The Genus Broussonetia: An Updated Review of Phytochemistry, Pharmacology and Applications
<p><span class="html-italic">Broussonetia papyrifera</span> (L.) L’Hér. ex Vent. Images A–F show, respectively: the whole plant (<b>A</b>), leaves (<b>B</b>), flowers (<b>C</b>), fruits (<b>D</b>), twigs (<b>E</b>), and seeds (<b>F</b>).</p> "> Figure 2
<p><span class="html-italic">Broussonetia kazinoki</span> Siebold. Images A–F show, respectively: the whole plant (<b>A</b>), leaves (<b>B</b>), flowers (<b>C</b>), fruits (<b>D</b>), twigs (<b>E</b>) and seeds (<b>F</b>) of <span class="html-italic">Broussonetia kazinoki</span> Siebold.</p> ">
Abstract
:1. Introduction
2. Phytochemistry
2.1. Flavonoids
2.2. Penylpropanoids
2.3. Polyphenols
2.4. Alkaloids
2.5. Terpenoids and Steroids
2.6. Other Compounds
3. Pharmacology
3.1. Anti-Tumor
3.2. Anti-Oxidant Activity
3.3. Anti-Inflammation
3.4. Anti-Diabetic and Anti-Obesity Effects
3.5. Antibacterial and Antiviral Effects
3.6. Skin Whitening and Anti-Wrinkle Activities
3.7. Other Properties
Variety | Parts | In Vivo/In Vitro | Model | Active Components | Dosage | Results | References | |
---|---|---|---|---|---|---|---|---|
Anti-tumor | BK | - | in vitro | Colon cancer cells | Kazinol C | 0–30 μM | Inducing apoptosis by activating AMPK. | [2] |
BK | Roots | in vitro | Hela, HL-60, MCF-7 cells | Eriodictyol, apigenin and kaempferol | - | Cytotoxic activity against HL-60 cells (IC50 = 46.43–94.06 μM) and apigenin was cytotoxic against Hela cells (IC50 = 49.26 μM). | [14] | |
BP | Barks | in vitro | HepG2 cells | Polyphenols | 0–500 μg/mL | Induced mitochondria-mediated apoptosis by inactivating ERK and AKT signaling pathways. | [77] | |
BK | Stem barks | in vitro | PANC-1 cells | Broussoflavonol B | 0–100 μM | Repressing proliferation by inactivating the ERK/c-Myc/FoxM1 signaling pathway. | [86] | |
BP | Barks | in vitro | MDA-MB-231 cells | Broussoflavonol B | 0–1 µM | Inducing the arrest of the cell cycle and cell death. | [79] | |
BP | Barks | in vitro | SK-BR-3 cells | Broussoflavonol B | 0–1 µM | Inhibiting growth and inducing differentiation of stemlike SK-BR-3 cells. | [113] | |
BP | - | in vitro | Colon and liver cancer cells | Broussochalcone A | 0–20 μM | Cytotoxicity by promoting phosphorylation/ubiquitin-dependent degradation of β-catenin. | [85] | |
BP | Root barks | in vitro | NCI-H1975, HepG2 and MCF-7 | Broussoflavonol K | - | IC50 = 0.90–2.00 μM | [41] | |
BP | Barks | in vitro | SGC-7901 cells | Chlorogenic acid-like compounds | 50, 100 and 200 μg/mL | Inducing apoptosis through p38-MAPK and ERK-MAPK signaling pathways. | [76] | |
BP | - | in vitro | HepG2 and SK-Hep1 cells | Broussochalcone A | 0, 2.5, 5, 10, 20 and 40 µM | Cell cycle arrest by increasing FOXO3 and cell cycle regulatory and pro-apoptotic proteins (IC50 = 20 µM). | [84] | |
BK | - | in vitro | Esophagus cancer cells | Marmesin | - | Inhibiting the PI3K/Akt pathway. | [87] | |
BK | - | in vitro | NSCLC cell | Marmesin | 0–10 µM | Abrogating mitogen-stimulated proliferation and invasion. | [83] | |
BP | Roots | in vitro | T24 and T24R2 cells | Kazinol A | 0–50 µM | Cytotoxicity through G 0/1 arrest mediated by cyclin D1 decrease and p21 increase. | [80] | |
BK | Roots | in vitro | MCF-7 cells | Kazinol E | 0–50 µM | Blocking EGF-induced ERK activity. | [81] | |
BK | Root barks | in vitro | MCF-7 cells | Kazinol E | - | Inhibiting Erk activity by binding the ATP-binding pocket of Erk-1. | [82] | |
BK | Root barks | in vitro | HT-29 colon cells | Kazinol C | 0–120 µM | Promoting AMPK phosphorylation and attenuating HT-29 colon cancer cell growth and viability. | [88] | |
BP | Fruits | in vitro | A375, BEL-7402 and Hela cells | Total alkaloids and seven individual alkaloids | 50, 10, 5, and 1 mg/mL | IC50 = 6.61–47.41 mg/mL (BEL-7402 cell line) and IC50 = 5.97–40.17 mg/mL (Hela cell line). | [66] | |
BP | Leaves | in vitro | HepG-2 cells | (+)-pinoresinol-4′-O-β-D-glucopyranosyl-4″-O-β-D-apiofuranoside, liriodendrin, apigenin-6-C-β-Dglucopyranside | 100 mmol/L | IC50 were 17.19, 14.56 and 19.53 μg/mL respectively. | [35] | |
BP | Fruits | in vitro | MG63 cells | Ethanol extract | 0–7000 µg/mL | Inhibiting the proliferation associated with apoptosis and cell cycle arrest. | [75] | |
BP | Barks | in vitro | MCF-7 cells | 5,7,3′,4′-Tetrahydroxy-3-methoxy-8,50-diprenylflavone and broussoflavonol B | 0–25 µM | Showing high anti-proliferation activities with IC50 values of 4.41 and 4.19. | [34] | |
BK | - | in vitro | SCM-1 cells | Kazinol Q | 0–120 µM | Enhancing subsequent cell death due to necrosis. | [78] | |
BP | Stem Barks | in vitro | HT-29 cells | Dichloromethane Fractions | 50, 100, 150, or 200 μg/mL | Inducing apoptosis through p53-dependent mitochondrial signaling pathway. | [74] | |
BK | Roots barks | in vitro: Human hepatoma, | PLC/PRF/5, T24 cells, human cervical carcinoma, HT-3, SiHa and CaSki cells | kazinols Q, and R, kazinol D, K, H, 7,4′-dihydroxyflavan | - | Showing the great inhibitory effect to T24, CaSki, PLC/PRF/5, HT3 and SiHa respectively. | [27] | |
Anti-oxidant activity | BP | Barks | in vitro | - | Ethanol extracts | - | IC50 value was 0.33 ± 0.08 mg/mL | [13] |
BP | Branches and twigs | in vitro | THP-1 cells | 5,7,3′,4′-tetrahydroxy-3-methoxy-8,5′-diprenylflavone, kazinol M,broussoflavonol A | - | CAA values were 25.9, 6.4, 5.4 respectively. | [42] | |
BP | Whole plants | in vitro | - | Lignin | 10–100 mg/L | Lignin with more phenolic hydroxyl groups. | [114] | |
BP | Fruits | in vitro | - | Three purified fractions | 0–2.0 mg/mL | IC50 values of three purified fractions were 0.54, 0.86, and 0.57 mg/mL respectively. | [115] | |
BP | Leaves | in vitro | KGN cells | Luteolin, luteoloside, orientin, isoorientin | 0.1–3 mg/mL | SC50 values was 19.72, 19.67, 18.86 and 19.33 mmol/L respectively. | [36] | |
BP | Seeds | in vitro | - | Seed oil | 0.2–0.8 v/v | The hydroxyl radical inhibition rate was 91.21% | [89] | |
BP | Fruits | in vitro | - | Ethanol extract | 0–400 mg/mL | IC50 for lipid peroxidation inhibition on liver homogenate was 155.7 µg/mL | [90] | |
BP | Fruits | in vitro | MG63 cells | Ethanolic extract | 0–600 µg/mL | DPPH assay showed IC50 value of 156.3 µg/mL. | [75] | |
BP | Flowers | in vitro | - | Ethanol and water crude extracts | 5 mg/mL 6 mg/mL | The ethanol extract showing 62.88% in the DPPH radical scavenging method and 61.15% in chelation Fe2+-activity. | [91] | |
BP | Fruits | in vitro | - | Ethanol and water crude extracts | DPPH: 0.5–5 mg/mL Fe2+-activity: 0.5–5 mg/mL | DPPH radicals with a percentage inhibition of 87.17 ± 0.18% to ethanol extract and 58.11 ± 0.11% to aqueous extract.Fe2+-chelating activity of approximately 77.51% of aqueous extract and the ethanol extract showed a chelation capacity of 48.26%. | [7] | |
BP | Roots | in vitro | - | Broussochalcone A and 3,4-dihydroxyisolonchocarpin | 0.1–1000 µM | IC50 values of 27.6 ± 0.3 µM and 21.8 ± 0.2 µM through DPPH assay, which IC50 values of ABTS were 5.8 ± 0.1 µM and 7.7 ± 0.4 µM as well as IC50 values of XOD were 0.6 ± 0.04 µM and 1.8 ± 0.1 µM. | [57] | |
BP | Fruits | in vitro | RAW264.7 cells | Petroleum extract | DPPH: 0.31 to 5.0 mg/mL superoxide anion radical scavenging activity: 2.5–40 mg/mL hydroxyl radical scavenging activity: 0.625–10 mg/mL | IC50 = 8.20 ± 0.003 mg/mL (DPPH). IC50= 89.86 ± 3.40 mg/mL (superoxide anion). IC50 =19.63 ± 0.36 mg/mL (hydrogen peroxide). | [116] | |
BP | Fruits | in vitro | SY5Y cells | 3,4-dihydroxybenzoic acid, dihydroconiferyl alcohol, ferulic acid and curculigoside C | 0.16–100 mM | The IC50 values were 39.5, 58.9, 65.3, and 65.6 mM respectively through a DPPH assay. | [54] | |
BP | Barks and woods | in vitro | - | Ethyl acetate fractionhexane fraction | - | The antioxidant activity of bark extract was superior to that of wood. | [94] | |
BP | Radixes and leaves | in vitro | SH-SY5Y cells | Methanol extract | 0.1–2.5 mg/mL | BP radixes and leaves possessed the best scavenging activities for DPPH, ABTS radical, and H2O2. | [93] | |
BP | Fruits | in vitro | PC12 cells | Erythro-1-(4-hydroxy-3-methoxyphenyl)-2-{4-[(E)3-hydroxy-1-propenyl]-2-methoxyphenoxy}-1,3-propanediol | 0.16–100 µM | IC50 =60.9 µM (DPPH assay). | [53] | |
BP | - | in vitro | RAW 264.7 cells | Broussochalcone A | 1–30 µM | IC0.200 was 7.6 ± 0.8 µM (diphenyl-2-picrylhydrazyl assay system). | [92] | |
BP | Roots | in vitro | - | Broussoflavan A, broussoflavonol F,broussoflavonol G, broussoaurone A | - | Inhibiting the Fe2+-induced formation of TBARS with IC50 values of 2.1, 2.7, 1.0 and 1.2µM respectively. | [46] | |
Anti-inflammation | BK | Roots | in vitro | RAW264.7 cells | Eriodictyol, apigenin, kaempferol | 0–30 μM | Reducing iNOS expression with IC50 values of 11.98, 10.16, and 24.06 μM. | [14] |
BP | Branches and twigs | in vitro | THP-1 cells | Kazinol M, broussoflavonol B, broussoflavonol A, 5,7,3′,4′-tetrahydroxy-3-methoxy-8,5′-diprenylflavone and broussofluorenone C | 1 μM | Activating NF-κB/AP-1. | [42] | |
BP | Root barks | in vitro | NCIH1975, HepG2, and MCF-7 cells | Broussoflavonol H. | - | Inhibiting the production of IL-2 in Jurkat induced by PHA and PMA (IC50 = 9.95 μM). | [41] | |
BP | Root barks | in vitro | RAW264.7 cells | Flavanone, broussochalcone C, broussoflavanonol A, kazinol V, kazinol W and broussoflavonol B | 1.25–40 μM | Reducing NO production through downregulating iNOS, COX-2, and TNF-α expression and the expression of iNOS protein. | [40] | |
BK | Barks | in vitro | RAW264.7 cells | Broussonin E | 2.5–20 μM | Inhibiting the ERK and p38 MAPK and enhancing the JAK2-STAT3 signaling pathway. | [96] | |
BK | Leaves | in vivo | mice | Ethanol extract | 200–1000 μg/mL | Down-regulating the plasma levels of IgE and IL-4 and inhibiting hTARC secretion in HaCaT cells by activated TNF-α/IFN-γ. | [117] | |
BP | Stem barks | in vitro | RAW 264.7 cells | n-hexane fractionof methanol extract | 10–80 μg/mL | Inhibiting the NO production and proinflammatory cytokines. | [118] | |
BP | Stem barks | in vitro | RAW 264.7 cells | n-butanol fraction | 0–150 μg/mL | Inhibiting iNOS expression in RAW 264.7 macrophages. | [74] | |
BK | Heartwood | in vivo | mice | EtOH extract | 50–250 mg/mL | Inhibiting IgE production in β-cell and mast cell infiltration by IL-4 and chemokines by inhibiting Th2-cell activation by allergens. | [98] | |
BP | - | in vivo | - | Ethanol extract | - | Inhibiting vascular permeability via autocrines and nitric oxide. | [97] | |
