC 29212, L—<span class="html-italic">L. monocytogenes</span> ATCC 19115, M—<span class="html-italic">L. plantarum</span> 0981, N—<span class="html-italic">L. brevis</span> 0984, O—<span class="html-italic">Bifidobacterium</span> ssp. 76/1/1, P—<span class="html-italic">Bifidobacterium</span> ssp. 71/1/2), POS fermentability (Q—<span class="html-italic">E. coli</span> ATCC 10536, R—<span class="html-italic">E. coli</span> ATCC 2739, S—<span class="html-italic">S. typhimurium</span> ATCC 14028, T—<span class="html-italic">S. typhimurium</span> ATCC 13311, U—<span class="html-italic">L. monocytogenes</span> ATCC 19115, V—<span class="html-italic">L. monocytogenes</span> ATCC 195, W—<span class="html-italic">L. plantarum</span> 0995, X—<span class="html-italic">L. plantarum</span> 0989, Y—<span class="html-italic">L. brevis</span> 0984, Z—<span class="html-italic">Bifidobacterium</span> ssp. 1, Ą—<span class="html-italic">Bifidobacterium</span> ssp. 2, Ę—<span class="html-italic">Bifidobacterium</span> ssp. 3), and chemical composition (1—xylose, 2—rhamnose, 3—galactose, 4—arabinose, 5—galacturonic acid).</p> ">
Abstract
:1. Introduction
2. Results and Discussion
2.1. Structural Characterization of POSs
- F 00—oligosaccharide mass in the range of 30–100 kDa (MW 30–100 kDa);
- F 01—oligosaccharide mass in the range of 10–30 kDa (MW 10–30 kDa);
- F 02—oligosaccharide mass < 10 kDa (MW < 10 kDa).
2.2. POS Fermentability
2.3. Adherence Assay to Collagen and Mucous
2.4. Antiradical Activity
2.5. PCA Analysis
3. Materials and Methods
3.1. Materials
3.2. POS Production
3.3. POS Fractionation
3.4. NMR Analysis
3.5. Acid Posthydrolysis and Monosaccharide Analysis
3.6. Antiradical Activity Assay
3.7. POS Fermentability Assay
3.8. Antiadhesive Activity
3.8.1. Strains of Bacteria
3.8.2. Adherence Assays
3.9. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Geerkens, C.H.; Nagel, A.; Meike, K.; Miller-Rostek, P.; Rolf, D.; Schweiggert, R.; Carle, R. Mango Pectin Quality as Influenced by Cultivar, Ripeness, Peel Particle Size, Blanching, Drying, and Irradiation. Food Hidrocoll. 2015, 51, 241–251. [Google Scholar] [CrossRef]
- Faravash, R.S.; Ashtiani, F.Z. The effect of pH, ethanol volume and acid washing time on the yield of pectin extraction from peach pomace. Int. J. Food Sci. 2007, 42, 1177–1187. [Google Scholar] [CrossRef]
- Lara-Espinoza, C.; Carvajal-Millán, E.; Balandrán-Quintana, R.; López-Franco, Y.; Rascón-Chu, A. Pectin and Pectin-Based Composite Materials: Beyond Food Texture. Molecules 2018, 23, 942. [Google Scholar] [CrossRef] [PubMed]
- Voragen, A.G.J.; Coenen, G.J.; Verhoef, R.P.; Schols, H.A. Pectin, a versatile polysaccharidepresent in plant cell walls. Struct. Chem. 2009, 20, 263–275. [Google Scholar] [CrossRef]
- Ishii, T.; Matsunaga, T. Pectic polysaccharide rhamnogalacturonan II is covalently linked to homogalacturonan. Phytochemistry 2001, 57, 969–974. [Google Scholar] [CrossRef]
- Liu, J.; Willför, S.; Xu, C. A Review of Bioactive Plant Polysaccharides: Biological Activities, Functionalization, and Biomedical Applications. Bioact. Carbohydr. Diet. Fibre 2015, 5, 31–61. [Google Scholar] [CrossRef]
