An In Situ Oxidative Polymerization Method to Synthesize Mesoporous Polypyrrole/MnO2 Composites for Supercapacitors
<p>SEM and TEM images: (<b>a</b>,<b>d</b>) MnO<sub>2</sub>, (<b>b</b>,<b>e</b>) PPy/MnO<sub>2</sub> and (<b>c</b>,<b>f</b>) meso–PPy/MnO<sub>2</sub>–3; (<b>g</b>) EDS mapping of meso–PPy/MnO<sub>2</sub>–3. (The red circles in are used to circle the mesopores in the image, it represents where the mesopores are located).</p> "> Figure 2
<p>XRD pattern and TG curves of (<b>a</b>,<b>d</b>) MnO<sub>2</sub>, PPy/MnO<sub>2</sub> and meso–PPy/MnO<sub>2</sub>–3; FT–IR spectrum and Raman spectrum of (<b>b</b>,<b>c</b>) MnO<sub>2</sub>, PPy and meso–PPy/MnO<sub>2</sub>–3; and N<sub>2</sub> adsorption and desorption isotherm and pore size distribution curve of (<b>e</b>,<b>f</b>) meso–PPy/MnO<sub>2</sub>–3. (The arrows in <a href="#molecules-30-00045-f002" class="html-fig">Figure 2</a>b represents the characteristic peaks of PPy and MnO<sub>2</sub> in FT–IR spectrum. The arrows in <a href="#molecules-30-00045-f002" class="html-fig">Figure 2</a>c represents the characteristic peaks of PPy and MnO<sub>2</sub> in Raman spectrum).</p> "> Figure 3
<p>XPS spectrum of (<b>a</b>) MnO<sub>2</sub>, PPy and meso–-PPy/MnO<sub>2</sub>-3 and high-resolution spectrum of (<b>b</b>) Mn in MnO<sub>2</sub> and meso-PPy/MnO<sub>2</sub>-3, (<b>c</b>) N in meso-PPy/MnO<sub>2</sub>-3 and (<b>d</b>) O in meso-PPy/MnO<sub>2</sub>-3.</p> "> Figure 4
<p>CV and charge–discharge curves of (<b>a</b>,<b>b</b>) MnO<sub>2</sub>, PPy/MnO<sub>2</sub> and meso–PPy/MnO<sub>2</sub>–3 and (<b>c</b>,<b>d</b>) meso–PPy/MnO<sub>2</sub>–3; (<b>e</b>,<b>f</b>) rate capability and Nyquist plots of MnO<sub>2</sub>, PPy/MnO<sub>2</sub> and meso–PPy/MnO<sub>2</sub>–3.</p> "> Scheme 1
<p>The construction of mesoporous PPy/MnO<sub>2</sub> composites through a facile in situ oxidative polymerizing process.</p> ">
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Preparation of MnO2
3.2. Preparation of Mesoporous PPy/MnO2
3.3. Material Characterization
3.4. Electrochemical Measurements
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, H.; Xu, T.; Cai, C.; Liu, K.; Liu, W.; Zhang, M.; Du, H.; Si, C.; Zhang, K. Multifunctional Superelastic, Superhydrophilic, and Ultralight Nanocellulose-Based Composite Carbon Aerogels for Compressive Supercapacitor and Strain Sensor. Adv. Funct. Mater. 2022, 32, 2113082. [Google Scholar] [CrossRef]
- Liu, X.Y.; Lyu, D.X.; Merlet, C.; Leesmith, M.J.; Hua, X.; Xu, Z.; Grey, C.P.; Forse, A.C. Structural disorder determines capacitance in nanoporous carbons. Science 2024, 384, 321–325. [Google Scholar] [CrossRef] [PubMed]
- Lv, Z.; Luo, Y.; Tang, Y.; Wei, J.; Zhu, Z.; Zhou, X.; Li, W.; Zeng, Y.; Zhang, W.; Zhang, Y.; et al. Editable Supercapacitors with Customizable Stretchability Based on Mechanically Strengthened Ultralong MnO2 Nanowire Composite. Adv. Mater. 2017, 30, 1704531. [Google Scholar] [CrossRef] [PubMed]
- Zhang, A.; Zhao, R.; Hu, L.; Yang, R.; Yao, S.; Wang, S.; Yang, Z.; Yan, Y.M. Adjusting the Coordination Environment of Mn Enhances Supercapacitor Performance of MnO2. Adv. Energy Mater. 2021, 11, 2101412. [Google Scholar] [CrossRef]
- Heydari, H.; Abdouss, M.; Mazinani, S.; Bazargan, A.M.; Fatemi, F. Electrochemical study of ternary polyaniline/MoS2–MnO2 for supercapacitor applications. J. Energy Storage 2021, 40, 102738. [Google Scholar] [CrossRef]
