Abstract
Isoflavones are phytoestrogens with potent estrogenic activity; genistein, daidzein and glycitein are the most active isoflavones found in soy beans. Phytoestrogens have similarity in structure with the human female hormone 17-β-estradiol, which can bind to both alpha and beta estrogen receptors, and mimic the action of estrogens on target organs, thereby exerting many health benefits when used in some hormone-dependent diseases. Numerous clinical studies claim benefits of genistein and daidzein in chemoprevention of breast and prostate cancer, cardiovascular disease and osteoporosis as well as in relieving postmenopausal symptoms. The ability of isoflavones to prevent cancer and other chronic diseases largely depends on pharmacokinetic properties of these compounds, in particular absorption and distribution to the target tissue. The chemical form in which isoflavones occur is important because it influences their bioavailability and, therefore, their biological activity. Glucose-conjugated isoflavones are highly polar, water-soluble compounds. They are hardly absorbed by the intestinal epithelium and have weaker biological activities than the corresponding aglycone. Different microbial families of colon can transform glycosylated isoflavones into aglycones. Clinical studies show important differences between the aglycone and conjugated forms of genistein and daidzein. The evaluation of isoflavone metabolism and bioavailability is crucial to understanding their biological effects. Lipid-based formulations such as drug incorporation into oils, emulsions and self-microemulsifying formulations have been introduced to increase bioavailability. Complexation with cyclodextrin also represent a valid method to improve the physicochemical characteristics of these substances in order to be absorbed and distributed to target tissues. We review and discuss pharmacokinetic issues that critically influence the biological activity of isoflavones.
Similar content being viewed by others
Abbreviations
- ER:
-
Estrogen receptors
- HRT:
-
Hormone replacement therapy
- AUC:
-
Area under the plasma concentration curve
- T max :
-
Time to maximum concentration
- IFG:
-
Isoflavone glucoside
- TVP:
-
Textured vegetable protein
- C max :
-
Maximum plasma concentration
- t 1/2 :
-
Plasma concentration half-life
- AUC0−t :
-
Area under the plasma concentration curve administration to last observed concentration at time t
- SMEDDS:
-
Self-microemulsifying drug delivery system
- IFE:
-
Isoflavone extract
- CD:
-
Cyclodextrins
References
Adlercreutz H (1995) Phytoestrogens: epidemiology and a possible role in cancer protection. Environ Health Perspect 103(Suppl 7):103–112
Adlercreutz H (1998) Epidemiology of phytoestrogens. Baillieres Clin Endocrinol Metab 12(4):605–623
Adlercreutz H, Mazur W (1997) Phyto-oestrogens and Western diseases. Ann Med 29(2):95–120
Adlercreutz H, Bannwart C, Wahala K, Makela T, Brunow G, Hase T, Arosemena PJ, Kellis JT Jr, Vickery LE (1993) Inhibition of human aromatase by mammalian lignans and isoflavonoid phytoestrogens. J Steroid Biochem Mol Biol 44(2):147–153
Akiyama T, Ishida J, Nakagawa S, Ogawara H, Watanabe S, Itoh N, Shibuya M, Fukami Y (1987) Genistein, a specific inhibitor of tyrosine-specific protein kinases. J Biol Chem 262(12):5592–5595
Atkinson C, Compston JE, Day NE, Dowsett M, Bingham SA (2004) The effects of phytoestrogen isoflavones on bone density in women: a double-blind, randomized, placebo-controlled trial. Am J Clin Nutr 79(2):326–333
