Chemical Profiling, Bioactive Properties, and Anticancer and Antimicrobial Potential of Juglans regia L. Leaves
<p>Effect of preparation of <span class="html-italic">J. regia</span> leaves on the cell viability of CCD 841 CoN, DLD-1, Caco-2, MCF-7, U87MG, U251MG, and SK-Mel-29. The cells were treated extracts in five concentrations (10–750 µg/mL) for 24, 48 and 72 h. The number of viable control (non-treated) cells at each time point served as 100%. Graphs represent mean values ± SD. Asterisks indicate a statistically significant differences (* <span class="html-italic">p</span> < 0.05, ** <span class="html-italic">p</span> < 0.01, *** <span class="html-italic">p</span> < 0.001) among samples according to Student’s <span class="html-italic">t</span>-test.</p> "> Figure 2
<p>(<b>A</b>) Water and ethanolic <span class="html-italic">J. regia</span> extracts-mediated changes on microbial growth: G (−) <span class="html-italic">Escherichia coli</span> PCM2209, <span class="html-italic">Klebsiella pneumoniae</span> DSM 30104, <span class="html-italic">Pseudomonas aeruginosa</span> DSM 19880; G (+) <span class="html-italic">Staphylococcus aureus</span> DSM 104437, <span class="html-italic">Streptococcus pyogenes</span> PCM 2318, and <span class="html-italic">Enterococcus faecalis</span>; <span class="html-italic">Candida albicans</span> ATCC14053. The tested microorganisms were treated with <span class="html-italic">J. regia</span> leaves extracts at 10 mg/mL, 1 mg/mL, 0.1 mg/mL surface spotted onto the indicator lawn—NA agar (bacteria) and YPD agar (<span class="html-italic">Candida</span>) media. Representative micrographs of bacterial and yeast culture dishes; (<b>B</b>) diameter of growth inhibition (halo) of bacteria induced by walnut extracts; (<b>a</b>) 10 mg/mL water extract; (<b>b</b>) 10 mg/mL alcoholic extract; (<b>c</b>) 1 mg/mL alcoholic extract. The values are expressed as means ± SD. Letters indicate a statistically significant differences (capital letter < 0.01, small letter < 0.001) among samples according to ANOVA and HSD Tukey’s.</p> ">
Abstract
:1. Introduction
2. Results
2.1. Total Phenolic, Flavonoid, and Proanthocyanidin Contents
2.2. Antioxidant Activity
2.3. Cell Viability
2.4. Antibacterial Potential
2.5. Identification and Quantification of Phenolic Compounds
3. Materials and Methods
3.1. Materials and Reagents
3.2. Plant Material
3.3. Preparation of Extract
3.4. Determination of Total Phenolic, Flavonoid and Proanthocyanidin Content
3.5. Determination of Antioxidant Activity
3.5.1. Superoxide Radical Scavenging Activity Assay (O2●− Method)
3.5.2. Hydroxyl Radical Scavenging Activity Assay (OH● Method)
3.5.3. Chelating Ability of Ferrous Ion (ChA Method)
3.5.4. ABTS●+ Radical Scavenging Activity (ABTS Method)
3.5.5. Determination of Copper Ion Reduction (CUPRAC Method)
3.6. Cell Culture
3.7. MTS Cell Viability Assay
3.8. Antimicrobial and Antifungal Activity
3.9. Determination of Polyphenols Profile by UPLC-Q-TOF-MS