BP | - | in vitro | Bone marrow cells | Papyriflavonol A | 0–250 μM | Inhibiting human group IIA and V sPLA2s with IC50 values of 3.9 and 4.5 mM. | [95] | |
BP | - | in vitro | RAW 264.7 cells | Broussochalcone A | 1–20 μM | Inhibiting NO production with an IC50 of 11.3 mM via inhibition of IkBa phosphorylation, IkBa degradation, nuclear factor-kappa B activation, and iNOS expression. | [92] | |
BK | Root barks | in vitro | RAW 264.7 cells | Tupichinol C, kazinol U, kazinol A, kazinol I, broussonin A, kazinol C, kazinol D | 0–20µM | Suppressing the LPS-induced high level of NO with IC50 values of less than 6 µM and attenuating protein and mRNA levels of inducible iNOS. | [49] | |
Anti-diabetic and Anti-obesity Effects | BK | Fruits | in vivo | mice | Ethanolic extract | - | Inhibiting Erk phosphorylation by preventing STZ-induced oxidative stress and beta cell apoptosis. | [15] |
BK | Fruits | in vitro | SV40 MES13 cells | Ethanolic extract | 0–40 μg/mL | Ethanolic extract induced the expression of antioxidant enzymes by activating Nrf2 and prevented palmitate-induced lipotoxicity. | [103] | |
BP | Root barks | in vivo | mice | Broussoflavonol B and kazinol J | 0–100 μg/mL | Suppressing pro-inflammatory responses via activating AMPK. | [102] | |
BK | Root barks | in vivo | mice | Kazinol C and isokazinol D | 5–25 μM | Blocking the NF-κB pathway and reducing the extent of β-cell damage. | [100] | |
BK | Stem barks | in vitro | 3T3-L1 cells | Broussonone A together with other isolated phenolic compounds | 100 µM | Inhibitory activity against pancreatic lipase with IC50 of 28.4 µM, and has inhibitory effects on adipocyte differentiation. | [33] | |
BK | Root barks | in vitro | RINm5F cells | Kazinol U | 0–60 μM | Blocking the NF-kB pathway and reducing cells damage. | [99] | |
BP | Roots | - | - | Broussochalcone A, broussochalcone B, kazinol A, kazinol B, 8-(1,1-Dimethylallyl)-5′-(3-methylbut-2-enyl)-3′,4′,5,7-tetrahydroxyflanvonol and papyriflavonol A | 0.01–1000 μM | IC50 values of 5.3, 11.1, 12.0, 26.3, 3.6, and 2.1μM respectively. | [56] | |
BK | Stem barks | in vivo | mice | Stem bark powders | - | Decreasing the serum levels of glucose, fructosamine, triglyceride, and total cholesterol and the activity of ALT, and increasing blood insulin level. | [16] | |
Antibacterial and Antiviral Effects | BP | - | in vitro | - | Broussochalcone A, papyriflavonol A,3′-(3-methylbut-2-enyl)-3′,4′,7-trihydroxyflavane, broussoflavan A, kazinol F and kazinol J | - | These six polyphenols are more potent Mpro inhibitors than two repurposed drugs (lopinavir and darunavir). | [18] |
BP | Whole plants | in vitro | - | 5,7,3′,4′-tetrahydroxy-3-methoxy-8,5′-diprenylflavone | 0.12–250 ppm | Suppressing Porphyromonas gingivalis (MIC = 1.95 ppm). | [17] | |
BP | Roots | in vitro | - | Papyriflavonol A | 1–1000 µM | Inhibitory effect of PLpro with an IC50 value of 3.7 µM. | [105] | |
BP | Fruits | in vitro | - | BPP-3 | 0.4–2.0 mg/mL | The minimum inhibitory concentration of BPP-3 against E. coli, P. aeruginosa, B. subtilis and S. aureus were 0.3 mg/mL, 0.25 mg/mL, 0.3 mg/mL and 0.25 mg/mL, respectively. | [115] | |
BP | Seeds | in vitro | - | Hexane extract | 0.25%, 0.5%, 1%, 2%, and 4% (v/v) | The seed oil has an inhibitory effect on Staphylococcus aureus, Proteus vulgaris, Bacillus cereus, and Enterobacter aerogenes. | [104] | |
Skin whitening and Anti- skin wrinkles Activities | BK | Root barks | in vivoin vitro | Zebrafish/B16F10 cells | Kazinol U | 0–20 μM | Inhibitory activity of MITF and downstream target genes such as tyrosinase, Tyrp1 and Tyrp2. | [19] |
BK | Stems | in vitro | HEK-293T cells | EtOH extract | 0–100 μg/mL | Maintaining the collagen content of the skin by eliminating reactive oxygen species and inhibiting collagenase activity. | [106] | |
Others | BK | Roots | in vitro | RAW264.7 cells | Broussonol F, G and K | 10–30 μM | Inhibiting RANKL-induced osteoclast formation. | [44] |
- | Fruits | in vivo | mice | Chushizi | - | Increasing liver function and alleviating DILI via regulating the TLR3/ JNK/ c-jun/c-fos/JAK/STAT3 pathway. | [107] | |
BP | - | in vitro | hHFDP cells | Ethanolic extract | 0–20 µg/mL | Regulating β-Catenin and STAT6 target protein. | [108] | |
BK | Twigs | in vitro | human umbilical vein endothelial cells | Ethanolic extract | 0.1–10 µg/mL | Inhibiting VEGF-A stimulated phosphorylation/activation of ERK, Akt and p70S6K, the downstream targets of the VEGFR-2 signaling pathways, and downregulation of VEGFR-2 and MMP-2. | [109] | |
BP | Roots | in vitro | - | 8-(1,1-Dimethylallyl)-5′-(3-methylbut-2-enyl)-3′,4′,5,7-tetrahydroxyflanvonol, papyriflavonol A and broussoflavonol B | 0–30 µM | Inhibiting hAChE and BChE with IC50′s ranging from 0.8 to 3.1 μM and from 0.5 to 24.7 μM, respectively. | [47] | |
BP | Seeds | in vitro | N1E-115 cells | Chushizilactam A and adenosine | 50 µM | Adenosine could obviously increase cAMP. | [73] | |
BK | Stems | in vivo | mice | Water extract | - | Water extract has immune-stimulating activity by enhancing the Th1 immune response. | [110] | |
BK | - | in vitro | MCF-7 cells | Broussonin A, tupichinol C kazinol U and (+)-(2R) kazinol I | 10 µM | Modulating the E2-responsive genes as functional ER ligands such as E2. | [50] | |
BK | Roots | in vitro | C2C12 and 10T1/2 cells | Kazinol P | 1000 nM | Promoting myogenic differentiation through the activation of p38MAPK and MyoD transcription activities. | [111] | |
BK | Root barks | in vivo | RAW 264.7 cells | Kazinol B | 6.25–50 µM | Inhibiting the NO synthesis with an IC50 of 21.6 mM | [112] |
4. Application
4.1. Supplements to the Diet of Animals
4.2. Phytoremediation of Heavy Metal-Contaminated Soil
4.3. Combination Using
4.4. Inhibition of Target Enzymes
4.5. Papermaking and Cloth-Making
4.6. Others
5. Conclusions and Further Perspectives
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CALCBP | Chlorogenic acid-like compounds extracted from BP |
MS | Mass Spectrum |
NMR | Nuclear Magnetic Resonance Spectrometer |
EC | Esophagus cancer |
NSCLC | Non-small cell lung cancer cell |
ERK | Extracellular signal-regulated kinase |
AMPK | Adenosine 5-monophosphate [134]-activated protein kinase |
HepG | Human hepatoma carcinoma |
CAA | Cellular antioxidant activity |
IC50 | Half maximal inhibitory concentration |
XOD | Xanthine oxidase |
TFC | Determination of total flavonoid content |
TPC | Determination of total phenolic contents |
MTT | 3-(4,5)-dimethylthiahiazo (-z-y1)-3,5-di- phenytetrazoliumromide |
TBARS | Thiobarbituric acid-reactive substance |
PMA | Phorbol 12-myristate 13-acetate |
PHA | Phytohemagglutinin |
iNOS | Inducible nitric oxide synthas |
LPS | Lipopolysaccharide |
PA- | Palmitate- |
STZ | Streptozotocin |
HFD | High fat diet |
MLDS | Multiple low-dose streptozotocin |
ALT | Alanine aminotransferase |
OLETF | Otsuka Long-Evans Tokushima fatty |
MIC | Minimum inhibitory concentration |
APAP | Acetaminophen |
hHFDP | Human hair follicle dermal papilla |
BChE | Butylcholinesterase |
hAChE | Human acetylcholinesterase |
OVA | Ovalbumin |
BW | Body weight |
ADG | Average daily gain |
DMI | Dry matter intake |
FCR | Feed conversion ratio |
MDA | Malondialdehyde |
SOD | Superoxide dismutase |
TAC | Total antioxidant capacity |
PUFA | Polyunsaturated fatty acids |
DHA | Docosahexaenoic acid |
LPS | Lipopolysaccharide |
PTP1B | Tyrosine phosphatase 1B protein |
MAPK | Mitogen-activated protein kinase |
STAT | Signal transducer and activator of transcription |
JAK | Janus kinase |
AD | Atopic dermatitis |
T24 | Human bladder cancer cells |
DPPH | 1,1′-diphenyl-2-picryl-hydrazyl radical |
ABTS | 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid |
FRAP | Ferric reducing activity power assay |
TEAC | Trolox equivalent antioxidant capacity |
TNF-alpha | Tumor necrosis factor-alpha |
IFN-gamma | Interferongamma |
TARC/CCL17 | Thymus-and-activation regulated chemokine |
MDC/CCL22 | Macrophagederived chemokine |
RANTES/CCL5 | Regulated-onactivation-normal T cell-expressed-and-secreted chemokine |
IL-4 | Interleukin-4 |
IgE | Plasma immunoglobulin E |
RINm5F cells | Rat pancreatic β-cell line |
HFD | Ten-week-high fat diet |
References
- Wang, F.F.; Su, Y.L.; Chen, N.Z.; Shen, S.H. Genome-Wide analysis of the UGT gene family and identification of flavonoids in Broussonetia papyrifera. Molecules 2021, 26, 3449. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.; Kwon, J.; Jeong, J.H.; Ryu, J.H.; Kim, K. Kazinol C from Broussonetia kazinoki stimulates autophagy via endoplasmic reticulum stress-mediated signaling. Anim. Cells Syst. 2022, 26, 28–36. [Google Scholar] [CrossRef] [PubMed]
- Gunatilaka, A.L.; Uvais, M.; Sultanbawa, S.; Surendrakumar, S.; Somanathan, R. Structure of a bipyridine alkaloid from Broussonetia zeylanica. Phytochemistry 1983, 22, 2847–2850. [Google Scholar] [CrossRef]
- Casuga, F.P.; Castillo, A.L.; Corpuz, M. GC–MS analysis of bioactive compounds present in different extracts of an endemic plant Broussonetia luzonica (Blanco)(Moraceae) leaves. Asian Pac. J. Trop. Biomed. 2016, 6, 957–961. [Google Scholar] [CrossRef] [Green Version]
- Chung, K.F.; Kuo, W.H.; Hsu, Y.H.; Li, Y.H.; Rubite, R.R.; Xu, W.B. Molecular recircumscription of Broussonetia (Moraceae) and the identity and taxonomic status of B. kaempferi var. australis. Bot. Stud. 2017, 58, 11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lemmens, R. Broussonetia greveana (Baill.) CC Berg. Plant. Resour. Trop. Afr. 1977, 47, 356. [Google Scholar]
- Sun, J.; Liu, S.F.; Zhang, C.S.; Yu, L.N.; Bi, J.; Zhu, F.; Yang, Q.L. Chemical composition and antioxidant activities of Broussonetia papyrifera fruits. PLoS ONE 2012, 7, e32021. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, G.W.; Huang, B.K.; Qin, L.P. The genus Broussonetia: A review of its phytochemistry and pharmacology. Phytother. Res. 2012, 26, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.; Tian, T.; Tan, X.; Yang, X.J. First report of lasiodiplodia theobromae causing brown leaf spot on Broussonetia papyrifera in Southwestern China. Plant Dis. 2020, 104, 2024. [Google Scholar] [CrossRef] [Green Version]
- Whistler, W.A. Broussonetia papyrifera (paper mulberry). Tradit. Tree Initiat. 2006, 9, 1–3. [Google Scholar]
- Lin, J.; Zou, J.; Zhang, B.; Que, Q.; Zhang, J.; Chen, X.; Zhou, W. An efficient in vitro propagation protocol for direct organo genesis from root explants of a multi-purpose plant, Broussonetia papyrifera (L.) L’Hér. ex Vent. Woody Forage 2021, 170, 113686. [Google Scholar]
- Available online: https://www.plantplus.cn/info/Broussonetia (accessed on 1 July 2022).