Atkinson C, Frankenfeld CL, Lampe JW (2005) Gut bacterial metabolism of the soy isoflavone daidzein: exploring the relevance to human health. Exp Biol Med (Maywood) 230(3):155–170
Axelson M, Kirk DN, Farrant RD, Cooley G, Lawson AM, Setchell KD (1982) The identification of the weak oestrogen equol [7-hydroxy-3-(4′-hydroxyphenyl)chroman] in human urine. Biochem J 201(2):353–357
Bannwart C, Fotsis T, Heikkinen R, Adlercreutz H (1984) Identification of the isoflavonic phytoestrogen daidzein in human urine. Clin Chim Acta 136(2–3):165–172
Bouker KB, Hilakivi-Clarke L (2000) Genistein: does it prevent or promote breast cancer? Environ Health Perspect 108(8):701–708
Breckwoldt M, Keck C, Karck U (1995) Benefits and risks of hormone replacement therapy (HRT). J Steroid Biochem Mol Biol 53(1–6):205–208
Cassidy A (1996) Physiological effects of phyto-oestrogens in relation to cancer and other human health risks. Proc Nutr Soc 55(1B):399–417
Cassidy A, Bingham S, Setchell K (1995) Biological effects of isoflavones in young women: importance of the chemical composition of soyabean products. Br J Nutr 74(4):587–601
Cassidy A, Brown JE, Hawdon A, Faughnan MS, King LJ, Millward J, Zimmer-Nechemias L, Wolfe B, Setchell KD (2006) Factors affecting the bioavailability of soy isoflavones in humans after ingestion of physiologically relevant levels from different soy foods. J Nutr 136(1):45–51
Cauley JA, Robbins J, Chen Z, Cummings SR, Jackson RD, LaCroix AZ, LeBoff M, Lewis CE, McGowan J, Neuner J, Pettinger M, Stefanick ML, Wactawski-Wende J, Watts NB (2003) Effects of estrogen plus progestin on risk of fracture and bone mineral density: the Women’s Health Initiative randomized trial. JAMA 290(13):1729–1738. doi:10.1001/jama.290.13.1729
Chen J, Lin H, Hu M (2003) Metabolism of flavonoids via enteric recycling: role of intestinal disposition. J Pharmacol Exp Ther 304(3):1228–1235. doi:10.1124/jpet.102.046409
Chen J, Lin H, Hu M (2005) Absorption and metabolism of genistein and its five isoflavone analogs in the human intestinal Caco-2 model. Cancer Chemother Pharmacol 55(2):159–169. doi:10.1007/s00280-004-0842-x
Cignarella A, Kratz M, Bolego C (2010) Emerging role of estrogen in the control of cardiometabolic disease. Trends Pharmacol Sci 31(4):183–189. doi:10.1016/j.tips.2010.01.001
Clarkson TB (2002) Soy, soy phytoestrogens and cardiovascular disease. J Nutr 132(3):566S–569S
Constantinou A, Mehta R, Runyan C, Rao K, Vaughan A, Moon R (1995) Flavonoids as DNA topoisomerase antagonists and poisons: structure–activity relationships. J Nat Prod 58(2):217–225
Cornwell T, Cohick W, Raskin I (2004) Dietary phytoestrogens and health. Phytochemistry 65(8):995–1016. doi:10.1016/j.phytochem.2004.03.005
Dahlman-Wright K, Cavailles V, Fuqua SA, Jordan VC, Katzenellenbogen JA, Korach KS, Maggi A, Muramatsu M, Parker MG, Gustafsson JA (2006) International Union of Pharmacology. LXIV. Estrogen receptors. Pharmacol Rev 58(4):773–781. doi:10.1124/pr.58.4.8
Day AJ, DuPont MS, Ridley S, Rhodes M, Rhodes MJ, Morgan MR, Williamson G (1998) Deglycosylation of flavonoid and isoflavonoid glycosides by human small intestine and liver beta-glucosidase activity. FEBS Lett 436(1):71–75