3.10. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Calliste, C.-A.; Trouillas, P.; Allais, D.-P.; Duroux, J.-L. Castanea Sativa Mill. Leaves as New Sources of Natural Antioxidant: An Electronic Spin Resonance Study. J. Agric. Food Chem. 2005, 53, 282–288. [Google Scholar] [CrossRef] [PubMed]
- Chamorro, F.; Carpena, M.; Lourenço-Lopes, C.; Taofiq, O.; Otero, P.; Cao, H.; Xiao, J.; Simal-Gandara, J.; Prieto, M.A. By-Products of Walnut (Juglans regia) as a Source of Bioactive Compounds for the Formulation of Nutraceuticals and Functional Foods. Biol. Life Sci. Forum. 2022, 12, 35. [Google Scholar] [CrossRef]
- Pereira, J.A.; Oliveira, I.; Sousa, A.; Ferreira, I.C.F.R.; Bento, A.; Estevinho, L. Bioactive Properties and Chemical Composition of Six Walnut (Juglans regia L.) Cultivars. Food Chem. Toxicol. 2008, 46, 2103–2111. [Google Scholar] [CrossRef] [PubMed]
- Abdallah, I.B.; Tlili, N.; Martinez-Force, E.; Rubio, A.G.P.; Perez-Camino, M.C.; Albouchi, A.; Boukhchina, S. Content of Carotenoids, Tocopherols, Sterols, Triterpenic and Aliphatic Alcohols, and Volatile Compounds in Six Walnuts (Juglans regia L.) Varieties. Food Chem. 2015, 173, 972–978. [Google Scholar] [CrossRef] [Green Version]
- Pycia, K.; Kapusta, I.; Jaworska, G.; Jankowska, A. Antioxidant Properties, Profile of Polyphenolic Compounds and Tocopherol Content in Various Walnut (Juglans regia L.) Varieties. Eur. Food Res. Technol. 2019, 245, 607–616. [Google Scholar] [CrossRef]
- Pycia, K.; Kapusta, I.; Jaworska, G. Impact of the Degree of Maturity of Walnuts (Juglans regia L.) and Their Variety on the Antioxidant Potential and the Content of Tocopherols and Polyphenols. Molecules 2019, 24, 2936. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Savage, G.P. Chemical Composition of Walnuts (Juglans regia L.) Grown in New Zealand. Plant Foods Hum. Nutr. 2001, 56, 75–82. [Google Scholar] [CrossRef]
- Pereira, J.A.; Oliveira, I.; Sousa, A.; Valentão, P.; Andrade, P.B.; Ferreira, I.C.F.R.; Ferreres, F.; Bento, A.; Seabra, R.; Estevinho, L. Walnut (Juglans regia L.) Leaves: Phenolic Compounds, Antibacterial Activity and Antioxidant Potential of Different Cultivars. Food Chem. Toxicol. 2007, 45, 2287–2295. [Google Scholar] [CrossRef]
- Nour, V.; Trandafir, I.; Cosmulescu, S. HPLC Determination of Phenolic Acids, Flavonoids and Juglone in Walnut Leaves. J. Chromatogr. Sci. 2013, 51, 883–890. [Google Scholar] [CrossRef]
- Jahanban-Esfahlan, A.; Ostadrahimi, A.; Tabibiazar, M.; Amarowicz, R. A Comparative Review on the Extraction, Antioxidant Content and Antioxidant Potential of Different Parts of Walnut (Juglans regia L.) Fruit and Tree. Molecules 2019, 24, 2133. [Google Scholar] [CrossRef] [Green Version]
- Żurek, N.; Pawłowska, A.; Pycia, K.; Grabek-Lejko, D.; Kapusta, I.T. Phenolic Profile and Antioxidant, Antibacterial, and Antiproliferative Activity of Juglans regia L. Male Flowers. Molecules 2022, 27, 2762. [Google Scholar] [CrossRef]