- Li, D.; Yang, S.; Chen, X.; Lai, W.Y.; Huang, W. 3D Wearable Fabric-Based Micro-Supercapacitors with Ultra-High Areal Capacitance. Adv. Funct. Mater. 2021, 31, 2107484. [Google Scholar] [CrossRef]
- Wang, G.; Wang, Y.; Guan, B.; Liu, J.; Zhang, Y.; Shi, X.; Tang, C.; Li, G.; Li, Y.; Wang, X.; et al. Hierarchical K-Birnessite-MnO2 Carbon Framework for High-Energy-Density and Durable Aqueous Zinc-Ion Battery. Small 2021, 17, 2104557. [Google Scholar] [CrossRef]
- Yu, G.; Hu, L.; Liu, N.; Wang, H.; Vosgueritchian, M.; Yang, Y.; Cui, Y.; Bao, Z. Enhancing the Supercapacitor Performance of Graphene/MnO2 Nanostructured Electrodes by Conductive Wrapping. Nano Lett. 2011, 11, 4438–4442. [Google Scholar] [CrossRef]
- Zhang, Q.; Levi, M.D.; Dou, Q.; Lu, Y.; Chai, Y.; Lei, S.; Ji, H.; Liu, B.; Bu, X.; Ma, P.; et al. The Charge Storage Mechanisms of 2D Cation-Intercalated Manganese Oxide in Different Electrolytes. Adv. Energy Mater. 2018, 9, 1802707. [Google Scholar] [CrossRef]
- Hu, Z.; Xiao, X.; Jin, H.; Li, T.; Chen, M.; Liang, Z.; Guo, Z.; Li, J.; Wan, J.; Huang, L.; et al. Rapid mass production of two-dimensional metal oxides and hydroxides via the molten salts method. Nat. Commun. 2017, 8, 15630. [Google Scholar] [CrossRef]
- Ma, L.; Li, Q.; Ying, Y.; Ma, F.; Chen, S.; Li, Y.; Huang, H.; Zhi, C. Toward Practical High-Areal-Capacity Aqueous Zinc-Metal Batteries: Quantifying Hydrogen Evolution and a Solid-Ion Conductor for Stable Zinc Anodes. Adv. Mater. 2021, 33, 2007406. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Wang, X.; Li, S.; Urbankowski, P.; Li, J.; Xu, Y.; Gogotsi, Y. An Ultrafast Conducting Polymer@MXene Positive Electrode with High Volumetric Capacitance for Advanced Asymmetric Supercapacitors. Small 2019, 16, e1906851. [Google Scholar] [CrossRef] [PubMed]
- Bu, F.; Zagho, M.M.; Ibrahim, Y.; Ma, B.; Elzatahry, A.; Zhao, D. Porous MXenes: Synthesis, structures, and applications. Nano Today 2020, 30, e1906851. [Google Scholar] [CrossRef]
- Li, K.; Liang, M.; Wang, H.; Wang, X.; Huang, Y.; Coelho, J.; Pinilla, S.; Zhang, Y.; Qi, F.; Nicolosi, V.; et al. 3D MXene Architectures for Efficient Energy Storage and Conversion. Adv. Funct. Mater. 2020, 30, 2000842. [Google Scholar] [CrossRef]
- Tang, Z.; Liu, S.; Lu, Z.; Lin, X.; Zheng, B.; Liu, R.; Wu, D.; Fu, R. A simple self-assembly strategy for ultrahigh surface area nitrogen-doped porous carbon nanospheres with enhanced adsorption and energy storage performances. Chem. Commun. 2017, 53, 6764–6767. [Google Scholar] [CrossRef]
- Tian, H.; Lin, Z.; Xu, F.; Zheng, J.; Zhuang, X.; Mai, Y.; Feng, X. Quantitative Control of Pore Size of Mesoporous Carbon Nanospheres through the Self-Assembly of Diblock Copolymer Micelles in Solution. Small 2016, 12, 3155–3163. [Google Scholar] [CrossRef]
- Zhai, Y.; Dou, Y.; Zhao, D.; Fulvio, P.F.; Mayes, R.T.; Dai, S. Carbon Materials for Chemical Capacitive Energy Storage. Adv. Mater. 2011, 23, 4828–4850. [Google Scholar] [CrossRef]
- Wei, J.; Zhou, D.; Sun, Z.; Deng, Y.; Xia, Y.; Zhao, D. A Controllable Synthesis of Rich Nitrogen-Doped Ordered Mesoporous Carbon for CO2 Capture and Supercapacitors. Adv. Funct. Mater. 2012, 23, 2322–2328. [Google Scholar] [CrossRef]
- Chmiola, J.; Yushin, G.; Gogotsi, Y.; Portet, C.; Simon, P.; Taberna, P.L. Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer. Science 2006, 313, 1760–1763. [Google Scholar] [CrossRef]