- Sirita, J.; Chomsawan, B.; Yodsoontorn, P.; Kornochalert, S.; Lapinee, C.; Jumpatong, K. Antioxidant activities, phenolic and tannin contents of paper mulberry (Broussonetia papyrifera) extract. Med. Plants 2020, 12, 371–375. [Google Scholar] [CrossRef]
- Vu, N.K.; Le, T.T.; Woo, M.H.; Min, B. Anti-inflammatory and cytotoxic activities of phenolic compounds from Broussonetia kazinoki. Phytochemistry 2021, 27, 176–182. [Google Scholar]
- Kim, H.J.; Kim, D.; Yoon, H.; Choi, C.S.; Oh, Y.S.; Jun, H.S. Prevention of oxidative stress-induced pancreatic Beta cell damage by Broussonetia kazinoki Siebold fruit extract via the ERK-Nox4 pathway. Antioxidants 2020, 9, 406. [Google Scholar] [CrossRef] [PubMed]
- Cha, J.Y.; Kim, Y.T.; Kim, H.S.; Cho, Y.S. Antihyperglycemic effect of stem bark powder from paper mulberry (Broussonetia kazinoki sieb.) in type 2 diabetic Otsuka long-evans Tokushima fatty rats. J. Med. Food 2008, 11, 499–505. [Google Scholar] [CrossRef]
- Geng, C.A.; Yan, M.H.; Zhang, X.M.; Chen, J.J. Anti-oral microbial flavanes from Broussonetia papyrifera under the guidance of bioassay. Nat. Prod. Bioprospect. 2019, 9, 139–144. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, R.; Chakraborty, A.; Biswas, A.; Chowdhuri, S. Identification of polyphenols from Broussonetia papyrifera as SARS-CoV-2 main protease inhibitors usingin silicodocking and molecular dynamics simulation approaches. J. Biomol. Struct. Dyn. 2021, 39, 6747–6760. [Google Scholar] [CrossRef]
- Lim, J.; Nam, S.; Jeong, J.H.; Kim, M.J.; Yang, Y.; Lee, M.S.; Lee, H.G.; Ryu, J.H.; Lim, J.S. Kazinol U inhibits melanogenesis through the inhibition of tyrosinase-related proteins via AMP kinase activation. Br. J. Pharmacol. 2019, 176, 737–750. [Google Scholar] [CrossRef] [Green Version]
- Sheng, P.; He, L.; Ji, S.S.; Huang, J.L.; Zhang, Z.H.; Wang, D.S.; Liu, J.P.; Zhang, H.Q. Effect of Broussonetia papyrifera L. (paper mulberry) on growth performance, carcase traits, meat quality and immune performance in Hu ram lambs. Ital. J. Anim. Sci. 2021, 20, 691–697. [Google Scholar] [CrossRef]
- Peng, X.; Liu, H.; Chen, P.; Tang, F.; Hu, Y.; Wang, F.; Pi, Z.; Zhao, M.; Chen, N.; Chen, H. A chromosome-scale genome assembly of paper mulberry (Broussonetia papyrifera) provides new insights into its forage and papermaking usage. Mol. Plant 2019, 12, 661–677. [Google Scholar] [CrossRef]
- Ko, H.J.; Kwon, O.S.; Jin, J.H.; Son, K.H.; Kim, H.P. Inhibition of experimental systemic inflammation (septic inflammation) and chronic bronchitis by new phytoformula BL containing Broussonetia papyrifera and Lonicera japonica. Biomol. Ther. 2013, 21, 66–71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, J.J.; Kim, J.E.; Yun, W.B.; Lee, M.R.; Choi, J.Y.; Song, B.R.; Son, H.J.; Lim, Y.; Kang, H.G.; An, B.S.; et al. Therapeutic effects of a liquid bandage prepared with cellulose powders from Styela clava tunics and Broussonetia kazinoki bark: Healing of surgical wounds on the skin of Sprague Dawley rats. Mol. Med. Rep. 2019, 19, 452–460. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fang, S.C.; Shieh, B.J.; Lin, C.N. Phenolic constituents of formosan Broussonetia-papyrifera. Phytochemistry 1994, 37, 851–853. [Google Scholar]
- Fang, S.C.; Shieh, B.J.; Wu, R.R.; Lin, C.N. Isoprenylated flavonols of formosan Broussonetia-papyrifera. Phytochemistry 1995, 38, 535–537. [Google Scholar] [CrossRef]
- Lin, C.N.; Chiu, P.H.; Fang, S.C.; Shieh, B.J.; Wu, R.R. Revised structure of broussoflavonol G and the 2D NMR spectra of some related prenylflavonoids. Phytochemistry 1996, 41, 1215–1217. [Google Scholar]
- Ko, H.H.; Yen, M.H.; Wu, R.R.; Won, S.J.; Lin, C.N. Cytotoxic isoprenylated flavans of Broussonetia kazinoki. J. Nat. Prod. 1999, 62, 164–166. [Google Scholar] [CrossRef]
- Lee, D.; Bhat, K.P.L.; Fong, H.H.S.; Farnsworth, N.R.; Pezzuto, J.M.; Kinghorn, A.D. Aromatase inhibitors from Broussonetia papyrifera. J. Nat. Prod. 2001, 64, 1286–1293. [Google Scholar] [CrossRef]
- Zhang, P.C.; Wang, S.; Wu, Y.; Chen, R.Y.; Yu, D.Q. Five new diprenylated flavonols from the leaves of Broussonetia kazinoki. J. Nat. Prod. 2001, 64, 1206–1209. [Google Scholar] [CrossRef]
- Chen, R.M.; Hu, L.H.; An, T.Y.; Li, J.; Shen, Q. Natural PTP1B inhibitors from Broussonetia papyrifera. Bioorg. Med. Chem. Lett. 2002, 12, 3387–3390. [Google Scholar] [CrossRef]
- Zheng, Z.P.; Cheng, K.W.; Chao, J.F.; Wu, J.J.; Wang, M.F. Tyrosinase inhibitors from paper mulberry (Broussonetia papyrifera). Food Chem. 2008, 106, 529–535. [Google Scholar] [CrossRef]
- Ko, H.H.; Chang, W.L.; Lu, T.M. Antityrosinase and antioxidant effects of ent-kaurane diterpenes from leaves of Broussonetia papyrifera. J. Nat. Prod. 2008, 71, 1930–1933. [Google Scholar] [CrossRef]
- Ahn, J.H.; Liu, Q.; Lee, C.; Ahn, M.J.; Yoo, H.S.; Hwang, B.Y.; Lee, M.K. A new pancreatic lipase inhibitor from Broussonetia kanzinoki. Bioorg. Med. Chem. Lett. 2012, 22, 2760–2763. [Google Scholar] [CrossRef] [PubMed]
- Guo, F.J.; Feng, L.; Huang, C.; Ding, H.X.; Zhang, X.T.; Wang, Z.Y.; Li, Y.M. Prenylflavone derivatives from Broussonetia papyrifera, inhibit the growth of breast cancer cells in vitro and in vivo. Phytochem. Lett. 2013, 6, 331–336. [Google Scholar] [CrossRef]
- Ran, X.K.; Wang, X.T.; Liu, P.P.; Chi, Y.X.; Wang, B.J.; Dou, D.Q.; Kang, T.G.; Xiong, W. Cytotoxic constituents from the leaves of Broussonetia papyrifera. Chin. J. Nat. Med. 2013, 11, 269–273. [Google Scholar] [CrossRef]
- Yang, C.Y.; Li, F.; Du, B.W.; Chen, B.; Wang, F.; Wang, M.K. Isolation and characterization of new phenolic compounds with estrogen biosynthesis-inhibiting and antioxidation activities from Broussonetia papyrifera leaves. PLoS ONE 2014, 9, e94198. [Google Scholar] [CrossRef] [PubMed]
- Xue, J.J.; Lei, C.; Wang, P.P.; Kim, K.Y.; Li, J.Y.; Li, J.; Hou, A.J. Flavans and diphenylpropanes with PTP1B inhibition from Broussonetia kazinoki. Fitoterapia 2018, 130, 37–42. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Wen, T.; Liu, J. Progress in chemical constituents and bioactivities of Broussonetia papyrifera (L.) Vent. Med. Res. 2019, 3, 190005. [Google Scholar] [CrossRef]
- Lou, Y.; Su, S.Y.; Li, Y.N.; Lei, C.; Li, J.Y. Flavonoids with PTP1B inhibition from Broussonetia papyrifera. China J. Chin. Mater. Med. 2019, 44, 88–94. [Google Scholar]
- Ryu, H.W.; Park, M.H.; Kwon, O.K.; Kim, D.Y.; Hwang, J.Y.; Jo, Y.H.; Ahn, K.S.; Hwang, B.Y.; Oh, S.R. Anti-inflammatory flavonoids from root bark of Broussonetia papyrifera in LPS-stimulated RAW264.7 cells. Bioorg. Chem. 2019, 92, 103233. [Google Scholar] [CrossRef]
- Tian, J.L.; Liu, T.L.; Xue, J.J.; Hong, W.; Zhang, Y.; Zhang, D.X.; Cui, C.C.; Liu, M.C.; Niu, S.L. Flavanoids derivatives from the root bark of Broussonetia papyrifera as a tyrosinase inhibitor. Ind. Crops Prod. 2019, 138, 111445. [Google Scholar] [CrossRef]
- Malanik, M.; Treml, J.; Lelakova, V.; Nykodymova, D.; Oravec, M.; Marek, J.; Smejkal, K. Anti-inflammatory and antioxidant properties of chemical constituents of Broussonetia papyrifera. Bioorg. Chem. 2020, 104, 104298. [Google Scholar] [CrossRef] [PubMed]
- Qureshi, H.; Anwar, T.; Khan, S.; Fatimah, H.; Waseem, M. Phytochemical constituents of Broussonetia papyrifera (L.) L’He’r. ex Vent: An overview. J. of the Indian Chem. Soc. 2020, 97, 55–65. [Google Scholar]
- Vu, N.K.; Ha, M.T.; Kim, C.S.; Gal, M.; Kim, J.A.; Woo, M.H.; Lee, J.H.; Min, B.S. Structural characterization of prenylated compounds from Broussonetia kazinoki and their antiosteoclastogenic activity. Phytochemistry 2021, 188, 112791. [Google Scholar] [CrossRef] [PubMed]
- Yadav, A. Brousssonetia Papyrifera linn: Deep insights into its dominant pharmacological perspectives. World J. Pharm. Res. 2021, 10, 577–590. [Google Scholar]
- Ko, H.H.; Yu, S.M.; Ko, F.N.; Teng, C.M.; Lin, C.N. Bioactive constituents of Morus australis and Broussonetia papyrifera. J. Nat. Prod. 1997, 60, 1008–1011. [Google Scholar] [CrossRef]
- Ryu, H.W.; Curtis-Long, M.J.; Jung, S.; Jeong, I.Y.; Kim, D.S.; Kang, K.Y.; Park, K.H. Anticholinesterase potential of flavonols from paper mulberry (Broussonetia papyrifera) and their kinetic studies. Food Chem. 2012, 132, 1244–1250. [Google Scholar] [CrossRef]
- Ma, Y.M.; Zhang, Z.W.; Feng, C.L. Flavonoids of Broussonetia papyrifera. Chem. Nat. Compd. 2009, 45, 881–882. [Google Scholar] [CrossRef]
- Lee, D.Y.; Lee, H.J.; Ryu, J.H. Prenylated polyphenols from Broussonetia kazinoki as inhibitors of Nitric Oxide production. Molecules 2018, 23, 639. [Google Scholar] [CrossRef] [Green Version]
- Lee, D.Y.; Kim, D.H.; Lee, H.J.; Lee, Y.; Ryu, K.H.; Jung, B.I.; Song, Y.S.; Ryu, J.H. New estrogenic compounds isolated from Broussonetia kazinoki. Bioorg. Med. Chem. Lett. 2010, 20, 3764–3767. [Google Scholar] [CrossRef]