Decroos K, Vanhemmens S, Cattoir S, Boon N, Verstraete W (2005) Isolation and characterisation of an equol-producing mixed microbial culture from a human faecal sample and its activity under gastrointestinal conditions. Arch Microbiol 183(1):45–55. doi:10.1007/s00203-004-0747-4
deVere White RW, Tsodikov A, Stapp EC, Soares SE, Fujii H, Hackman RM (2010) Effects of a high dose, aglycone-rich soy extract on prostate-specific antigen and serum isoflavone concentrations in men with localized prostate cancer. Nutr Cancer 62(8):1036–1043. doi:10.1080/01635581.2010.492085
Diel P, Schulz T, Smolnikar K, Strunck E, Vollmer G, Michna H (2000) Ability of xeno- and phytoestrogens to modulate expression of estrogen-sensitive genes in rat uterus: estrogenicity profiles and uterotropic activity. J Steroid Biochem Mol Biol 73(1–2):1–10
Dixon RA (2004) Phytoestrogens. Annu Rev Plant Biol 55:225–261. doi:10.1146/annurev.arplant.55.031903.141729
Doerge DR, Sheehan DM (2002) Goitrogenic and estrogenic activity of soy isoflavones. Environ Health Perspect 110(Suppl 3):349–353
Fang H, Tong W, Shi LM, Blair R, Perkins R, Branham W, Hass BS, Xie Q, Dial SL, Moland CL, Sheehan DM (2001) Structure–activity relationships for a large diverse set of natural, synthetic, and environmental estrogens. Chem Res Toxicol 14(3):280–294
Fanti P, Sawaya BP, Custer LJ, Franke AA (1999) Serum levels and metabolic clearance of the isoflavones genistein and daidzein in hemodialysis patients. J Am Soc Nephrol 10(4):864–871
Farnsworth NR, Bingel AS, Cordell GA, Crane FA, Fong HH (1975) Potential value of plants as sources of new antifertility agents I. J Pharm Sci 64(4):535–598
Fotsis T, Pepper MS, Montesano R, Aktas E, Breit S, Schweigerer L, Rasku S, Wahala K, Adlercreutz H (1998) Phytoestrogens and inhibition of angiogenesis. Baillieres Clin Endocrinol Metab 12(4):649–666
Franke AA, Custer LJ, Wang W, Shi CY (1998) HPLC analysis of isoflavonoids and other phenolic agents from foods and from human fluids. Proc Soc Exp Biol Med 217(3):263–273
Gershanik T, Benita S (2000) Self-dispersing lipid formulations for improving oral absorption of lipophilic drugs. Eur J Pharm Biopharm 50(1):179–188
Hillier SG, Anderson RA, Williams AR, Tetsuka M (1998) Expression of oestrogen receptor alpha and beta in cultured human ovarian surface epithelial cells. Mol Hum Reprod 4(8):811–815
Hollman PC, de Vries JH, van Leeuwen SD, Mengelers MJ, Katan MB (1995) Absorption of dietary quercetin glycosides and quercetin in healthy ileostomy volunteers. Am J Clin Nutr 62(6):1276–1282
Hollman PC, vd Gaag M, Mengelers MJ, van Trijp JM, de Vries JH, Katan MB (1996) Absorption and disposition kinetics of the dietary antioxidant quercetin in man. Free Radic Biol Med 21(5):703–707
Hu M, Chen J, Lin H (2003) Metabolism of flavonoids via enteric recycling: mechanistic studies of disposition of apigenin in the Caco-2 cell culture model. J Pharmacol Exp Ther 307(1):314–321. doi:10.1124/jpet.103.053496
Hutchins AM, Slavin JL, Lampe JW (1995) Urinary isoflavonoid phytoestrogen and lignan excretion after consumption of fermented and unfermented soy products. J Am Diet Assoc 95(5):545–551. doi:10.1016/S0002-8223(95)00149-2
Izumi T, Piskula MK, Osawa S, Obata A, Tobe K, Saito M, Kataoka S, Kubota Y, Kikuchi M (2000) Soy isoflavone aglycones are absorbed faster and in higher amounts than their glucosides in humans. J Nutr 130(7):1695–1699
Joannou GE, Kelly GE, Reeder AY, Waring M, Nelson C (1995) A urinary profile study of dietary phytoestrogens. The identification and mode of metabolism of new isoflavonoids. J Steroid Biochem Mol Biol 54(3–4):167–184