- Gibson, G.R.; Hutkins, R.; Sanders, M.E.; Prescott, S.L.; Reimer, R.A.; Salminen, S.J.; Scott, K.; Stanton, C.; Swanson, K.S.; Cani, P.D.; et al. Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat. Rev. Gastroenterol. Hepatol. 2017, 14, 491–502. [Google Scholar] [CrossRef]
- Wilkowska, A.; Nowak, A.; Antczak-Chrobot, A.; Motyl, I.; Czyżowska, A.; Paliwoda, A. Structurally different pectic oligo-saccharides produced from apple pomace and their biological activity in vitro. Foods 2019, 8, 365. [Google Scholar] [CrossRef]
- Nergard, C.S.; Kiyohara, H.; Reynolds, J.C.; Thomas-Oates, J.E.; Matsumoto, T.; Yamada, H.; Michaelsen, T.E.; Dialloe, D.; Paulsen, B.S. Structure-immunomodulating activity relationships of a pectic arabinogalactan from Vernonia kotschyana Sch. Bip. ex Walp. Carbohydr. Res. 2005, 340, 1789–1801. [Google Scholar] [CrossRef]
- Eliaz, I.; Raz, A. Pleiotropic Effects of Modified Citrus Pectin. Nutrients 2019, 11, 2619. [Google Scholar] [CrossRef]
- Li, T.; Chena, X.; Huanga, Z.; Xiea, W.; Tonga, C.; Baoa, R.; Sunb, X.; Lib, W.; Lia, S. Pectin oligosaccharide from hawthorn fruit ameliorates hepatic inflammation via NF-κB inactivation in high-fat diet fed mice. J. Funct. Food. 2019, 57, 345–350. [Google Scholar] [CrossRef]
- Wilkowska, A.; Berłowska, J.; Motyl, I.; Nowak, A.; Antczak-Chrobot, A.; Wojtczak, M.; Kunicka-Styczyńska, A.; Binczarski, M.; Dziugan, P. Combined yeast cultivation and pectin hydrolysis as an effective method of producing prebiotic animal feed from sugar beet pulp. Biomolecules 2020, 10, 724. [Google Scholar] [CrossRef] [PubMed]
- Ganan, M.; Collins, M.; Rastall, R.; Hotchkiss, A.T.; Chau, H.K.; Carrascosa, A.V.; Martinez-Rodriguez, A.J. Inhibition by pectic oligosaccharides of the invasion of undifferentiated and differentiated Caco-2 cells by Campylobacter jejuni. Int. J. Food Microbiol. 2010, 137, 181–185. [Google Scholar] [CrossRef] [PubMed]
- Di, R.; Vakkalanka, M.S.; Onumpai, C.; Chau, H.K.; White, A.; Rastall, R.A.; Yam, K.; Hotchkiss, A.T., Jr. Pectic oligosaccharide structure-function relationships: Prebiotics, inhibitors of Escherichia coli O157:H7 adhesion and reduction of Shiga toxin cytotoxicity in HT29 cells. Food Chem. 2017, 227, 245–254. [Google Scholar] [CrossRef] [PubMed]
- Gullón, B.; Gómez, B.; Martínez-Sabajanes, M.; Yáñez, R.; Parajó, J.; Alonso, J. Pectic Oligosaccharides: Manufacture and Functional properties. Trends. Food Sci. Technol. 2013, 30, 153–161. [Google Scholar] [CrossRef]
- Islamova, Z.I.; Ogai, D.K.; Abramenko, O.I.; Lim, A.L.; Abduazimov, B.B.; Malikova, M.K.; Rakhmanberdyeva, R.K.; Khushbaktova, Z.A.; Syrov, V.N. Comparative Assessment of the Prebiotic Activity of Some Pectin Polysaccharides. Pharm. Chem. J. 2017, 51, 288–291. [Google Scholar] [CrossRef]
- Holck, J.; Lorentzen, A.; Vigsnaes, L.K.; Licht, T.R.; Mikkelsen, J.D.; Meyer, A.S. Feruloylated and nonferuloylated arabino-oligosaccharides from sugar beet pectin selectively stimulate the growth of Bifidobacterium spp. in human fecal in vitro fermentations. J. Agric. Food Chem. 2011, 59, 6511e9. [Google Scholar] [CrossRef]
- Sulek, K.; Vigsnaes, L.K.; Schmidt, L.R.; Holck, J.; Frandsen, H.L.; Smedsgaard, L.; Skov, T.H.; Meyer, A.S.; Licht, T.R. A combined metabolomic and phylogenetic study reveals putatively prebiotic effects of high molecular weight arabino-oligosaccharides when assessed by in vitro fermentation in bacterial communities derived from humans. Anaerobe 2014, 28, 68–77. [Google Scholar] [CrossRef]