- Żurek, N.; Pycia, K.; Pawłowska, A.; Kapusta, I.T. Phytochemical Screening and Bioactive Properties of Juglans regia L. Pollen. Antioxidants 2022, 11, 2046. [Google Scholar] [CrossRef]
- Pycia, K.; Pawłowska, A.M.; Kaszuba, J.; Żurek, N. Walnut Male Flowers (Juglans regia L.) as a Functional Addition to Wheat Bread. Foods 2022, 11, 3988. [Google Scholar] [CrossRef]
- Shah, U.N.; Mir, J.I.; Ahmed, N.; Jan, S.; Fazili, K.M. Bioefficacy Potential of Different Genotypes of Walnut Juglans regia L. J. Food Sci. Technol. 2018, 55, 605–618. [Google Scholar] [CrossRef]
- Jabli, M.; Sebeia, N.; Boulares, M.; Faidi, K. Chemical Analysis of the Characteristics of Tunisian Juglans regia L. Fractions: Antibacterial Potential, Gas Chromatography–Mass Spectroscopy and a Full Investigation of Their Dyeing Properties. Ind. Crops Prod. 2017, 108, 690–699. [Google Scholar] [CrossRef]
- Giura, S.; Botu, M.; Vulpe, M.; Vîjan, L.E.; Mitrea, R. Evolution of the Polyphenols, Flavonoids, and Tannins Content in Walnut Leaves and Green Walnut Husk during Growing Season. Not. Bot. Horti Agrobot. 2019, 47, 1264–1271. [Google Scholar] [CrossRef] [Green Version]
- Untea, A.; Lupu, A.; Saracila, M.; Panaite, T. Comparison of ABTS, DPPH, Phosphomolybdenum Assays for Estimating Antioxidant Activity and Phenolic Compounds in Five Different Plant Extracts. Bull. UASVM Anim. Sci. Biotechnol. 2018, 75, 110. [Google Scholar] [CrossRef] [Green Version]
- Almeida, I.F.; Fernandes, E.; Lima, J.L.F.C.; Costa, P.C.; Fernanda Bahia, M. Walnut (Juglans regia) Leaf Extracts Are Strong Scavengers of pro-Oxidant Reactive Species. Food Chem. 2008, 106, 1014–1020. [Google Scholar] [CrossRef]
- Orhan, I.E.; Suntar, I.P.; Akkol, E.K. In Vitro Neuroprotective Effects of the Leaf and Fruit Extracts of Juglans regia L. (Walnut) through Enzymes Linked to Alzheimer’s Disease and Antioxidant Activity. Int. J. Food Sci. Nutr. 2011, 62, 781–786. [Google Scholar] [CrossRef]
- Fernández-Agulló, A.; Castro-Iglesias, A.; Freire, M.S.; González-Álvarez, J. Optimization of the Extraction of Bioactive Compounds from Walnut (Juglans Major 209 × Juglans regia) Leaves: Antioxidant Capacity and Phenolic Profile. Antioxidants 2019, 9, 18. [Google Scholar] [CrossRef] [Green Version]
- Carvalho, M.; Ferreira, P.J.; Mendes, V.S.; Silva, R.; Pereira, J.A.; Jerónimo, C.; Silva, B.M. Human Cancer Cell Antiproliferative and Antioxidant Activities of Juglans regia L. Food Chem. Toxicol. 2010, 48, 441–447. [Google Scholar] [CrossRef] [PubMed]
- Vieira, V.; Pereira, C.; Pires, T.C.S.P.; Calhelha, R.C.; Alves, M.J.; Ferreira, O.; Barros, L.; Ferreira, I.C.F.R. Phenolic Profile, Antioxidant and Antibacterial Properties of Juglans regia L. (Walnut) Leaves from the Northeast of Portugal. Ind. Crops Prod. 2019, 134, 347–355. [Google Scholar] [CrossRef]
- Santos, A.; Barros, L.; Calhelha, R.C.; Dueñas, M.; Carvalho, A.M.; Santos-Buelga, C.; Ferreira, I.C.F.R. Leaves and Decoction of Juglans regia L.: Different Performances Regarding Bioactive Compounds and in Vitro Antioxidant and Antitumor Effects. Ind. Crops Prod. 2013, 51, 430–436. [Google Scholar] [CrossRef]