- Tong, L.; Wu, C.; Hou, J.; Zhang, Z.; Yan, J.; Wang, G.; Li, Z.; Che, H.; Xing, Z.; Zhang, X. Construction of hollow mesoporous PPy microsphere nanostructures coated with MnO2 nanosheet as high-performance electrodes for supercapacitors. J. Electroanal. Chem. 2023, 928, 117074. [Google Scholar] [CrossRef]
- Song, Y.; Shang, M.; Li, J.; Su, Y. Continuous and controllable synthesis of MnO2/PPy composites with core–shell structures for supercapacitors. Chem. Eng. J. 2021, 405, 127059. [Google Scholar] [CrossRef]
- Wang, L.; Yang, H.; Liu, X.; Zeng, R.; Li, M.; Huang, Y.; Hu, X. Constructing Hierarchical Tectorum-like α-Fe2O3/PPy Nanoarrays on Carbon Cloth for Solid-State Asymmetric Supercapacitors. Angew. Chem. Int. Ed. 2016, 56, 1105–1110. [Google Scholar] [CrossRef] [PubMed]
- Duan, X.; Yang, J.; Gao, H.; Ma, J.; Jiao, L.; Zheng, W. Controllable hydrothermal synthesis of manganese dioxide nanostructures: Shape evolution, growth mechanism and electrochemical properties. CrystEngComm 2012, 14, 4196–4204. [Google Scholar] [CrossRef]
- He, Z.; Ma, Y.; Alexandridis, P. Comparison of ionic liquid and salt effects on the thermodynamics of amphiphile micellization in water. Colloids Surf. A Physicochem. Eng. Asp. 2018, 559, 159–168. [Google Scholar] [CrossRef]
- Liu, Z.; Xiong, H.; Luo, Y.; Zhang, L.; Hu, K.; Zhang, L.; Gao, Y.; Qiao, Z.A. Interface-Induced Self-Assembly Strategy Toward 2D Ordered Mesoporous Carbon/MXene Heterostructures for High-Performance Supercapacitors. ChemSusChem 2021, 14, 4422–4430. [Google Scholar] [CrossRef]
- Yao, W.; Zhou, H.; Lu, Y. Synthesis and property of novel MnO2@polypyrrole coaxial nanotubes as electrode material for supercapacitors. J. Power Sources 2013, 241, 359–366. [Google Scholar] [CrossRef]
- Dai, T.; Yang, X.; Lu, Y. Controlled growth of polypyrrole nanotubule/wire in the presence of a cationic surfactant. Nanotechnology 2006, 17, 3028–3034. [Google Scholar] [CrossRef]
- Shivakumara, S.; Munichandraiah, N. In-situ preparation of nanostructured α-MnO2/polypyrrole hybrid composite electrode materials for high performance supercapacitor. J. Alloys Compd. 2019, 787, 1044–1050. [Google Scholar] [CrossRef]
- Jang, J.; Oh, J.H. Fabrication of a Highly Transparent Conductive Thin Film from Polypyrrole/Poly (methyl methacrylate) Core/Shell Nanospheres. Adv. Funct. Mater. 2005, 15, 494–502. [Google Scholar] [CrossRef]
- Ni, W.; Wang, D.; Huang, Z.; Zhao, J.; Cui, G. Fabrication of nanocomposite electrode with MnO2 nanoparticles distributed in polyaniline for electrochemical capacitors. Mater. Chem. Phys. 2010, 124, 1151–1154. [Google Scholar] [CrossRef]
- Wang, J.G.; Yang, Y.; Huang, Z.H.; Kang, F. Interfacial synthesis of mesoporous MnO2/polyaniline hollow spheres and their application in electrochemical capacitors. J. Power Sources 2012, 204, 236–243. [Google Scholar] [CrossRef]
- Ma, R.; Bando, Y.; Zhang, L.; Sasaki, T. Layered MnO2 Nanobelts: Hydrothermal Synthesis and Electrochemical Measurements. Adv. Mater. 2004, 16, 918–922. [Google Scholar] [CrossRef]
- Huang, Z.H.; Song, Y.; Feng, D.Y.; Sun, Z.; Sun, X.; Liu, X.X. High Mass Loading MnO2 with Hierarchical Nanostructures for Supercapacitors. ACS Nano 2018, 12, 3557–3567. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Tang, X.; Liu, K.; Fang, G.; He, Z.; Li, Z. Interfacial chemical binding and improved kinetics assisting stable aqueous Zn–MnO2 batteries. Mater. Today Energy 2020, 17, 100475. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhou, R.; Song, Z.; Zhang, X.; Zhang, T.; Zhou, A.; Wu, F.; Chen, R.; Li, L. Interfacial Designing of MnO2 Half-Wrapped by Aromatic Polymers for High-Performance Aqueous Zinc-Ion Batteries. Angew. Chem. Int. Ed. 2022, 61, e202212231. [Google Scholar] [CrossRef]