- Velez, M.P.; De Keersmaecker, S.C.J.; Vanderleyeden, J. Adherence factors of Lactobacillus in the human gastrointestinal tract. FEMS Microbiol. Lett. 2007, 276, 140–148. [Google Scholar] [CrossRef]
- Lukić, J.; Strahinić, I.; Jovčić, B.; Filipić, B.; Topisirović, L.; Kojić, M.; Begović, J. Different roles for lactococcal aggregation factor and mucin binding protein in adhesion to gastrointestinal mucosa. Appl. Environ. Microbiol. 2012, 78, 7993–8000. [Google Scholar] [CrossRef]
- Ashida, H.; Miyake, A.; Kiyohara, M.; Wada, J.; Yoshida, E.; Kumagai, H.; Katayama, T.; Yamamoto, K. Two distinct Alpha-L-Fucosidases from Bifidobacterium bifidum are essential for the utilization of fucosylated milk oligosaccharides and glycoconjugates. Glycobiology 2009, 19, 1010–1017. [Google Scholar] [CrossRef] [PubMed]
- Sengupta, R.; Altermann, E.; Anderson, R.C.; McNabb, W.C.; Moughan, P.J.; Roy, N.C. The role of cell surface architecture of lactobacilli in host-microbe interactions in the gastrointestinal tract. Mediat. Inflamm. 2013, 2013, 237921. [Google Scholar] [CrossRef] [PubMed]
- Yadav, A.K.; Tyagi, A.; Kaushik, J.K.; Saklani, A.C.; Grover, S.; Batish, V.K. Role of surface layer collagen binding protein from indigenous Lactobacillus plantarum 91 in adhesion and its anti-adhesion potential against gut pathogen. Microb. Res. 2013, 168, 639–645. [Google Scholar] [CrossRef] [PubMed]
- Mehrländer, K.; Dietrich, H.; Sembries, S.; Dongowski, G.; Will, F. Structural characterization of oligosaccharides and polysaccharides from apple juices produced by enzymatic pomace liquefaction. J. Agric. Food Chem. 2002, 50, 1230–1236. [Google Scholar] [CrossRef] [PubMed]
- Rascon-Chu, A.; Martinez-Lopez, A.L.; Carvajal-Millan, E.; de Leon-Renova, N.E.P.; Marquez-Escalante, J.A.; Romo-Chacon, A. Pectin from low quality 71’Golden Delicious’ apples: Composition and gelling capability. Food Chem. 2009, 116, 101–103. [Google Scholar] [CrossRef]
- Holck, J.; Hjernø, K.; Lorentzen, A.; Vigsnæs, L.K.; Hemmingsen, L.; Lichtc, T.R.; Mikkelsen, J.D.; Meyer, A.S. Tailored enzymatic production of oligosaccharides from sugar beet pectin and evidence of differential effects of a single DP chain length difference on human faecal microbiota composition after in vitro fermentation. Process Biochem. 2011, 46, 1039–1049. [Google Scholar] [CrossRef]
- Iwasaki, K.; Matsubara, Y. Purification of pectate oligosaccharides showing root-growth-promoting activity in lettuce using ultrafiltration and nanofiltration membranes. J. Biosci. Bioeng. 2000, 89, 495–497. [Google Scholar] [CrossRef]
- Giovanetti Canteri, M.H.; Nogueira, A.; de Oliveira Petkowicz, C.L.; Wosiacki, G. Characterization of Apple Pectin—A Chromatographic Approach. In Chromatography-the Most Versatile Method of Chemical Analysis; de Azevedo Calderon, L., Ed.; Intech: Toulon, France, 2012; ISBN 978-953-51-0813-9. [Google Scholar]
- Zhang, S.; Hu, H.; Wang, L.; Liu, F.; Pan, S. Preparation and prebiotic potential of pectin oligosaccharides obtained from citrus peel pectin. Food Chem. 2018, 24, 232–237. [Google Scholar] [CrossRef]