- Salimi, M.; Majd, A.; Sepahdar, Z.; Azadmanesh, K.; Irian, S.; Ardestaniyan, M.H.; Hedayati, M.H.; Rastkari, N. Cytotoxicity Effects of Various Juglans regia (Walnut) Leaf Extracts in Human Cancer Cell Lines. Pharm. Biol. 2012, 50, 1416–1422. [Google Scholar] [CrossRef]
- Alshatwi, A.A.; Hasan, T.N.; Shafi, G.; Syed, N.A.; Al-Assaf, A.H.; Alamri, M.S.; Al-Khalifa, A.S. Validation of the Antiproliferative Effects of Organic Extracts from the Green Husk of Juglans regia L. on PC-3 Human Prostate Cancer Cells by Assessment of Apoptosis-Related Genes. Evid.-Based Complement. Altern. Med. 2012, 2012, 103026. [Google Scholar] [CrossRef] [Green Version]
- Hasan, T.N.; Grace, L.; Shafi, G.; Hazzani, A.; Alshatwi, A.A. Anti-Proliferative Effects of Organic Extracts from Root Bark of Juglans regia L. (RBJR) on MDA-MB-231 Human Breast Cancer Cells: Role of Bcl-2/Bax, Caspases and Tp53. Asian Pac. J. Cancer Prev. 2011, 12, 525–530. [Google Scholar]
- Badiefar, L.; Bozcheloie, Z.S.; Rodriguez-Couto, S. Antimicrobial Activity of Walnut Leaf Extract against Gram-Negative Bacteria. Res. Sq. 2022. [Google Scholar] [CrossRef]
- Özşahί;N DelίBaş, E.A.; Kiray, E. Investigation of Antioxidant and Antimicrobial Activities of Walnut (Juglans regia L.) Kernel Septum. Eur. Res. J. 2022, 9, 87–96. [Google Scholar] [CrossRef]
- Genovese, C.; Cambria, M.; D’angeli, F.; Addamo, A.; Malfa, G.; Siracusa, L.; Pulvirenti, L.; Anfuso, C.; Lupo, G.; Salmeri, M. The Double Effect of Walnut Septum Extract (Juglans regia L.) Counteracts A172 Glioblastoma Cell Survival and Bacterial Growth. Int. J. Oncol. 2020, 57, 1129–1144. [Google Scholar] [CrossRef]
- Auer, G.K.; Weibel, D.B. Bacterial Cell Mechanics. Biochemistry 2017, 56, 3710–3724. [Google Scholar] [CrossRef]
- Gu, Y.; Stansfeld, P.J.; Zeng, Y.; Dong, H.; Wang, W.; Dong, C. Lipopolysaccharide Is Inserted into the Outer Membrane through An Intramembrane Hole, A Lumen Gate, and the Lateral Opening of LptD. Structure 2015, 23, 496–504. [Google Scholar] [CrossRef] [Green Version]
- Mogana, R.; Adhikari, A.; Tzar, M.N.; Ramliza, R.; Wiart, C. Antibacterial Activities of the Extracts, Fractions and Isolated Compounds from Canarium Patentinervium Miq. against Bacterial Clinical Isolates. BMC Complement. Med. 2020, 20, 55. [Google Scholar] [CrossRef] [Green Version]
- Gutiérrez Ortiz, A.L.; Berti, F.; Navarini, L.; Crisafulli, P.; Colomban, S.; Forzato, C. Aqueous Extracts of Walnut (Juglans regia L.) Leaves: Quantitative Analyses of Hydroxycinnamic and Chlorogenic Acids. J. Chromatogr. Sci. 2018, 56, 753–760. [Google Scholar] [CrossRef]
- Oliveira, I.; Sousa, A.; Ferreira, I.C.F.R.; Bento, A.; Estevinho, L.; Pereira, J.A. Total Phenols, Antioxidant Potential and Antimicrobial Activity of Walnut (Juglans regia L.) Green Husks. Food Chem. Toxicol. 2008, 46, 2326–2331. [Google Scholar] [CrossRef]