Jordan VC (1990) The only true antiestrogen is no estrogen. Mol Cell Endocrinol 74(3):C91–C95
Kampa M, Nifli AP, Notas G, Castanas E (2007) Polyphenols and cancer cell growth. Rev Physiol Biochem Pharmacol 159:79–113. doi:10.1007/112_2006_0702
Kang BK, Lee JS, Chon SK, Jeong SY, Yuk SH, Khang G, Lee HB, Cho SH (2004) Development of self-microemulsifying drug delivery systems (SMEDDS) for oral bioavailability enhancement of simvastatin in beagle dogs. Int J Pharm 274(1–2):65–73. doi:10.1016/j.ijpharm.2003.12.028
Kapiotis S, Hermann M, Held I, Seelos C, Ehringer H, Gmeiner BM (1997) Genistein, the dietary-derived angiogenesis inhibitor, prevents LDL oxidation and protects endothelial cells from damage by atherogenic LDL. Arterioscler Thromb Vasc Biol 17(11):2868–2874
Kelly GE, Nelson C, Waring MA, Joannou GE, Reeder AY (1993) Metabolites of dietary (soya) isoflavones in human urine. Clin Chim Acta 223(1–2):9–22
Khosla S, Melton LJ 3rd, Riggs BL (2011) The unitary model for estrogen deficiency and the pathogenesis of osteoporosis: is a revision needed? J Bone Miner Res 26(3):441–451. doi:10.1002/jbmr.262
Kim H, Peterson TG, Barnes S (1998) Mechanisms of action of the soy isoflavone genistein: emerging role for its effects via transforming growth factor beta signaling pathways. Am J Clin Nutr 68(6 Suppl):1418S–1425S
Kim SL, Berhow MA, Kim JT, Chi HY, Lee SJ, Chung IM (2006) Evaluation of soyasaponin, isoflavone, protein, lipid, and free sugar accumulation in developing soybean seeds. J Agric Food Chem 54(26):10003–10010. doi:10.1021/jf062275p
King RA, Bursill DB (1998) Plasma and urinary kinetics of the isoflavones daidzein and genistein after a single soy meal in humans. Am J Clin Nutr 67(5):867–872
Knight DC, Eden JA, Kelly GE (1996) The phytoestrogen content of infant formulas. Med J Aust 164(9):575
Kuiper GG, Enmark E, Pelto-Huikko M, Nilsson S, Gustafsson JA (1996) Cloning of a novel receptor expressed in rat prostate and ovary. Proc Natl Acad Sci USA 93(12):5925–5930
Kuiper GG, Carlsson B, Grandien K, Enmark E, Haggblad J, Nilsson S, Gustafsson JA (1997) Comparison of the ligand binding specificity and transcript tissue distribution of estrogen receptors alpha and beta. Endocrinology 138(3):863–870
Lee SH, Kim YH, Yu HJ, Cho NS, Kim TH, Kim DC, Chung CB, Hwang YI, Kim KH (2007) Enhanced bioavailability of soy isoflavones by complexation with beta-cyclodextrin in rats. Biosci Biotechnol Biochem 71(12):2927–2933
Levis S, Strickman-Stein N, Ganjei-Azar P, Xu P, Doerge DR, Krischer J (2011) Soy isoflavones in the prevention of menopausal bone loss and menopausal symptoms: a randomized, double-blind trial. Arch Intern Med 171(15):1363–1369. doi:10.1001/archinternmed.2011.330
Linassier C, Pierre M, Le Pecq JB, Pierre J (1990) Mechanisms of action in NIH-3T3 cells of genistein, an inhibitor of EGF receptor tyrosine kinase activity. Biochem Pharmacol 39(1):187–193
Majumdar AP (1990) Role of tyrosine kinases in gastrin induction of ornithine decarboxylase in colonic mucosa. Am J Physiol 259(4 Pt 1):G626–G630
Matthies A, Clavel T, Gutschow M, Engst W, Haller D, Blaut M, Braune A (2008) Conversion of daidzein and genistein by an anaerobic bacterium newly isolated from the mouse intestine. Appl Environ Microbiol 74(15):4847–4852. doi:10.1128/AEM.00555-08