- Yu, D.; Jing, Q.; Yu, X. Research progress on new chemical constituents and biological activities of Broussonetia papyrifera. Nat. Prod. Res. Dev. 2014, 26, 1327. [Google Scholar]
- Venkatesh, K.R.; Chauhan, S. Mulberry: Life enhancer. J. Med. Plants Res. 2008, 2, 271–278. [Google Scholar]
- Mei, R.Q.; Wang, Y.H.; Du, G.H.; Liu, G.M.; Zhang, L.; Cheng, Y.X. Antioxidant lignans from the fruits of Broussonetia papyrifera. J. Nat. Prod. 2009, 72, 621–625. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.J.; Mei, R.Q.; Zhang, L.; Lu, Q.; Zhao, J.; Adebayo, A.H.; Cheng, Y.X. Antioxidant phenolics from Broussonetia papyrifera fruits. J. Asian Nat. Prod. Res. 2010, 12, 399–406. [Google Scholar] [CrossRef] [PubMed]
- Baek, Y.S.; Ryu, Y.B.; Curtis-Long, M.J.; Ha, T.J.; Rengasamy, R.; Yang, M.S.; Park, K.H. Tyrosinase inhibitory effects of 1,3-diphenylpropanes from Broussonetia kazinoki. Bioorg. Med. Chem. 2009, 17, 35–41. [Google Scholar] [CrossRef]
- Ryu, H.W.; Lee, B.W.; Curtis-Long, M.J.; Jung, S.; Ryu, Y.B.; Lee, W.S.; Park, K.H. Polyphenols from Broussonetia papyrifera displaying potent alpha-glucosidase inhibition. J. Agric. Food Chem. 2010, 58, 202–208. [Google Scholar] [CrossRef] [PubMed]
- Ryu, H.W.; Lee, J.H.; Kang, J.E.; Jin, Y.M.; Park, K.H. Inhibition of Xanthine Oxidase by phenolic phytochemicals from Broussonetia papyrifera. J. Korean Soc. Appl. Biol. Chem. 2012, 55, 587–594. [Google Scholar] [CrossRef]
- Shibano, M.; Kitagawa, S.; Kusano, G. Studies on the constituents of Broussonetia species. 1. Two new pyrrolidine alkaloids, broussonetines C and D, as beta-galactosidase and beta-mannosidase inhibitors from Broussonetia kazinoki SIEB. Chem. Pharm. Bull. 1997, 45, 505–508. [Google Scholar] [CrossRef] [Green Version]
- Shibano, M.; Kitagawa, S.; Nakamura, S.; Akazawa, N.; Kusano, G. Studies on the constituents of Broussonetia species. 2. Six new pyrrolidine alkaloids, Broussonetine A, B, E, F and Broussonetinine A and B, as inhibitors of glycosidases from Broussonetia kazinoki SIEB. Chem. Pharm. Bull. 1997, 45, 700–705. [Google Scholar] [CrossRef] [Green Version]
- Shibano, M.; Nakamura, S.; Kubori, M.; Minoura, K.; Kusano, G. Studies on the constituents of Broussonetia species. IV. Two new pyrrolidinyl piperidine alkaloids, broussonetines I and J, from Broussonetia kazinoki SIEB. Chem. Pharm. Bull. 1998, 46, 1416–1420. [Google Scholar] [CrossRef] [Green Version]
- Shibano, M.; Nakamura, S.; Akazawa, N.; Kusano, G. Studies on the constituents of Broussonetia species. III. Two new pyrrolidine alkaloids, broussonetines G and H, as inhibitors of glycosidase, from Broussonetia kazinoki SIEB. Chem. Pharm. Bull. 1998, 46, 1048–1050. [Google Scholar] [CrossRef] [Green Version]
- Shibano, M.; Tsukamoto, D.; Kusano, G. A new pyrrolizidine alkaloid, broussonetine N, as an inhibitor of glycosidase, from Broussonetia kazinoki SIEB and absolute stereostructures of broussonetines A and B. Chem. Pharm. Bull. 1999, 47, 907–908. [Google Scholar] [CrossRef] [Green Version]
- Shibano, M.; Nakamura, S.; Motoya, N.; Kusano, G. Studies on the constituents of Broussonetia species. V. Two new pyrrolidine alkaloids, broussonetines K and L, as inhibitors of glycosidase, from Broussonetia kazinoki SIEB. Chem. Pharm. Bull. 1999, 47, 472–476. [Google Scholar] [CrossRef] [Green Version]
- Shibano, M.; Tsukamoto, D.; Fujimoto, R.; Masui, Y.; Sugimoto, H.; Kusano, G. Studies on the constituents of Broussonetia species. VII. Four new pyrrolidine alkaloids, broussonetines M, O, P, and Q, as inhibitors of glycosidase, from Broussonetia kazinoki Sieb. Chem. Pharm. Bull. 2000, 48, 1281–1285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsukamoto, D.; Shibano, M.; Okamoto, R.; Kusano, G. Studies on the constituents of Broussonetia species VIII. Four new pyrrolidine alkaloids, broussonetines R, S, T, and V and a new pyrroline alkaloid, broussonetine U, from Broussonetia kazinoki Sieb. Chem. Pharm. Bull. 2001, 49, 492–496. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pang, S.Q.; Wang, G.Q.; Lin, J.S.; Diao, Y.; Xu, R.A. Cytotoxic activity of the alkaloids from Broussonetia papyrifera fruits. Pharm. Biol. 2014, 52, 1315–1319. [Google Scholar] [CrossRef]
- Pang, S.Q.; Wang, G.Q.; Huang, B.K.; Zhang, Q.Y.; Qin, L.P. Isoquinoline alkaloids from Broussonetia papyrifera fruits. Chem. Nat. Compd. 2007, 43, 100–102. [Google Scholar] [CrossRef]
- O’Hagan, D. Pyrrole, pyrrolidine, pyridine, piperidine and tropane alkaloids. Nat. Prod. Rep. 2000, 17, 435–446. [Google Scholar] [CrossRef]
- Zhong, H.T.; Li, F.; Chen, B.; Wang, M.K. Euphane triterpenes from the bark of Broussonetia papyrifera. Helv. Chim. Acta 2011, 94, 2061–2065. [Google Scholar] [CrossRef]
- Liu, F.; Liu, Y.; Yan, Z.; Ma, Y.; Zhai, X.Q. Triterpenes from the bark of Broussonetia papyrifera (L.) Vent. Nat. Prod. Res. Dev. 2011, 40, 120–122. [Google Scholar]
- Casuga, F.P.; Castillo, A.L.; Corpuz, M.J. Bioactive compounds and cytotoxicity of ethyl acetate extract from Broussonetia luzonica (Moraceae) blanco leaves against hepatocellular carcinoma (Hepg2) cell lines. Pharmacogn. J. 2016, 8, 497–501. [Google Scholar] [CrossRef] [Green Version]
- Feng, W.S.; Li, H.W.; Zheng, X.K.; Chen, S.Q. Two new megastigmane O-glucopyranosides from the leaves of Broussonetia papyrifera. Chin. Chem. Lett. 2007, 18, 1518–1520. [Google Scholar] [CrossRef]
- Mei, R.Q.; Wang, X.T.; Chen, R.; Luo, H.R.; Cheng, Y.X. N-containing compounds from Broussonetia papyrifera seeds and their cAMP regulatory activity in N1E-115 cells. Chem. Nat. Compd. 2011, 47, 783–785. [Google Scholar] [CrossRef]
- Wang, L.; Son, H.J.; Xu, M.L.; Hu, J.H.; Wang, M.H. Anti-inflammatory and anticancer properties of dichloromethane and butanol fractions from the stem bark of Broussonetia papyrifera. J. Korean Soc. Appl. Biol. Chem. 2010, 53, 297–303. [Google Scholar] [CrossRef]
- Li, Y.; Li, H.L.; Zhang, Y.; Li, L.; Qin, C.G. In vitro antioxidant and anticancer activities of the extract from Paper Mulberry (Broussonetia papyrifera L.) fruit. Asian J. Chem. 2013, 25, 5453–5456. [Google Scholar] [CrossRef]
- Zhu, Z.X.; Zhao, Y.T. Mechanism of gastric carcinoma cell apoptosis induced by chlorogenic acid-like compounds extracted from Broussonetia papyrifera. Chin. Tradit. Herb. Drugs 2018, 24, 5345–5351. [Google Scholar]
- Dou, C.Z.; Liu, Y.F.; Zhang, L.L.; Chen, S.H.; Hu, C.Y.; Liu, Y.; Zhao, Y.T. Polyphenols from Broussonetia papyrifera induce apoptosis of HepG2 cells via inactivation of ERK and AKT signaling pathways. J. Evid. Based Complementary Altern. Med. 2021, 2021, 8841706. [Google Scholar] [CrossRef]
- Wei, B.L.; Chen, Y.C.; Hsu, H.Y. Kazinol Q from Broussonetia kazinoki enhances cell death induced by Cu (II) through increased reactive oxygen species. Molecules 2011, 16, 3212–3221. [Google Scholar] [CrossRef]
- Guo, M.X.; Wang, M.L.; Zhang, X.T.; Deng, H.; Wang, Z.Y. Broussoflavonol B restricts growth of ER-negative breast cancer stem-like cells. Anticancer Res. 2013, 33, 1873–1879. [Google Scholar]
- Park, S.; Fudhaili, A.; Oh, S.S.; Lee, K.W.; Madhi, H.; Kim, D.H.; Yoo, J.; Ryu, H.W.; Park, K.H.; Kim, K.D. Cytotoxic effects of kazinol A derived from Broussonetia papyrifera on human bladder cancer cells, T24 and T24R2. Phytomedicine 2016, 23, 1462–1468. [Google Scholar] [CrossRef]
- Jung, Y.C.; Han, S.; Hua, L.; Ahn, Y.H.; Cho, H.; Lee, C.J.; Lee, H.; Cho, Y.Y.; Ryu, J.H.; Jeon, R.; et al. Kazinol-E is a specific inhibitor of ERK that suppresses the enrichment of a breast cancer stem-like cell population. Biochem. Biophys. Res. Commun. 2016, 470, 294–299. [Google Scholar] [CrossRef]
- Jung, Y.C.; Han, S.; Hua, L.; Zhao, H.Y.; Lee, C.J.; Cho, Y.Y.; Jeon, R.; Ryu, J.H.; Kim, W.Y. Targeting cancer stem cell through blocking the Erk pathway with Kazinol-E from Broussonetia kazinoki. Cancer Res. 2015, 75, 2600. [Google Scholar] [CrossRef]
- Kim, J.H.; Kim, M.S.; Lee, B.H.; Kim, J.K.; Ahn, E.K.; Ko, H.J.; Cho, Y.R.; Lee, S.J.; Bae, G.U.; Kim, Y.K.; et al. Marmesin-mediated suppression of VEGF/VEGFR and integrin beta 1 expression: Its implication in non-small cell lung cancer cell responses and tumor angiogenesis. Oncol. Rep. 2017, 37, 91–97. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, S.H.; Lee, J.; Shon, J.C.; Phuc, N.M.; Jee, J.G.; Liu, K.H. The inhibitory potential of Broussochalcone A for the human cytochrome P450 2J2 isoform and its anti-cancer effects via FOXO3 activation. Phytomedicine 2018, 42, 199–206. [Google Scholar] [CrossRef]
- Shin, S.; Son, Y.; Liu, K.H.; Kang, W.; Oh, S. Cytotoxic activity of broussochalcone a against colon and liver cancer cells by promoting destruction complex-independent beta-catenin degradation. Food Chem. 2019, 131, 110550. [Google Scholar] [CrossRef] [PubMed]