- Żurek, N.; Karatsai, O.; Rędowicz, M.J.; Kapusta, I.T. Polyphenolic Compounds of Crataegus Berry, Leaf, and Flower Extracts Affect Viability and Invasive Potential of Human Glioblastoma Cells. Molecules 2021, 26, 2656. [Google Scholar] [CrossRef]
- Sytykiewicz, H.; Chrzanowski, G.; Czerniewicz, P.; Leszczyński, B.; Sprawka, I.; Krzyżanowski, R.; Matok, H. Antifungal Activity of Juglans regia (L.) Leaf Extracts Against Candida Albicans Isolates. Pol. J. Environ. Stud. 2015, 24, 1339–1348. [Google Scholar] [CrossRef]
- Noumi, E.; Snoussi, M.; Hajlaoui, H.; Valentin, E.; Bakhrouf, A. Antifungal Properties of Salvadora Persica and Juglans regia L. Extracts against Oral Candida Strains. Eur. J. Clin. Microbiol. Infect. Dis. 2010, 29, 81–88. [Google Scholar] [CrossRef]
- Raja, V.; Ahmad, S.I.; Irshad, M.; Wani, W.A.; Siddiqi, W.A.; Shreaz, S. Anticandidal Activity of Ethanolic Root Extract of Juglans regia (L.): Effect on Growth, Cell Morphology, and Key Virulence Factors. J. Mycol. Med. 2017, 27, 476–486. [Google Scholar] [CrossRef]
- D’Angeli, F.; Malfa, G.A.; Garozzo, A.; Li Volti, G.; Genovese, C.; Stivala, A.; Nicolosi, D.; Attanasio, F.; Bellia, F.; Ronsisvalle, S.; et al. Antimicrobial, Antioxidant, and Cytotoxic Activities of Juglans regia L. Pellicle Extract. Antibiotics 2021, 10, 159. [Google Scholar] [CrossRef]
- Tay, L.Y.; Jorge, J.H.; Herrera, D.R.; Campanha, N.H.; Gomes, B.P.; Andre dos Santos, F. Evaluation of Different Treatment Methods against Denture Stomatitis: A Randomized Clinical Study. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2014, 118, 72–77. [Google Scholar] [CrossRef]
- Al Aboody, M.S.; Mickymaray, S. Anti-Fungal Efficacy and Mechanisms of Flavonoids. Antibiotics 2020, 9, 45. [Google Scholar] [CrossRef] [Green Version]
- Potocki, L.; Oklejewicz, B.; Kuna, E.; Szpyrka, E.; Duda, M.; Zuczek, J. Application of Green Algal Planktochlorella Nurekis Biomasses to Modulate Growth of Selected Microbial Species. Molecules 2021, 26, 4038. [Google Scholar] [CrossRef] [PubMed]
- Fraisse, D.; Degerine-Roussel, A.; Bred, A.; Ndoye, S.; Vivier, M.; Felgines, C.; Senejoux, F. A Novel HPLC Method for Direct Detection of Nitric Oxide Scavengers from Complex Plant Matrices and Its Application to Aloysia Triphylla Leaves. Molecules 2018, 23, 1574. [Google Scholar] [CrossRef] [Green Version]
- Medic, A.; Jakopic, J.; Hudina, M.; Solar, A.; Veberic, R. Identification and Quantification of the Major Phenolic Constituents in Juglans regia L. Peeled Kernels and Pellicles, Using HPLC–MS/MS. Food Chem. 2021, 352, 129404. [Google Scholar] [CrossRef] [PubMed]
- Gawlik-Dziki, U.; Durak, A.; Pecio, Ł.; Kowalska, I. Nutraceutical Potential of Tinctures from Fruits, Green Husks, and Leaves of Juglans regia L. Sci. World J. 2014, 2014, 501392. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amaral, J.S.; Seabra, R.M.; Andrade, P.B.; Valentão, P.; Pereira, J.A.; Ferreres, F. Phenolic Profile in the Quality Control of Walnut (Juglans regia L.) Leaves. Food Chem. 2004, 88, 373–379. [Google Scholar] [CrossRef]