Mazur WM, Wahala K, Rasku S, Salakka A, Hase T, Adlercreutz H (1998) Lignan and isoflavonoid concentrations in tea and coffee. Br J Nutr 79(1):37–45
McFarlane GT, Cumming JH (1991) The colonic flora, fermentation, and large bowel digestive function. In: Phillips SF, Pemberton JH, Shorter RG (eds) The large intestine: physiology, pathophysiology and disease. Raven Press, New York
McMahon LG, Nakano H, Levy MD, Gregory JF 3rd (1997) Cytosolic pyridoxine-beta-d-glucoside hydrolase from porcine jejunal mucosa. Purification, properties, and comparison with broad specificity beta-glucosidase. J Biol Chem 272(51):32025–32033
Messina MJ (1999) Legumes and soybeans: overview of their nutritional profiles and health effects. Am J Clin Nutr 70(3 Suppl):439S–450S
Messina M, Bennink M (1998) Soyfoods, isoflavones and risk of colonic cancer: a review of the in vitro and in vivo data. Baillieres Clin Endocrinol Metab 12(4):707–728
Messina MJ, Persky V, Setchell KD, Barnes S (1994) Soy intake and cancer risk: a review of the in vitro and in vivo data. Nutr Cancer 21(2):113–131. doi:10.1080/01635589409514310
Murkies AL, Wilcox G, Davis SR (1998) Clinical review 92: phytoestrogens. J Clin Endocrinol Metab 83(2):297–303
Murphy PA, Song T, Buseman G, Barua K, Beecher GR, Trainer D, Holden J (1999) Isoflavones in retail and institutional soy foods. J Agric Food Chem 47(7):2697–2704
Nilsson BO, Olde B, Leeb-Lundberg LM (2011) G protein-coupled oestrogen receptor 1 (GPER1)/GPR30: a new player in cardiovascular and metabolic oestrogenic signalling. Br J Pharmacol 163(6):1131–1139. doi:10.1111/j.1476-5381.2011.01235.x
Okura T, Ibe M, Umegaki K, Shinozuka K, Yamada S (2010) Effects of dietary ingredients on function and expression of P-glycoprotein in human intestinal epithelial cells. Biol Pharm Bull 33(2):255–259
Paech K, Webb P, Kuiper GG, Nilsson S, Gustafsson J, Kushner PJ, Scanlan TS (1997) Differential ligand activation of estrogen receptors ERalpha and ERbeta at AP1 sites. Science 277(5331):1508–1510
Pereira MA, Barnes LH, Rassman VL, Kelloff GV, Steele VE (1994) Use of azoxymethane-induced foci of aberrant crypts in rat colon to identify potential cancer chemopreventive agents. Carcinogenesis 15(5):1049–1054
Peterson G, Barnes S (1991) Genistein inhibition of the growth of human breast cancer cells: independence from estrogen receptors and the multi-drug resistance gene. Biochem Biophys Res Commun 179(1):661–667
Peterson G, Barnes S (1993) Genistein and biochanin A inhibit the growth of human prostate cancer cells but not epidermal growth factor receptor tyrosine autophosphorylation. Prostate 22(4):335–345
Piazza C, Privitera MG, Melilli B, Incognito T, Marano MR, Leggio GM, Roxas MA, Drago F (2007) Influence of inulin on plasma isoflavone concentrations in healthy postmenopausal women. Am J Clin Nutr 86(3):775–780
Picherit C, Coxam V, Bennetau-Pelissero C, Kati-Coulibaly S, Davicco MJ, Lebecque P, Barlet JP (2000) Daidzein is more efficient than genistein in preventing ovariectomy-induced bone loss in rats. J Nutr 130(7):1675–1681
Price KR, Fenwick GR (1985) Naturally occurring oestrogens in foods—a review. Food Addit Contam 2(2):73–106. doi:10.1080/02652038509373531
Rafii F, Jackson LD, Ross I, Heinze TM, Lewis SM, Aidoo A, Lyn-Cook L, Manjanatha M (2007) Metabolism of daidzein by fecal bacteria in rats. Comp Med 57(3):282–286
Rice S, Mason HD, Whitehead SA (2006) Phytoestrogens and their low dose combinations inhibit mRNA expression and activity of aromatase in human granulosa-luteal cells. J Steroid Biochem Mol Biol 101(4–5):216–225. doi:10.1016/j.jsbmb.2006.06.021