- Jeong, J.H.; Ryu, J.H. Broussoflavonol B from Broussonetia kazinoki Siebold exerts anti-pancreatic cancer activity through downregulating FoxM1. Molecules 2020, 25, 2328. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Zhong, S.; Wu, H.; Wu, Q.J.E. In vitro anti-cancer effect of marmesin by suppression of PI3K/Akt pathway in esophagus cancer cells. Esophagus 2022, 19, 163–174. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.S.; Lim, J.; Lee, D.Y.; Ryu, J.H.; Lim, J.S. Kazinol C from Broussonetia kazinoki activates AMP-activated protein kinase to induce antitumorigenic effects in HT-29 colon cancer cells. Oncol. Rep. 2015, 33, 223–229. [Google Scholar] [CrossRef] [Green Version]
- Xiao, J.Q.; Fang, F.P.; Ying, F.Y.; Ying, Y.T. Ultrasonic extraction and antioxidant activity investigation of Broussonetia papyrifer seed oil. Nat. Prod. Res. Dev. 2014, 26, 1685. [Google Scholar]
- Li, Y.; Shang, X.Y.; Niu, W.N.; Xu, C.L.; Qin, C.G. Inhibitory Activity of the Extract from Broussonetia papyrifera Fruits to Cellular Lipid Peroxidation in vitro. Asian J. Chem. 2014, 26, 201–204. [Google Scholar] [CrossRef]
- Sun, J.; Zhang, C.S.; Yu, L.N.; Bi, J.; Liu, S.F.; Zhu, F.; Yang, Q.L. Antioxidant activity and total phenolics of Broussonetia papyrifera flower extracts. Appl. Mech. Mater. 2012, 140, 263–267. [Google Scholar] [CrossRef]
- Cheng, Z.J.; Lin, C.N.; Hwang, T.L.; Teng, C.M. Broussochalcone A, a potent antioxidant and effective suppressor of inducible nitric oxide synthase in lipopolysaccharide-activated macrophages. Biochem. Pharmacol. 2001, 61, 939–946. [Google Scholar] [CrossRef]
- Tsai, F.H.; Lien, J.C.; Lin, L.W.; Chen, H.Y.; Ching, H.; Wu, C.R. Protective effect of Broussonetia papyrifera against Hydrogen Peroxide-induced oxidative stress in SH-SY5Y cells. Biosci. Biotechnol. Biochem. 2009, 73, 1933–1939. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.L.; Wang, L.; Hu, J.H.; Lee, S.K.; Wang, M.H. Antioxidant activities and related polyphenolic constituents of the methanol extract fractions from Broussonetia papyrifera stem bark and wood. Food Sci. Biotechnol. 2010, 19, 677–682. [Google Scholar] [CrossRef]
- Kwak, W.J.; Moon, T.C.; Lin, C.X.; Rhyn, H.G.; Jung, H.J.; Lee, E.; Kwon, D.Y.; Son, K.H.; Kim, H.P.; Kang, S.S.; et al. Papyriflavonol A from Broussonetia papyrifera inhibits the passive cutaneous anaphylaxis reaction and has a secretory phospholipase A (2)-inhibitory activity. Biol. Pharm. Bull. 2003, 26, 299–302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, S.P.; Guan, X.; Kai, G.Y.; Xu, Y.Z.; Xu, Y.; Wang, H.J.; Pang, T.; Zhang, L.Y.; Liu, Y. Broussonin E suppresses LPS-induced inflammatory response in macrophages via inhibiting MAPK pathway and enhancing JAK2-STAT3 pathway. Chin. J. Nat. Med. 2019, 17, 372–380. [Google Scholar] [CrossRef]
- Lin, L.W.; Chen, H.Y.; Wu, C.R.; Liao, P.M.; Lin, Y.T.; Hsieh, M.T.; Ching, H. Comparison with various parts of Broussonetia papyrifera as to the antinociceptive and anti-inflammatory activities in rodents. Biosci. Biotechnol. Biochem. 2008, 72, 2377–2384. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.K.; Ha, H.; Lee, H.Y.; Park, S.J.; Jeong, S.I.; Choi, Y.J.; Shin, H.K. Inhibitory effects of heartwood extracts of Broussonetia kazinoki Sieb on the development of atopic dermatitis in NC/Nga mice. Biosci. Biotechnol. Biochem. 2010, 74, 1802–1806. [Google Scholar] [CrossRef]
- Bae, U.J.; Lee, D.Y.; Song, M.Y.; Lee, S.M.; Park, J.W.; Ryu, J.H.; Park, B.H. A prenylated flavan from Broussonetia kazinoki prevents cytokine-induced beta-cell death through suppression of nuclear factor-kappa B activity. Biol. Pharm. Bull. 2011, 34, 1026–1031. [Google Scholar] [CrossRef] [Green Version]
- Bae, U.J.; Jang, H.Y.; Lim, J.M.; Hua, L.; Ryu, J.H.; Park, B.H. Polyphenols isolated from Broussonetia kazinoki prevent cytokine-induced beta-cell damage and the development of type 1 diabetes. Exp. Mol. Med. 2015, 47, 739. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.; Li, H.; Jeong, J.H.; Noh, M.; Ryu, J.H. Kazinol B from Broussonetia kazinoki improves insulin sensitivity via Akt and AMPK activation in 3T3-L1 adipocytes. Fitoterapia 2016, 112, 90–96. [Google Scholar] [CrossRef]
- Lee, J.M.; Choi, S.S.; Park, M.H.; Jang, H.; Lee, Y.H.; Khim, K.W.; Oh, S.R.; Park, J.; Ryu, H.W.; Choi, J.H. Broussonetia papyrifera root bark extract exhibits A7 anti-inflammatory effects on adipose tissue and improves insulin sensitivity potentially via AMPK activation. Nutrients 2020, 12, 773. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, D.; Kim, H.J.; Cha, S.H.; Jun, H.S. Protective effects of Broussonetia kazinoki Siebold fruit extract against palmitate-induced lipotoxicity in mesangial cells. J. Evid. Based Complementary Altern. Med. 2019, 2019, 4509403. [Google Scholar] [CrossRef] [PubMed]
- Kumar, N.N.; Ramakrishnaiah, H.; Krishna, V.; Deepalakshmi, A.P. GC-MS analysis and antimicrobial activity of seed oil of Broussonetia papyrifera (L.) VENT. J. Pharm. Sci. Res. 2015, 6, 3954. [Google Scholar]
- Park, J.Y.; Yuk, H.J.; Ryu, H.W.; Lim, S.H.; Kim, K.S.; Park, K.H.; Ryu, Y.B.; Lee, W.S. Evaluation of polyphenols from Broussonetia papyrifera as coronavirus protease inhibitors. J. Enzym. Inhib. Med. Chem. 2017, 32, 504–512. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kwon, B.; Kim, M.H.; Park, I.S.; Choo, Y.M.; Jeong, S.I.; Yu, K.Y.; Kim, J.; Kim, K.S.; Kim, M.S. The potential efficacy of Broussonetia kazinoki stem extract to show antioxidant property or suppress collagenase activity. Biomed. J. Sci. Tech. Res. 2019, 17, 12802–12804. [Google Scholar]
- Zhang, Y.D.; Biao, Y.N.; Chu, X.Q.; Hao, L.; Shi, C.; Liu, Y.; Zhang, Y.X.; Wang, X. Protective effect of Chushizi (Fructus Broussonetiae) on acetaminophen-induced rat hepatitis by inhibiting the Toll-like receptor 3/c-Jun N-terminal kinase/c-jun/c-fos/janus protein tyrosine kinase/activators of transcription 3 pathway. J. Tradit. Chin. Med. 2020, 40, 965–973. [Google Scholar]
- Lee, Y.H.; Nam, G.; Kim, M.K.; Cho, S.C. Broussonetia papyrifera promotes hair growth through the regulation of β-catenin and STAT6 target proteins: A phototrichogram analysis of clinical samples. Cosmetics 2020, 7, 40. [Google Scholar] [CrossRef]
- Cho, Y.R.; Kim, J.H.; Kim, J.K.; Ahn, E.K.; Ko, H.J.; In, J.K.; Lee, S.J.; Bae, G.U.; Kim, Y.K.; Oh, J.S.; et al. Broussonetia kazinoki modulates the expression of VEGFR-2 and MMP-2 through the inhibition of ERK, Akt and p70(S6K)-dependent signaling pathways: Its implication in endothelial cell proliferation, migration and tubular formation. Oncol. Rep. 2014, 32, 1531–1536. [Google Scholar] [CrossRef] [Green Version]
- Jung, D.Y.; Ha, H.K.; Lee, H.Y.; Lee, J.A.; Jeong, S.I.; Choi, Y.J.; Shin, H.K. Broussonetia kazinoki Siebold stimulates immune response in ovalbumin-immunized mice. J. Korean Orient. Med. 2011, 32, 10–17. [Google Scholar]
- Hwang, J.; Lee, S.J.; Yoo, M.; Go, G.Y.; Lee, D.Y.; Kim, Y.K.; Seo, D.W.; Kang, J.S.; Ryu, J.H.; Bae, G.U. Kazinol-P from Broussonetia kazinoki enhances skeletal muscle differentiation via p38MAPK and MyoD. Biochem. Biophys. Res. Commun. 2015, 456, 471–475. [Google Scholar] [CrossRef]
- Ryu, J.H.; Ahn, H.; Lee, H.J. Inhibition of nitric oxide production on LPS-activated macrophages by kazinol B from Broussonetia kazinoki. Fitoterapia 2003, 74, 350–354. [Google Scholar] [CrossRef]
- Guo, M.X.; Wang, M.L.; Deng, H.; Zhang, X.T.; Wang, Z.Y. A novel anticancer agent Broussoflavonol B downregulates estrogen receptor (ER)-alpha 36 expression and inhibits growth of ER-negative breast cancer MDA-MB-231 cells. Eur. J. Pharmacol. 2013, 714, 56–64. [Google Scholar] [CrossRef] [PubMed]
- Yao, L.; Xiong, L.; Yoo, C.G.; Dong, C.Y.; Meng, X.Z.; Dai, J.; Ragauskas, A.J.; Yang, C.L.; Yu, J.; Yang, H.T.; et al. Correlations of the physicochemical properties of organosolv lignins from Broussonetia papyrifera with their antioxidant activities. Sustain. Energy Fuels 2020, 4, 5114–5119. [Google Scholar] [CrossRef]
- Han, Q.H.; Wu, Z.L.; Huang, B.; Sun, L.Q.; Ding, C.B.; Yuan, S.; Zhang, Z.W.; Chen, Y.E.; Hu, C.; Zhou, L.J.; et al. Extraction, antioxidant and antibacterial activities of Broussonetia papyrifera fruits polysaccharides. Int. J. Biol. Macromol. 2016, 92, 116–124. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.Z.; Qin, L.P.; Huang, B.K. Antioxidative and anti-inflammatory properties of Chushizi oil from fructus Broussonetiae. J. Med. Plants Res. 2011, 5, 6407–6412. [Google Scholar]
- Lee, H.; Ha, H.; Lee, J.K.; Park, S.J.; Jeong, S.I.; Shin, H.K. The leaves of Broussonetia kazinoki Siebold inhibit atopic dermatitis-like response on mite allergen-treated Nc/Nga mice. Biomol. Ther. 2014, 22, 438–444. [Google Scholar] [CrossRef] [Green Version]