- Lin, T.; Chen, I.; Liu, F.; Yang, C.; Bi, H.; Xu, F.; Huang, F. Nitrogen-Doped mesoporous carbon of extraordinary capacitance for electrochemical energy storage. Science 2015, 350, 1508–1513. [Google Scholar] [CrossRef]
- Chen, L.; Zhang, X.; Liang, H.; Kong, M.; Guan, Q.; Chen, P.; Wu, Z.; Yu, S. Synthesis of nitrogen-doped porous carbon nanofibers as an efficient electrode material for supercapacitors. ACS Nano 2012, 6, 7092–7102. [Google Scholar] [CrossRef]
- Shang, P.; Liu, M.; Mei, Y.; Liu, Y.; Wu, L.; Dong, Y.; Zhao, Z.; Qiu, J. Urea-Mediated Monoliths Made of Nitrogen-Enriched Mesoporous Carbon Nanosheets for High-Performance Aqueous Zinc Ion Hybrid Capacitors. Small 2022, 18, 2108057. [Google Scholar] [CrossRef]
- Zhu, S.; Sun, X.; Gao, X.; Wang, J.; Zhao, N.; Sha, J. Equivalent circuit model recognition of electrochemical impedance spectroscopy via machine learning. J. Electroanal. Chem. 2019, 855, 113627. [Google Scholar] [CrossRef]
- Díaz-Arriaga, C.B.; Baas-López, J.M.; Pacheco-Catalán, D.E.; Uribe-Calderon, J. Symmetric electrochemical capacitor based on PPy obtained via MnO2 reactive template synthesis. Synth. Met. 2020, 269, 116541. [Google Scholar] [CrossRef]
- Bahloul, A.; Nessark, B.; Briot, E.; Groult, H.; Mauger, A.; Zaghib, K.; Julien, C.M. Polypyrrole-covered MnO2 as electrode material for supercapacitor. J. Power Sources 2013, 240, 267–272. [Google Scholar] [CrossRef]
- Shayeh, J.S.; Siadat, S.O.R.; Sadeghnia, M.; Niknam, K.; Rezaei, M.; Aghamohammadi, N. Advanced studies of coupled conductive polymer/metal oxide nano wire composite as an efficient supercapacitor by common and fast fourier electrochemical methods. J. Mol. Liq. 2016, 220, 489–494. [Google Scholar] [CrossRef]
- Deng, L.; Hao, Z.; Wang, J.; Zhu, G.; Kang, L.; Liu, Z.H.; Yang, Z.; Wang, Z. Preparation and capacitance of graphene/multiwall carbon nanotubes/MnO2 hybrid material for high-performance asymmetrical electrochemical capacitor. Electrochim. Acta 2013, 89, 191–198. [Google Scholar] [CrossRef]
- He, W.; Wang, C.; Zhuge, F.; Deng, X.; Xu, X.; Zhai, T. Flexible and high energy density asymmetrical supercapacitors based on core/shell conducting polymer nanowires/manganese dioxide nanoflakes. Nano Energy 2017, 35, 242–250. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, Y.; Dong, Y.; Li, W.; Tan, Z.; Ma, P.; Wang, G.; Li, X. An In Situ Oxidative Polymerization Method to Synthesize Mesoporous Polypyrrole/MnO2 Composites for Supercapacitors. Molecules 2025, 30, 45. https://doi.org/10.3390/molecules30010045
Song Y, Dong Y, Li W, Tan Z, Ma P, Wang G, Li X. An In Situ Oxidative Polymerization Method to Synthesize Mesoporous Polypyrrole/MnO2 Composites for Supercapacitors. Molecules. 2025; 30(1):45. https://doi.org/10.3390/molecules30010045
Chicago/Turabian StyleSong, Yan, Yangbo Dong, Wei Li, Zhengwen Tan, Pingfei Ma, Guibin Wang, and Xuefeng Li. 2025. "An In Situ Oxidative Polymerization Method to Synthesize Mesoporous Polypyrrole/MnO2 Composites for Supercapacitors" Molecules 30, no. 1: 45. https://doi.org/10.3390/molecules30010045
APA StyleSong, Y., Dong, Y., Li, W., Tan, Z., Ma, P., Wang, G., & Li, X. (2025). An In Situ Oxidative Polymerization Method to Synthesize Mesoporous Polypyrrole/MnO2 Composites for Supercapacitors. Molecules, 30(1), 45. https://doi.org/10.3390/molecules30010045