- Gómez, B.; Gullón, B.; Yáñez, R.; Schols, H.; Alonso, J.L. Prebiotic potential of pectins and pectic oligosaccharides derived from lemon peel wastes and sugar beet pulp: A comparative evaluation. J. Funct. Foods 2016, 20, 108–121. [Google Scholar] [CrossRef]
- Gullon, B.; Gullon, P.; Sanz, Y.; Alonso, J.L.; Parajo, J.C. Prebiotic potential of a refined product containing pectic oligosaccharides. Food Sci. Technol. 2011, 44, 1687–1696. [Google Scholar] [CrossRef]
- Gullón, P.; González-Muñoz, M.J.; van Gool, M.P.; Schols, H.A.; Hirsch, J.; Ebringerová, A.; Parajó, J.C. Production, Refining, Structural Characterization and Fermentability of Rice Husk Xylooligosaccharides. J. Agric. Food Chem. 2010, 58, 3632–3641. [Google Scholar] [CrossRef] [PubMed]
- Czyżowska, A.; Wilkowska, A.; Staszczak, A.; Nowal, A. Characterization of Phytochemicals in Berry Fruit Wines Analyzed by Liquid Chromatography Coupled to Photodiode-Array Detection and Electrospray Ionization/Ion Trap Mass Spectrometry (LC-DAD-ESI-MSn) and Their Antioxidant and Antimicrobial Activity. Foods 2020, 9, 1783. [Google Scholar] [CrossRef] [PubMed]
- Aleksandrzak-Piekarczyk, T.; Stasiak-Różańska, L.; Cieśla, J.; Bardowski, J. ClaR—A novel key regulator of cellobiose and lactose metabolism in Lactococcus lactis IL1403. Appl. Microbiol. Biotechnol. 2015, 99, 337–347. [Google Scholar] [CrossRef] [PubMed]
- Koryszewska-Bagińska, A.; Gawor, J.; Nowak, A.; Grynberg, M.; Aleksandrzak-Piekarczyk, T. Comparative genomics and functional analysis of a highly adhesive dairy Lactobacillus paracasei subsp. paracasei IBB3423 strain. Appl. Microb. Biotechnol. 2019, 103, 7617–7634. [Google Scholar] [CrossRef] [PubMed]
Molecular Weight | α(1–2) and α(1–3) | α(1–4) | α(1–6) |
---|---|---|---|
<10 kDa | 43.5 | 30 | 16 |
10–30 kDa | 60 | 24 | 7 |
30–100 kDa | 61 | 29 | 1 |
Molecular Weight | DPPH [mM TE/100 mg] | ABTS [mM TE/100 mg] |
---|---|---|
MW 100 Da–1 kDa | 1.31 ± 0.05 e | 7.47 ± 0.28 d |
MW 1–3 kDa | 1.02 ± 0.03 d | 5.81 ± 0.22 c |
MW 3–10 kDa | 0.35 ± 0.01 c | 3.45 ± 0.01 a |
MW < 10 kDa | 0.93 ± 0.03 ad | 4.83 ± 0.19 b |
MW 10–30 kDa | 0.67 ± 0.02 b | 4.33 ± 0.01 b |
MW 30–100 kDa | 0.81 ± 0.04 a | 3.55 ± 0.16 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wilkowska, A.; Nowak, A.; Motyl, I.; Oracz, J. The Molecular Weight of Enzymatically Modified Pectic Oligosaccharides from Apple Pomace as a Determinant for Biological and Prebiotic Activity. Molecules 2025, 30, 46. https://doi.org/10.3390/molecules30010046
Wilkowska A, Nowak A, Motyl I, Oracz J. The Molecular Weight of Enzymatically Modified Pectic Oligosaccharides from Apple Pomace as a Determinant for Biological and Prebiotic Activity. Molecules. 2025; 30(1):46. https://doi.org/10.3390/molecules30010046
Chicago/Turabian StyleWilkowska, Agnieszka, Adriana Nowak, Ilona Motyl, and Joanna Oracz. 2025. "The Molecular Weight of Enzymatically Modified Pectic Oligosaccharides from Apple Pomace as a Determinant for Biological and Prebiotic Activity" Molecules 30, no. 1: 46. https://doi.org/10.3390/molecules30010046
APA StyleWilkowska, A., Nowak, A., Motyl, I., & Oracz, J. (2025). The Molecular Weight of Enzymatically Modified Pectic Oligosaccharides from Apple Pomace as a Determinant for Biological and Prebiotic Activity. Molecules, 30(1), 46. https://doi.org/10.3390/molecules30010046