Richelle M, Pridmore-Merten S, Bodenstab S, Enslen M, Offord EA (2002) Hydrolysis of isoflavone glycosides to aglycones by beta-glycosidase does not alter plasma and urine isoflavone pharmacokinetics in postmenopausal women. J Nutr 132(9):2587–2592
Rufer CE, Bub A, Moseneder J, Winterhalter P, Sturtz M, Kulling SE (2008) Pharmacokinetics of the soybean isoflavone daidzein in its aglycone and glucoside form: a randomized, double-blind, crossover study. Am J Clin Nutr 87(5):1314–1323
Sargeant P, Farndale RW, Sage SO (1993) The tyrosine kinase inhibitors methyl 2,5-dihydroxycinnamate and genistein reduce thrombin-evoked tyrosine phosphorylation and Ca2+ entry in human platelets. FEBS Lett 315(3):242–246
Setchell KD (1998) Phytoestrogens: the biochemistry, physiology, and implications for human health of soy isoflavones. Am J Clin Nutr 68(6 Suppl):1333S–1346S
Setchell KD, Adlercreutz H (1988) Mammalian lignans and phyto-oestrogens: recent studies on their formation, metabolism and biological role in health and disease. In: Rowland IR (ed) Role of gut flora in toxicity and cancer. Academic Press, San Diego, pp 315–345
Setchell KD, Cassidy A (1999) Dietary isoflavones: biological effects and relevance to human health. J Nutr 129(3):758S–767S
Setchell KD, Clerici C (2010) Equol: history, chemistry, and formation. J Nutr 140(7):1355S–1362S. doi:10.3945/jn.109.119776
Setchell KD, Borriello SP, Hulme P, Kirk DN, Axelson M (1984) Nonsteroidal estrogens of dietary origin: possible roles in hormone-dependent disease. Am J Clin Nutr 40(3):569–578
Setchell KD, Brown NM, Desai P, Zimmer-Nechemias L, Wolfe BE, Brashear WT, Kirschner AS, Cassidy A, Heubi JE (2001) Bioavailability of pure isoflavones in healthy humans and analysis of commercial soy isoflavone supplements. J Nutr 131(4 Suppl):1362S–1375S
Setchell KD, Brown NM, Lydeking-Olsen E (2002a) The clinical importance of the metabolite equol—a clue to the effectiveness of soy and its isoflavones. J Nutr 132(12):3577–3584
Setchell KD, Brown NM, Zimmer-Nechemias L, Brashear WT, Wolfe BE, Kirschner AS, Heubi JE (2002b) Evidence for lack of absorption of soy isoflavone glycosides in humans, supporting the crucial role of intestinal metabolism for bioavailability. Am J Clin Nutr 76(2):447–453
Setchell KD, Brown NM, Desai PB, Zimmer-Nechimias L, Wolfe B, Jakate AS, Creutzinger V, Heubi JE (2003a) Bioavailability, disposition, and dose–response effects of soy isoflavones when consumed by healthy women at physiologically typical dietary intakes. J Nutr 133(4):1027–1035
Setchell KD, Faughnan MS, Avades T, Zimmer-Nechemias L, Brown NM, Wolfe BE, Brashear WT, Desai P, Oldfield MF, Botting NP, Cassidy A (2003b) Comparing the pharmacokinetics of daidzein and genistein with the use of 13C-labeled tracers in premenopausal women. Am J Clin Nutr 77(2):411–419
Sfakianos J, Coward L, Kirk M, Barnes S (1997) Intestinal uptake and biliary excretion of the isoflavone genistein in rats. J Nutr 127(7):1260–1268
Shah NH, Carvajal MT, Patel CI, Infeld MH, Malick AW (1994) Self-emulsifying drug delivery systems (SEDDS) with polyglycolyzed glycerides for improving in vitro dissolution and oral absorption of lipophilic drugs. Int J Pharm 106:15–23
Shen Q, Li X, Yuan D, Jia W (2010) Enhanced oral bioavailability of daidzein by self-microemulsifying drug delivery system. Chem Pharm Bull (Tokyo) 58(5):639–643