- Hukkanen, A.T.; Kokko, H.I.; Buchala, A.J.; McDougall, G.J.; Stewart, D.; Kärenlampi, S.O.; Karjalainen, R.O. Benzothiadiazole Induces the Accumulation of Phenolics and Improves Resistance to Powdery Mildew in Strawberries. J. Agric. Food Chem. 2007, 55, 1862–1870. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gu, L.; Kelm, M.A.; Hammerstone, J.F.; Beecher, G.; Holden, J.; Haytowitz, D.; Prior, R.L. Screening of Foods Containing Proanthocyanidins and Their Structural Characterization Using LC-MS/MS and Thiolytic Degradation. J. Agric. Food Chem. 2003, 51, 7513–7521. [Google Scholar] [CrossRef]
- Mabry, T.J.; Markham, K.R.; Thomas, M.B. The Ultraviolet Spectra of Flavones and Flavonols. In The Systematic Identification of Flavonoids; Springer: Berlin/Heidelberg, Germany, 1970; pp. 41–164. ISBN 978-3-642-88460-3. [Google Scholar]
- Kite, G.C.; Veitch, N.C. Identification of Common Glycosyl Groups of Flavonoid O -Glycosides by Serial Mass Spectrometry of Sodiated Species: Identifying Glycosyl Goups of Common Flavonoid O -Glycosides. Rapid Commun. Mass Spectrom. 2011, 25, 2579–2590. [Google Scholar] [CrossRef]
- Tsimogiannis, D.; Samiotaki, M.; Panayotou, G.; Oreopoulou, V. Characterization of Flavonoid Subgroups and Hydroxy Substitution by HPLC-MS/MS. Molecules 2007, 12, 593–606. [Google Scholar] [CrossRef] [Green Version]
- Zhao, M.-H.; Jiang, Z.-T.; Liu, T.; Li, R. Flavonoids in Juglans regia L. Leaves and Evaluation of In Vitro Antioxidant Activity via Intracellular and Chemical Methods. Sci. World J. 2014, 2014, 303878. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yao, H.; Chen, B.; Zhang, Y.; Ou, H.; Li, Y.; Li, S.; Shi, P.; Lin, X. Analysis of the Total Biflavonoids Extract from Selaginella Doederleinii by HPLC-QTOF-MS and Its In Vitro and In Vivo Anticancer Effects. Molecules 2017, 22, 325. [Google Scholar] [CrossRef] [Green Version]
- Cosmulescu, S.; Trandafir, I. Seasonal Variation of Total Phenols in Leaves of Walnut (Juglans regia L.). J. Med. Plants Res. 2011, 5, 4938–4942. [Google Scholar]
- Pitschmann, A.; Zehl, M.; Atanasov, A.G.; Dirsch, V.M.; Heiss, E.; Glasl, S. Walnut Leaf Extract Inhibits PTP1B and Enhances Glucose-Uptake in Vitro. J. Ethnopharmacol. 2014, 152, 599–602. [Google Scholar] [CrossRef] [PubMed]
- Pawlowska, A.M.; Camangi, F.; Braca, A. Quali-Quantitative Analysis of Flavonoids of Cornus mas L. (Cornaceae) Fruits. Food Chem. 2010, 119, 1257–1261. [Google Scholar] [CrossRef] [Green Version]
- Gao, X.; Ohlander, M.; Jeppsson, N.; Björk, L.; Trajkovski, V. Changes in Antioxidant Effects and Their Relationship to Phytonutrients in Fruits of Sea Buckthorn (Hippophae rhamnoides L.) during Maturation. J. Agric. Food Chem. 2000, 48, 1485–1490. [Google Scholar] [CrossRef]
- Chang, C.-C.; Yang, M.-H.; Wen, H.-M.; Chern, J.-C. Estimation of Total Flavonoid Content in Propolis by Two Complementary Colometric Methods. J. Food Drug Anal. 2020, 10, 3. [Google Scholar] [CrossRef]