- Wu, W.T. Evaluation of anti-inflammatory effects of Broussonetia papyrifera stem bark. Indian J. Pharmacol. 2012, 44, 26–30. [Google Scholar] [CrossRef] [Green Version]
- Hua, J.L.; Xu, T.F.; Shen, Q.W.; Liu, Y.; Huang, G.J.; Rao, D.J.; Song, C.M.; Wang, J.K. Productive and metabolic increments of the inclusion of Broussonetia papyrifera to replace maize silage in growing goats. Czech J. Anim. Sci. 2020, 65, 303–310. [Google Scholar] [CrossRef]
- Tao, H.; Si, B.; Xu, W.; Tu, Y.; Diao, Q.Y. Effect of Broussonetia papyrifera L. silage on blood biochemical parameters, growth performance, meat amino acids and fatty acids compositions in beef cattle. Asian Australas. J. Anim. Sci. 2020, 33, 732. [Google Scholar] [CrossRef]
- Hao, Y.Y.; Huang, S.; Si, J.F.; Zhang, J.; Gaowa, N.; Sun, X.G.; Lv, J.Y.; Liu, G.K.; He, Y.Q.; Wang, W.; et al. Effects of Paper Mulberry Silage on the milk production, apparent digestibility, antioxidant capacity, and fecal bacteria composition in holstein dairy cows. Animals 2020, 10, 1152. [Google Scholar] [CrossRef]
- Si, B.W.; Tao, H.; Zhang, X.L.; Guo, J.P.; Cui, K.; Tu, Y.; Diao, Q.Y. Effect of Broussonetia papyrifera L. (paper mulberry) silage on dry matter intake, milk composition, antioxidant capacity and milk fatty acid profile in dairy cows. Asian Australas. J. Anim. Sci. 2018, 31, 1259–1266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, G.S.; Shui, S.Z.; Chai, M.J.; Wang, D.; Su, Y.Y.; Wu, H.B.; Sui, X.D.; Yin, Y.L. Effects of Paper Mulberry (Broussonetia papyrifera) leaf extract on growth performance and fecal microflora of weaned piglets. BioMed. Res. Int. 2020, 2020, 6508494. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.M.; Zhao, Y.L.; Xu, Z.G.; Zhang, W.; Jiang, K.K. Physiological responses of Broussonetia papyrifera to manganese stress, a candidate plant for phytoremediation. Ecotoxicol. Environ. Saf. 2019, 181, 18–25. [Google Scholar] [CrossRef] [PubMed]
- Zeng, P.; Guo, Z.; Xiao, X.; Zhou, H.; Gu, J.; Liao, B. Tolerance capacities of Broussonetia papyrifera to heavy metal (loid) s and its phytoremediation potential of the contaminated soil. Int. J. Phytorem. 2021, 24, 580–589. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Zhao, Y.; Fan, L.; Jin, Q.; Yang, G.; Xu, Z. Improvement of manganese phytoremediation by Broussonetia papyrifera with two plant growth promoting (PGP) Bacillus species. Chemosphere 2020, 260, 127614. [Google Scholar] [CrossRef]
- Luo, Y.F.; Wu, Y.G.; Qiu, J.; Wang, H.; Yang, L. Suitability of four woody plant species for the phytostabilization of a zinc smelting slag site after 5 years of assisted revegetation. J. Soils Sediments 2019, 19, 702–715. [Google Scholar] [CrossRef]
- Zeng, P.; Guo, Z.H.; Xiao, X.Y.; Peng, C.; Huang, B.; Feng, W.L. Complementarity of co-planting a hyperaccumulator with three metal(loid)-tolerant species for metal(loid)-contaminated soil remediation. Ecotoxicol. Environ. Saf. 2019, 169, 306–315. [Google Scholar] [CrossRef]
- Zeng, P.; Guo, Z.H.; Xiao, X.Y.; Peng, C. Effects of tree-herb co-planting on the bacterial community composition and the relationship between specific microorganisms and enzymatic activities in metal(loid)-contaminated soil. Chemosphere 2019, 220, 237–248. [Google Scholar] [CrossRef]
- Cha, J.Y.; Yang, H.J.; Moon, H.I.; Cho, Y.S. Inhibitory effect and mechanism on melanogenesis from fermented herbal composition for medical or food uses. Food Res. Int. 2012, 45, 225–231. [Google Scholar] [CrossRef]
- Qiu, G.Q.; Zhao, Y.L.; Wang, H.; Tan, X.F.; Chen, F.X.; Hu, X.J. Biochar synthesized via pyrolysis of Broussonetia papyrifera leaves: Mechanisms and potential applications for phosphate removal. Environ. Sci. Pollut. Res. 2019, 26, 6565–6575. [Google Scholar] [CrossRef]
- Zhang, M.; Wu, Y.; Xing, D.; Zhao, K.; Yu, R. Rapid measurement of drought resistance in plants based on electrophysiological properties. ASABE 2015, 58, 1441–1446. [Google Scholar]
- Mo, L.; Ma, Z.Y.; Xu, Y.S.; Sun, F.B.; Lun, X.X.; Liu, X.H.; Chen, J.G.; Yu, X.X. Assessing the capacity of plant species to accumulate particulate matter in Beijing, China. PLoS ONE 2015, 10, e0140664. [Google Scholar] [CrossRef] [PubMed]
- Zerrifi, S.E.; Kasrati, A.; Redouane, E.; Tazart, Z.; El Khalloufi, F.; Abbad, A.; Oudra, B.; Campos, A.; Vasconcelos, V. Essential oils from Moroccan plants as promising ecofriendly tools to control toxic cyanobacteria blooms. Ind. Crops Prod. 2020, 143, 111922. [Google Scholar] [CrossRef]
Number | Compounds | Parts | Source | References |
---|---|---|---|---|
1 | Gancaonin P | Whole plants | BP | [45] |
2 | Isolicoflavonol | Whole plants | BP | [27,30,42,44] |
3 | Lespedezaflavanone C | Whole plants | BP | [45] |
4 | Vitexin | Leaves | BP | [31,35,44] |
5 | Apigenin | Leaves | BP/BK | [13,31,35,44] |
6 | Pinocembrin | Whole plants | BP | [45] |
7 | Isobavachalcone | Whole plants | BP | [45] |
8 | 4-Hydroxyisolonchocarpin | Roots | BP | [37,44,45] |
9 | Luteolin | Leaves/twigs | BP | [30,35,44,46] |
10 | Cosmosiin | Leaves | BP | [35,45] |
11 | Isoorientin | Leaves | BP | [36,45] |
12 | Orientin | Leaves | BP | [36,45] |
13 | 2,4,2′,4′-Tetrahydroxychalcone | Whole plants | BP | [43,45] |
14 | Abyssinone II | Whole plants | BP | [28,45] |
15 | Uralenol | Roots/twigs/barks | BP | [29,30,33,37,38,44] |
16 | Papyriflavonol A | Root barks/twigs | BP | [30,33,40,44,47,48] |
17 | Norartocarpanone | Whole plants | BP | [45] |
18 | Broussoflavan A | Root barks | BP | [23,39,44,45,49] |
19 | Dihydrokaempferol | Whole plants | BP/BK | [14,45] |
20 | Quercetin | Twigs | BP | [31,45] |
21 | Bavachin | Whole plants | BP | [45] |
22 | Isovitexin | Leaves | BP | [36,45] |
23 | Broussofluorenone C | Whole plants | BP | [45] |
24 | Broussinol | Whole plants | BP | [45] |
25 | Sulfuretin | Whole plants | BP | [45] |
26 | Isogemichalcone C | Whole plants | BP | [28,45] |
27 | Isoliquiritigenin | Twigs | BP | [31,45] |
28 | Hesperetin | Roots | BK | [14] |
29 | Eriodictyol | Roots | BK | [14] |
30 | Chrysoeriol | Roots | BK | [14] |
31 | Kaempferol | Roots | BK | [14] |
32 | Broussonol F | Roots | BK | [44] |
33 | Broussonol G | Roots | BK | [40,44] |
34 | Broussonol H | Roots | BK | [44] |
35 | Broussonol I | Roots | BK | [44] |
36 | Broussonol K | Roots | BK | [44] |
37 | Kazinol Q | Root barks/branches and twigs | BP/BK | [26,40,41,43] |
38 | Kazinol A | Roots | BP/BK | [23,39,42,43,50] |
39 | Broussonol L | Roots | BK | [44] |
40 | Kazinol B | Roots/branches and twigs | BP/BK | [24,40,42,43,44] |
41 | Daphnegiravan D | Roots | BK | [44] |
42 | Broussonol M | Roots | BK | [44] |
43 | Broussoflavonol A | Roots/branches and twigs | BK/BP | [42,43,44] |
44 | 4,2′-Dihydroxy-4′-methoxychalcone | Roots | BK | [44] |
45 | Broussonol C | Roots/leaves | BK | [29,44] |
46 | (2S)-2′,4′-Dihydroxy-2″-(1-hydroxy-1-methylethyl)-dihydrofuro-2,3-h flavanone | Whole plants | BP | [28,43] |
47 | (2S)-5,7,2′,4′-Tetrahydroxyflavanone | Whole plants | BP | [28,43] |
48 | (2S)-Euchrenone | Whole plants | BP | [28,43] |
49 | Broussoflavonol F | Root barks/twigs | BP | [24,27,30,42,49] |
50 | (2S)-Naringenin | Whole plants | BP | [28,43] |
51 | Broussoflavonol E | Root barks/twigs | BP | [24,38,42] |
52 | Broussoflavonol G | Root barks/Whole plants | BP | [25,42,49] |
53 | Broussoflavonol C | Root barks/Whole plants | BP | [40,43] |
54 | Broussoflavonol D | Whole plants | BP | [43] |
55 | 4′-O-Methyldavidioside | Whole plants | BP | [43] |
56 | 5,7,3′,4′-Tetrahydroxy-3-methoxy-6-geranylflavone | Whole plants/twigs | BP | [27,38,42] |
57 | Broussoflavonol B | Whole plants/branches and twigs/root barks | BP | [38,39,41,42] |
58 | 5,7,3′,4′-Tetrahydroxy-6-geranylflavonol | Whole plants | BP | [28,43] |
59 | 5,7,2′,4′-Tetrahydroxy-3-geranylflavone | Whole plants | BP | [28,43] |
60 | Broussochalcone A | Roots/twigs/barks | BP | [23,29,30,33,37,39,42,48] |
61 | Broussochalcone B | Roots | BP | [23,42,45,48] |
62 | (2S)-Abyssinone II | Whole plants | BP | [43] |
63 | (2S)-7,4′-Dihydroxy-3′-prenylflavan | Whole plants/twigs | BP/BK | [27,36,42] |
64 | Broussin | Branches and twigs | BP | [42,43] |
65 | Isoliquiritigenin 2′-methy ether | Whole plants | BP | [43] |
66 | 1,2,4-Dihydroxy-3-(3-methylbut-2-en-1-yl)-phenyl-3-(2,4-dihydroxyphenyl)-propan-1-one | Whole plants | BP | [43] |
67 | 2-{5,7-Dihydroxy-2-(4-hydroxyphenyl)-4-oxo-3,4-dihydro-2-H-chromen-8-ylamino}-pentanedioic acid | Whole plants | BP | [43] |
68 | Broussofluorenone B | Roots | BP | [42,48,51] |
69 | 5,7,3′,5′-Tetrahydroxyflavanone | Twigs | BP | [31,43] |
70 | 5,7,3′,4′-Tetrahydroxy-3-methoxyflavone | Twigs | BP | [31,43] |
71 | 8-(1,1-Dimethylallyl)-5′-(3-methylbut-2-enyl)-3′,4′,5,7-tetrahydroxyflanvonol | Root barks/roots/twigs | BP | [29,38,39,42,48] |