Song KB, Atkinson C, Frankenfeld CL, Jokela T, Wahala K, Thomas WK, Lampe JW (2006) Prevalence of daidzein-metabolizing phenotypes differs between Caucasian and Korean American women and girls. J Nutr 136(5):1347–1351
Strom SS, Yamamura Y, Duphorne CM, Spitz MR, Babaian RJ, Pillow PC, Hursting SD (1999) Phytoestrogen intake and prostate cancer: a case–control study using a new database. Nutr Cancer 33(1):20–25. doi:10.1080/01635589909514743
van der Meijden PE, Feijge MA, Swieringa F, Gilio K, Nergiz-Unal R, Hamulyak K, Heemskerk JW (2012) Key role of integrin alpha(IIb)beta (3) signaling to Syk kinase in tissue factor-induced thrombin generation. Cell Mol Life Sci. doi:10.1007/s00018-012-1033-2
Walsh KR, Haak SJ, Bohn T, Tian Q, Schwartz SJ, Failla ML (2007) Isoflavonoid glucosides are deconjugated and absorbed in the small intestine of human subjects with ileostomies. Am J Clin Nutr 85(4):1050–1056
Watanabe S, Yamaguchi M, Sobue T, Takahashi T, Miura T, Arai Y, Mazur W, Wahala K, Adlercreutz H (1998) Pharmacokinetics of soybean isoflavones in plasma, urine and feces of men after ingestion of 60 g baked soybean powder (kinako). J Nutr 128(10):1710–1715
Wei H, Cai Q, Rahn RO (1996) Inhibition of UV light- and Fenton reaction-induced oxidative DNA damage by the soybean isoflavone genistein. Carcinogenesis 17(1):73–77
Whitten PL, Patisaul HB (2001) Cross-species and interassay comparisons of phytoestrogen action. Environ Health Perspect 109(Suppl 1):5–20
Wilcox JN, Blumenthal BF (1995) Thrombotic mechanisms in atherosclerosis: potential impact of soy proteins. J Nutr 125(3 Suppl):631S–638S
Xu X, Wang HJ, Murphy PA, Cook L, Hendrich S (1994) Daidzein is a more bioavailable soymilk isoflavone than is genistein in adult women. J Nutr 124(6):825–832
Xu X, Harris KS, Wang HJ, Murphy PA, Hendrich S (1995) Bioavailability of soybean isoflavones depends upon gut microflora in women. J Nutr 125(9):2307–2315
Xu X, Wang HJ, Murphy PA, Hendrich S (2000) Neither background diet nor type of soy food affects short-term isoflavone bioavailability in women. J Nutr 130(4):798–801
Yamashita Y, Kawada S, Nakano H (1990) Induction of mammalian topoisomerase II dependent DNA cleavage by nonintercalative flavonoids, genistein and orobol. Biochem Pharmacol 39(4):737–744
Zhang Y, Wang GJ, Song TT, Murphy PA, Hendrich S (1999) Urinary disposition of the soybean isoflavones daidzein, genistein and glycitein differs among humans with moderate fecal isoflavone degradation activity. J Nutr 129(5):957–962
Zhou JR, Gugger ET, Tanaka T, Guo Y, Blackburn GL, Clinton SK (1999) Soybean phytochemicals inhibit the growth of transplantable human prostate carcinoma and tumor angiogenesis in mice. J Nutr 129(9):1628–1635
Zubik L, Meydani M (2003) Bioavailability of soybean isoflavones from aglycone and glucoside forms in American women. Am J Clin Nutr 77(6):1459–1465
Zumoff B (1993) Biological and endocrinological insights into the possible breast cancer risk from menopausal estrogen replacement therapy. Steroids 58(5):196–204
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Vitale, D.C., Piazza, C., Melilli, B. et al. Isoflavones: estrogenic activity, biological effect and bioavailability. Eur J Drug Metab Pharmacokinet 38, 15–25 (2013). https://doi.org/10.1007/s13318-012-0112-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s13318-012-0112-y