- Robak, J.; Gryglewski, R.J. Flavonoids Are Scavengers of Superoxide Anions. Biochem. Pharmacol. 1988, 37, 837–841. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant Activity Applying an Improved ABTS Radical Cation Decolorization Assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Apak, R.; Güçlü, K.; Özyürek, M.; Esin Karademir, S.; Erçağ, E. The Cupric Ion Reducing Antioxidant Capacity and Polyphenolic Content of Some Herbal Teas. Int. J. Food Sci. Nutr. 2006, 57, 292–304. [Google Scholar] [CrossRef]
TPC | TFC | TPA | |
---|---|---|---|
(mg GAE/g dw) | (mg QE/g dw) | (mg CYE/g dw) | |
J. regia leaves | 342.72 ± 0.49 | 55.64 ± 0.06 | 26.24 ± 0.01 |
O2•− | OH− | ChA | ABTS | CUPRAC | |
---|---|---|---|---|---|
IC50 (µg/mL) | (mmol TE/g dw) | ||||
J. regia leaves | 67.78 ± 0.94 | 193.29 ± 2.80 | 388.61 ± 1.62 | 9.09 ± 0.09 | 1.16 ± 0.01 |
No. | Cell Line | J. regia Leaves | ||
---|---|---|---|---|
IC50 (µg/mL) | ||||
24 h | 48 h | 72 h | ||
1 | CCD 841 CoN | 501.10 ± 4.16 | 388.58 ± 10.05 | 307.22 ± 2.22 |
2 | DLD-1 | 244.18 ± 4.27 | 214.11 ± 4.59 | 267.34 ± 19.64 |
3 | Caco-2 | 270.65 ± 22.65 | 250.03 ± 10.27 | 276.02 ± 11.97 |
4 | MCF-7 | 307.03 ± 1.90 | 255.99 ± 13.81 | 282.10 ± 5.71 |
5 | U87MG | 377.33 ±13.84 | 370.87 ± 13.20 | 327.11 ± 0.63 |
6 | U251MG | 379.05 ± 16.78 | 340.90 ± 13.82 | 285.24 ± 5.33 |
7 | SK-Mel-29 | 379.89 ± 15.80 | 360.46 ± 3.04 | 361.55 ± 2.21 |
No. | Compound | Rt | λmax | [M-H] m/z | Content | |
---|---|---|---|---|---|---|
min | nm | MS | MS/MS | mg/g dw | ||
1 | Chlorogenic acid * | 2.27 | 299 sh, 327 | 353 | 191 | 2.78 ± 0.01 jk |
2 | Caffeic acid 3-O-glucoside | 2.48 | 299 sh, 324 | 341 | 179 | 1.30 ± 0.00 g |
3 | Caffeic acid 4-O-glucoside | 2.62 | 299 sh, 324 | 341 | 179 | 0.42 ± 0.02 ab |
4 | Undefined caffeic acid derivative | 2.71 | 279 | 463 | 179 | 0.43 ± 0.08 ab |
5 | 3-O-Coumaroylquinic acid | 2.79 | 310 | 337 | 163, 119 | 5.49 ± 0.08 p |
6 | 4-O-Coumaroylquinic acid | 2.94 | 310 | 337 | 163, 119 | 1.27 ± 0.06 g |
7 | 3-O-Coumaric acid glucoside | 3.06 | 312 | 325 | 163 | 3.76 ± 0.11 m |
8 | Caffeic acid * | 3.23 | 299 sh, 324 | 179 | 135 | 1.98 ± 0.11 h |
9 | 4-O-Coumaric acid glucoside | 3.36 | 312 | 325 | 163 | 0.86 ± 0.01 ef |
10 | 4,8-dihydroxy-tetralone-4-O-glucoside | 3.43 | 310 | 339 | 159 | 1.27 ± 0.01 g |
11 | 4-O-Coumaric acid glucoside | 3.48 | 312 | 325 | 163 | 0.73 ± 0.01 def |
12 | Ferulic acid 4-O-glucoside | 3.55 | 320 | 355 | 193, 175 | 0.79 ± 0.03 def |
13 | Di-metoxycinnamoyl hexoside | 3.65 | 328 | 369 | 207, 189 | 0.42 ± 0.05 ab |
14 | Di-galloyl-deoxyhexoside isomer I | 3.73 | 253 | 467 | 315, 169 | 0.37 ± 0.03 ab |
15 | Di-galloyl-deoxyhexoside isomer II | 3.82 | 253 | 467 | 315, 125 | 0.44 ± 0.03 bc |
16 | Quercetin 3-O-xyloside * | 3.96 | 255, 354 | 433 | 301 | 0.69 ± 0.02 de |
17 | 3-Coumaric acid | 4.13 | 310 | 163 | 119 | 2.53 ± 0.10 ij |
18 | Taxifolin pentoside isomer I | 4.27 | 290 | 435 | 285, 151 | 0.63 ± 0.14 cd |