72 | Kazinol E | Roots | BP | [42,45,48] |
73 | luteolin-7-O-β-D-glucopyranoside | Leaves | BP | [34,37,42,46] |
74 | Apigenin-7-O-β-D-glucoside | Leaves | BP | [36,43] |
75 | 3′-γ-Hydroxymethyl-(E)-γ-methylallyl-2,4,2′,4′-tetrahydroxychalcone-11′-O-coumarate | Whole plants | BP | [28,43] |
76 | Broussoaurone A | Root barks | BP | [43,46] |
77 | Dimethoxy isogemichalcone C | Whole plants | BP | [43] |
78 | Chrysoriol-7-O-β-D-glucoside | Leaves | BP | [36,43] |
79 | Iuteoloside | Whole plants | BP | [43] |
80 | 3,4-Dihydroxyisolonchocarpin | Roots | BP | [42,45,48] |
81 | (2S)-2′,4′-Dihydroxy-2″(1-hydroxy-1-methylethyl)-dihydrofurano-2,3-h-flavanone | Whole plants | BP | [43] |
82 | 5,7,3′,4′-Tetrahydroxy-3-methoxy-8-geranylflavone | Barks | BP | [33,37,42] |
83 | 5,7,3′,4′-Tetrahydroxy-3-methoxy-8,5′-diprenylflavone | Barks/branches and twigs | BP | [33,41,42] |
84 | Fipsotwin | Branches and twigs | BP | [42] |
85 | Kazinol N | Branches and twigs | BP | [42] |
86 | Kazinol M | Branches and twigs | BP | [42] |
87 | Threo-dadahol B | Branches and twigs | BP | [42] |
88 | Threo-dadahol A | Branches and twigs | BP | [42] |
89 | Broussoflavonol H | Root barks | BP | [41] |
90 | Broussoflavonol I | Root barks | BP | [41] |
91 | Broussoflavonol J | Root barks | BP | [41] |
92 | Broussoflavonol K | Root barks | BP | [41] |
93 | Glycyrrhiza flavonol A | Root barks | BP | [41] |
94 | Isolicofavonol | Root barks | BP | [41] |
95 | Broussoflavonol F | Root barks | BP | [41] |
96 | Broussoflavonol B | Root barks | BP | [41] |
97 | (2R)-7,3′,4′-Trihydroxy-6-prenylflavanone | Root barks | BP | [40] |
98 | Broussochalcone C | Root barks | BP | [40] |
99 | Broussoflavanonol A | Root barks | BP | [40] |
100 | Broussonol D | Root barks/leaves/twigs | BP/BK | [28,38,39] |
101 | Daphnegiravan H | Root barks | BP | [40] |
102 | (-)-(2S)-Kazinol I | Root barks | BP | [40] |
103 | Broupapyrin A | Twigs | BP | [39] |
104 | 8-Prenylquercetin-3-methyl ether | Twigs | BP | [39] |
105 | 4,2′,4′-Trihydroxychalcone | Twigs | BP | [39] |
106 | Butein | Twigs | BP | [39] |
107 | Broussonol E | Twigs | BP | [39] |
108 | 7,4′-Dihydroxy-3′-prenylflavan | Whole plants | BP | [38] |
109 | 7,3′-Dihydroxy-4′-methoxyflavan | Twigs | BP/BK | [37,38] |
110 | 3′-(3-Methylbut-2-enyl)-3′,4′,7-trihydroxyflavane | Twigs/roots | BP | [29,30,37,42,48,52] |
111 | Brossoflurenone A | Roots | BP | [38,47] |
112 | Brossoflurenone B | Roots | BP | [38,47] |
113 | Apigenin-7-O-β-D-glucopyranoside | Leaves | BP | [38,48] |
114 | Apigenin-6-C-β-D-glucopyranside | Leaves | BP | [34,37,42] |
115 | Bropapyrifero | Whole plants | BP | [17] |
116 | (−)-Broukazinol A | Twigs | BK | [37] |
117 | (+)-Broukazinol A | Twigs | BK | [37] |
118 | (2R)-7,4′-Dihydroxy-3′-prenylflavan | Twigs | BK | [37] |
119 | (2R)-7,4′-Dihydroxyflavan(tupichinol C) | Twigs/root barks/stem barks | BK | [26,32,36] |
120 | (2S)-7,4′-Dihydroxyflavan(demethylbroussin) | Twigs/root barks/stem barks | BK | [26,32,36] |
121 | Broussoside F | Twigs | BK | [37] |
122 | (2S)-7,3′-Dimethoxy-4′-hydroxyflavan | Twigs | BK | [37] |
123 | Kazinol I | Twigs/root barks | BK | [37,49] |
124 | Tupichinol C | Root barks | BK | [49,50] |
125 | Kazinol U | Root barks | BK | [49,50] |
126 | 3,5,7,4′-Tetrahydroxy-3′-(2-hydroxy-3-methylbut-3-enyl) flavone | Twigs | BP | [31,51] |
127 | Luteoloside | Leaves | BP | [36] |
128 | Broussoflavonol B | Barks | BP | [34] |
129 | 3′,7-Dihydroxy-4′-methoxyflavan | Stem barks | BK | [33] |
130 | 3,7-Dihydroxy-4′-methoxyflavone | Stem barks | BK | [33] |
131 | 3,7,3′-Trihydroxy-4′-methoxyflavone | Stem barks | BK | [33] |
132 | (+) − (2R) Kazinol I | Whole plants | BK | [50] |
133 | Apigenin-7-O--glucopyranoside | Leaves | BP | [32] |
134 | Amentoflavone | Leaves | BP | [32] |
135 | 3,3′,4′,5,7-Pentahydroxyflavone | Roots | BP | [30] |
136 | Broussonol A | Leaves | BK | [29] |
137 | Broussonol B | Leaves | BK | [29] |
138 | Broussonol E | Leaves | BK | [29] |
139 | 2,4,2′,4′-Tetrahydroxy-3′-prenylchalcone | Whole plants | BP | [28] |
140 | (2S)-2′,4′-Dihydroxy-7-methoxy-8-prenylflavan | Whole plants | BP | [28] |
141 | Australone A | Root barks | BP | [52] |
142 | Cyclomorusin | Whole plants | BP | [26] |
143 | Cycloartomunin | Whole plants | BP | [26] |
144 | Dihydroisocycloartomunin | Whole plants | BP | [26] |
Number | Compounds | Parts | Source | References |
---|---|---|---|---|
145 | Marmesin | Whole plants | BP | [45] |
146 | Graveolone | Whole plants | BP | [45] |
147 | Sesquineolignan | Whole plants | BP | [45] |
148 | Dihydrosyringin | Leaves | BP | [36,45] |
149 | Coniferyl alcohol | Fruits | BP | [43,45,54] |
150 | Ferulic acid | Fruits | BP | [45,54] |
151 | p-Coumaraldehyde | Fruits | BP | [45,54] |
152 | Liriodendrin | Leaves | BP | [35,45] |
153 | Dihydro-coniferyl alcohol | Whole plants | BP | [45] |
154 | Chushizisin G | Fruits | BP | [45,53] |
155 | Chushizisin H | Fruits | BP | [45,53] |
156 | Pinoresinol | Roots | BK | [14] |
157 | 3′-Hydroxymarmesin-1′-O-β-glucopyranosyl | Roots | BK | [14] |
158 | Marmesinin | Roots | BK | [14] |
159 | Syringaresinol-4-O-β-D-glucopyranoside | Roots | BP/BK | [14,38] |
160 | Rutaretin methylether | Roots | BK | [44] |
161 | Fipsomin | Roots | BK | [44] |
162 | (S)-Marmesin | Branches and twigs | BP | [42] |
163 | (+)-Marmesin | Whole plants | BP | [43] |
164 | (+)-Pinoresinol-4′-O-β-D-glucopyranosyl-4″-O-β-D-apiofuranoside | Leaves | BP | [35,43] |
165 | Syringaresinol-4′-O-β-D-glucoside | Leaves | BP | [36,43] |
166 | Pinoresinol-4′-O-β-D-glucopyranoside | Leaves | BP | [36,43] |
167 | (S)-8-Methoxymarmesin | Branches and twigs | BP | [42,43] |
168 | 7,8-Dihydroxy-6-(3-methylbut-2-en-1yl)-2H-chromen-2-one | Root barks | BP | [41,43] |
169 | Broussocoumarin A | Root barks | BP | [41,43] |
170 | Cissyringin | Fruits | BP | [43,54] |
171 | Cisconiferin | Fruits | BP | [43,54] |
172 | Chushizisin A | Fruits | BP | [43,53] |
173 | Chushizisin B | Fruits | BP | [43,53] |
174 | Chushizisin C | Fruits | BP | [43,53] |
175 | Chushizisin D | Fruits | BP | [43,53] |
176 | Chushizisin E | Fruits | BP | [43,53] |
177 | Chushizisin F | Fruits | BP | [43,53] |
178 | p-Coumaric acid | Leaves | BP | [36,43] |
179 | Threo-1-(4-hydroxy-3-methoxyphenyl)-2-{4-(E)-3-hydroxy-1-propenyl-2-methoxyphenoxy}-1,3-propanediol | Fruits | BP | [43,53] |
180 | Erythro-1-(4-hydroxyphenyl) glycerol | Fruits | BP | [43,54] |
181 | Threo-1-(4-hydroxyphenyl) glycerol | Fruits | BP | [43,54] |
182 | Erythro-1-(4-hydroxy-3-methoxyphenyl)-2-{4-(E)-3-hydroxy-1-propenyl-2-methoxy-phenoxy}-1,3-propanediol | Fruits | BP | [43,53] |
183 | 3-2-(4-Hydroxyphenyl)-3-hydroxymethyl-2,3-dihydro-1-benzofuran-5-ylpropan-1-ol | Fruits | BP | [43,53] |
184 | Chushizisin I | Fruits | BP | [43,53] |
185 | 6,7-Dimethoxycoumarin | Whole plants | BP | [38] |
186 | (+)-(2′S,3′R)-3-Hydroxyl marmesin | Whole plants | BP | [38] |
187 | Iariciresinol-9-O-β-D-glucopyranoside | Whole plants | BP | [38] |
188 | 3,4′,5′-Trihy- droxy-5-methoxy-6H-benzo [c] chromen-6-one | Whole plants | BP | [38] |
189 | Alternariol-4′-O-methyl ether | Whole plants | BP | [38] |
190 | Alternariol-5-O-methyl ether | Whole plants | BP | [38] |
191 | Alternariol | Whole plants | BP | [38] |
192 | Alternuene | Whole plants | BP | [38] |
193 | (7S,7′S,7″R,8R,8′R,8″S)-3′-Methoxy-4,4″,9″- trihydroxy- 4′,7″,7,9′,7′,9-triepoxy-5′,8″,8,8″-sesquineolignan | Whole plants | BP | [51] |
194 | Dihydroconiferyl alcohol | Fruits | BP | [54] |
Number | Compounds | Parts | Source | References |
---|---|---|---|---|
195 | Broussonin A | Twigs/stem barks/root barks/whole plants | BP/BK | [28,33,37,40,45,49,50] |
196 | Broussonin B | Twigs/stem barks/root barks | BP/BK | [33,37,40,45] |
197 | Resveratrol | Whole plants | BP | [45] |
198 | Moracin N | Whole plants | BP | [28,43,45] |
199 | Demethylmoracin I | Whole plants | BP | [28,45] |
200 | Mulberrofuran G | Whole plants | BP | [45] |
201 | Curculigoside C | Fruits | BP | [45,54] |
202 | Protocatechuic acid | Whole plants | BP | [45] |
203 | Kazinol K | Roots/root barks | BK | [27,44] |
204 | Kazinol F | Twigs/leaves/root barks | BP/BK | [29,37,40,43,55] |
205 | 1-(2,4-Dihydroxyphenyl)-3-(4-hydroxyphenyl)-propane | Whole plants | BP | [28,43] |
206 | 1-(4-Hydroxy-2-methoxyphenyl)-3-(4-hydroxy-3-prenylphenyl)-propane | Twigs/whole plants | BP/BK | [28,37,43] |
207 | Broussonin C | Root barks | BP/BK | [43,55] |
208 | Moracin I | Whole plants | BP | [43] |
209 | Moracin D | Whole plants | BP | [43] |
210 | Broussonin F | Twigs | BP/BK | [37,43] |
211 | Moracin M | Whole plants | BP | [43] |
212 | Broussonin E | Roots | BP/BK | [43,44] |
213 | 3,5,4′-Trihydroxy-bibenzyl-3-O-β-D-glucoside | Leaves | BP | [35,43] |