19 | Quercetin 3-O-glucoside * | 4.35 | 255, 353 | 463 | 301 | 19.38 ± 0.50 s |
20 | Quercetin 3-O-galactoside * | 4.35 | 255, 353 | 463 | 301 | 4.76 ± 0.22 o |
21 | Taxifolin pentoside isomer II | 4.89 | 290 | 435 | 285, 151 | 1.33 ± 0.10 g |
22 | Quercetin pentoside isomer I | 4.95 | 255, 354 | 433 | 301 | 2.11 ± 0.19 ij |
23 | Quercetin pentoside isomer II | 5.06 | 255, 354 | 433 | 301 | 6.81 ± 0.29 q |
24 | Kaempferol 3-O-glucoside * | 5.08 | 264, 338 | 447 | 285 | 3.03 ± 0.04 k |
25 | Quercetin pentoside isomer III | 5.15 | 255, 354 | 433 | 301 | 12.20 ± 0.42 r |
26 | Kaempferol hexoside | 5.34 | 264, 338 | 447 | 285 | 0.66 ± 0.02 de |
27 | Quercetin 3-O-rhamnoside * | 5.36 | 255, 354 | 446 | 301 | 4.36 ± 0.02 n |
28 | Kaempferol pentoside isomer I | 5.51 | 264, 338 | 417 | 285 | 2.30 ± 0.05 hi |
29 | Kaempferol pentoside isomer II | 5.60 | 264, 338 | 417 | 285 | 0.34 ± 0.05 ab |
30 | Di-galloyl-shikimic acid | 5.74 | 290 | 477 | 325, 169 | 1.99 ± 0.12 gh |
31 | Kaempferol pentoside isomer III | 5.51 | 264, 338 | 417 | 285 | 3.23 ± 0.27 l |
32 | Kaempferol 3-O-rhamnoside * | 6.01 | 264, 338 | 431 | 285 | 0.56 ± 0.01 bc |
33 | Unidentified caffeic derivative | 6.24 | 299 sh, 321 | 501 | 179 | 0.90 ± 0.04 ef |
34 | Quercetin acetyl-rhamnoside isomer I | 6.37 | 255, 354 | 489 | 447, 301 | 3.76 ± 0.00 m |
35 | Quercetin acetyl-pentoside | 6.38 | 255, 354 | 475 | 433, 301 | 2.12 ± 0.05 ghi |
36 | Hydrojuglone derivative | 6.68 | 327 | 517 | 175 | 0.30 ± 0.01 a |
37 | Quercetin acetyl-rhamnoside isomer II | 6.80 | 255, 354 | 489 | 447, 301 | 0.83 ± 0.04 ef |
38 | 4′′′-Dehydroxyamentoflavone | 6.95 | 266, 312 | 521 | 375 | 4.30 ± 0.14 n |
39 | Kaempferol acetyl-rhamnoside | 7.12 | 264, 336 | 473 | 431, 285 | 0.84 ± 0.03 ef |
40 | Unidentified caffeic derivative | 7.89 | 299 sh, 324 | 501 | 179 | 2.01 ± 0.13 gh |
Total | 104.28 ± 2.57 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Żurek, N.; Pycia, K.; Pawłowska, A.; Potocki, L.; Kapusta, I.T. Chemical Profiling, Bioactive Properties, and Anticancer and Antimicrobial Potential of Juglans regia L. Leaves. Molecules 2023, 28, 1989. https://doi.org/10.3390/molecules28041989
Żurek N, Pycia K, Pawłowska A, Potocki L, Kapusta IT. Chemical Profiling, Bioactive Properties, and Anticancer and Antimicrobial Potential of Juglans regia L. Leaves. Molecules. 2023; 28(4):1989. https://doi.org/10.3390/molecules28041989
Chicago/Turabian StyleŻurek, Natalia, Karolina Pycia, Agata Pawłowska, Leszek Potocki, and Ireneusz Tomasz Kapusta. 2023. "Chemical Profiling, Bioactive Properties, and Anticancer and Antimicrobial Potential of Juglans regia L. Leaves" Molecules 28, no. 4: 1989. https://doi.org/10.3390/molecules28041989
APA StyleŻurek, N., Pycia, K., Pawłowska, A., Potocki, L., & Kapusta, I. T. (2023). Chemical Profiling, Bioactive Properties, and Anticancer and Antimicrobial Potential of Juglans regia L. Leaves. Molecules, 28(4), 1989. https://doi.org/10.3390/molecules28041989