214 | Broussoside D | Leaves | BP | [36,43] |
215 | Broussofluorenone A | Roots | BP | [43,56] |
216 | Kazinol V | Roots/root barks | BP/BK | [40,44] |
217 | Kazinol J | Root barks/leaves | BP/BK | [29,40] |
218 | Kazinol W | Root barks | BP | [40] |
219 | Altertoxin IV | Whole plants | BP | [38] |
220 | Altertoxin I | Whole plants | BP | [38] |
221 | Broukazinol B | Twigs | BK | [37] |
222 | Broukazinol C | Twigs | BK | [37] |
223 | 1-(2,4-Dihydroxy-3-prenylphenyl)-3-(4-hydroxyphenyl)-propane | Twigs/whole plants | BK/BP | [28,37] |
224 | Kazinol S | Twigs/root barks | BK | [37,55] |
225 | Kazinol C | Root barks/twigs | BP/BK | [31,49,55] |
226 | Kazinol D | Root barks/twigs | BP/BK | [27,31,49,55] |
227 | (7′R,8′S) -3-Methoxy-4′,9,9″-trihydroxy-4,7′-epoxy-5,8′-neolignan | Whole plants | BP | [51] |
228 | (7R,8S,8′R)-7″,8″-Threo-3′-methoxy-7′-oxo-4,4″,7″,9,9″-pentahydroxy-4′,8″: 7,9′-bis-epoxy-8,8′-sesquineolignan | Fruits | BP | [51,54] |
229 | Broussonone A | Stem barks/roots | BP/BK | [33,57] |
230 | 3,4-Dihydroxybenzoic acid | Fruits | BP | [54] |
231 | Kazinol T | Root barks | BK | [55] |
232 | Albanol A | Whole plants | BP | [28] |
Number | Compounds | Parts | Source | References |
---|---|---|---|---|
233 | Liriodenine | Fruits | BP | [45,67] |
234 | Isoterihanine | Whole plant | BP | [45] |
235 | Chelerythrine | Whole plants | BP | [45] |
236 | Oxyavicine | Fruits | BP | [45,67] |
237 | Broussonpapyrine | Fruits | BP | [45,67] |
238 | Nitidine | Fruits | BP | [43,67] |
239 | 2′-Deoxyuridine | Whole plants | BP | [43] |
240 | 2′-Deoxyadenosine | Whole plants | BP | [43] |
241 | Thymidine | Whole plants | BP | [43] |
242 | N-Norchelerythrine | Fruits | BP | [66] |
243 | Dihydrosanguinarine | Fruits | BP | [66] |
244 | Broussonetine R | Branches | BK | [65] |
245 | Broussonetine S | Branches | BK | [65] |
246 | Broussonetine T | Branches | BK | [65] |
247 | Broussonetine U | Branches | BK | [65] |
248 | Broussonetine V | Branches | BK | [65] |
249 | Broussonetine M | Branches | BK | [64] |
250 | Broussonetine O | Branches | BK | [64] |
251 | Broussonetine P | Branches | BK | [64] |
252 | Broussonetine Q | Branches | BK | [64] |
253 | Broussonetine A | Branches | BK | [59,68] |
254 | Broussonetinine A | Branches | BK | [59,68] |
255 | Broussonetine B | Branches | BK | [59,68] |
256 | Broussonetinine B | Branches | BK | [59,68] |
257 | Broussonetine C | Branches | BK | [58,68] |
258 | Broussonetine E | Branches | BK | [59,68] |
259 | Broussonetine D | Branches | BK | [58,68] |
260 | Broussonetine F | Branches | BK | [59,68] |
261 | Broussonetine G | Branches | BK | [61,68] |
262 | Broussonetine H | Branches | BK | [61,68] |
263 | Broussonetine I | Branches | BK | [60,68] |
264 | Broussonetine J | Branches | BK | [60,68] |
265 | Broussonetine K | Branches | BK | [63,68] |
266 | Broussonetine L | Branches | BK | [63,68] |
267 | Broussonetine N | Branches | BK | [62] |
Number | Compounds | Parts | Source | References |
---|---|---|---|---|
268 | Lupeol acetate | Whole plants | BP | [38] |
269 | Augustic acid | Whole plants | BP | [38] |
270 | 3β-acetoxy–tirucalla-7-en-24S,25-diol | Barks | BP | [38,70] |
271 | Lupeol | Barks | BP | [70] |
272 | β-Amyrin | Barks | BP | [70] |
273 | α-Amyrin acetate | Barks | BP | [70] |
274 | (3β)-3-(acetyloxy)-eupha-7,25-dien-24-one | Barks | BP | [38,69] |
275 | (3β,24R)-3-(acetyloxy)–eupha-7,25-dien-24-ol | Barks | BP | [38,69] |
276 | (3β,24S)-eupha-7,25-diene-3,24-diol | Barks | BP | [38,69] |
277 | (3β,24R)-Eupha-7,25-diene3,24-diol | Barks | BP | [69] |
278 | Taraxerol acetate | Leaves | BP | [32] |
279 | Broussonetone A | Leaves | BP | [32,51] |
280 | Broussonetone B | Leaves | BP | [32,51] |
281 | Broussonetone C | Leaves | BP | [32,51] |
282 | Oleanolic acid | Root barks | BP/BK | [27,38] |
283 | Squalene | Fruits/root barks/leaves | BP/BL | [25,45,53,71] |
284 | Butyrospermol acetate | Whole plants | BP | [24] |
Number | Compounds | Parts | Source | References |
---|---|---|---|---|
285 | Fucosterol | Whole plants | BP | [45] |
286 | Ergosterol peroxide | Whole plants | BP | [45] |
287 | β-Sitosterol | Whole plants | BP | [43] |
288 | β-Daucosterol | Whole plants | BP | [43] |
289 | Ergosta-4,6,8,22-tetraen-3-one | Whole plants | BP | [43] |
Number | Compounds | Parts | Source | References |
---|---|---|---|---|
290 | Arbutin | Whole plants | BP | [45] |
291 | Broussoside B | Whole plants | BP | [45] |
292 | D-Galacitol | Whole plants | BP | [43] |
293 | Daucosterol palmitate | Whole plants | BP | [38] |
294 | Palmitic acid ethyl ester | Whole plants | BP | [38] |
295 | Palmitic acid | Whole plants | BP | [38] |
296 | Linoleic acid | Whole plants | BP | [38] |
297 | 9-Octadecenoic acid | Whole plants | BP | [38] |
298 | 8,11-Octadecadienoic acid | Whole plants | BP | [38] |
299 | α-Monopalmitin | Whole plants | BP | [38] |
300 | Monoheptadecanoin | Whole plants | BP | [38] |
301 | Heptadecanoic acid | Whole plants | BP | [38] |
302 | Phytol | Whole plants/leaves | BP/BL | [38,71] |
303 | Physcion | Whole plants | BP | [38] |
304 | Altersolanol A | Whole plants | BP | [38] |
305 | Altersolanol C | Whole plants | BP | [38] |
306 | δ-Tocopherol | Whole plants | BP | [38] |
307 | (4R,5S,10S)-8,9,10-Trihydroxy-4-[3′-methoxy-4′-hydroxyphenyl]-1,6-dioxaspiro [4,5] decan-2-one | Whole plants | BP | [38] |
308 | 4-Hydroxyacetophenone | Whole plants | BP | [38] |
309 | Erythro-1-(4-hydroxyphenyl)-2-{4-[(E)-3-hydroxy-1-propenyl]-2-methoxyphenoxy}-1,3-propanediol | Whole plants | BP | [51] |
310 | Threo-1-(4-hydroxyphenyl)-2-{4-[(E)-3-hydroxy1-propenyl]-2-methoxyphenoxy}-1,3-propanediol | Whole plants | BP | [51] |
311 | threo-1-(4-hydroxyphenyl)-2-[4-(3-hydroxy-1-propyl)-2-methoxyphenoxy]-1,3-propanediol | Whole plants | BP | [51] |
312 | erythro-1-(4-hydroxyphenyl)-2-[4-(3-hydroxy-1-propyl)-2-methoxyphenoxy]-1,3-propanediol | Whole plants | BP | [51] |
313 | (7′R,8′S)-3-Methoxy-7-oxo-4′,9,9″-trihydroxy-4,7′-epoxy-5,8′-neolignan | Whole plants | BP | [51] |
314 | (7′R,8′S)-3-Methoxy-4′,9,9″-trihydroxy-4,7′-epoxy-5,8′-neolignan | Whole plants | BP | [51] |
315 | Benzyl benzoate-2,6-di-O-β-D-glucopyranoside | Whole plants | BP | [51] |
316 | Broussoside A | Twigs/leaves | BP/BK | [36,37,43] |
317 | Broussoside C | Leaves | BP | [36,43] |
318 | Broussoside E | Leaves | BP | [36,43] |
319 | Flacourtin | Leaves | BP | [36,45] |
320 | Poliothyrsoside | Leaves | BP | [36,45] |
321 | Adenosine | Seeds | BP | [73] |
322 | Chushizilactam A | Seeds | BP | [73] |
323 | Arbutine | Fruits | BP | [54] |
324 | 4-Hydroxybenzaldehyde | Fruits | BP | [43,45,54] |
325 | Curculigoside I | Fruits | BP | [43,54] |
326 | 2-(4-Hydroxyphenyl) propane-1,3-diol-1-O-β-D-glucopyranoside | Fruits | BP | [43,54] |
327 | (2R,3R,5R,6S,9R)-3-Hydroxy-5,6-epoxyb-ionol-2-O-β-D-glucopyranoside | Leaves | BP | [43,72] |
328 | (2R,3R,5R,6S,9R)-3-Hydroxyl-5,6-epoxy-acety-b-ionol-2-O-β-D-glucopyranoside | Leaves | BP | [72] |
329 | Lignoceric acid | Root barks | BP | [25,45] |
330 | Octacosan-1-ol | Root barks | BP | [25,45] |
331 | 4′-Hydroxycis-cinnamic acid octacosyl ester | Root barks | BP | [25] |
332 | Erythrinasinate | Root barks | BP | [25] |
333 | 1,2,3-Propanetriol, monoacetate | Leaves | BL | [71] |
334 | 1,2,3-Propanetriol, diacetate | Leaves | BL | [71] |
335 | Hexadecanoic acid, ethyl ester | Leaves | BL | [71] |
336 | 9,12,15-Octadecatrienoic acid, methyl ester, (Z, Z, Z)- | Leaves | BL | [71] |
337 | 9,12,15-Octatrienoic acid, ethyl ester, (Z, Z, Z)- | Leaves | BL | [71] |
338 | 3,7,11,15-Tetramethyl-2-hexadecen-1-ol | Leaves | BL | [71] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Wang, L.; Liu, X.; Wang, F.; An, Y.; Zhao, W.; Tian, J.; Kong, D.; Zhang, W.; Xu, Y.; et al. The Genus Broussonetia: An Updated Review of Phytochemistry, Pharmacology and Applications. Molecules 2022, 27, 5344. https://doi.org/10.3390/molecules27165344
Chen Y, Wang L, Liu X, Wang F, An Y, Zhao W, Tian J, Kong D, Zhang W, Xu Y, et al. The Genus Broussonetia: An Updated Review of Phytochemistry, Pharmacology and Applications. Molecules. 2022; 27(16):5344. https://doi.org/10.3390/molecules27165344
Chicago/Turabian StyleChen, Yueru, Lu Wang, Xue Liu, Fulin Wang, Ying An, Wei Zhao, Jinli Tian, Degang Kong, Wenru Zhang, Yang Xu, and et al. 2022. "The Genus Broussonetia: An Updated Review of Phytochemistry, Pharmacology and Applications" Molecules 27, no. 16: 5344. https://doi.org/10.3390/molecules27165344
APA StyleChen, Y., Wang, L., Liu, X., Wang, F., An, Y., Zhao, W., Tian, J., Kong, D., Zhang, W., Xu, Y., Ba, Y., & Zhou, H. (2022). The Genus Broussonetia: An Updated Review of Phytochemistry, Pharmacology and Applications. Molecules, 27(16), 5344. https://doi.org/10.3390/molecules27165344