Thermophysical Characterization of Paraffin Wax Based on Mass-Accommodation Methods Applied to a Cylindrical Thermal Energy-Storage Unit
<p>Schematic representation of liquid volume growth in the axial direction. The height of the column that represents the excess liquid at any time <span class="html-italic">t</span> is <math display="inline"><semantics> <mrow> <mo>Δ</mo> <mi>z</mi> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </semantics></math>. The volume of this liquid at some time <span class="html-italic">t</span> is <math display="inline"><semantics> <mrow> <mo>Δ</mo> <msub> <mi>V</mi> <mo>ℓ</mo> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfenced separators="" open="(" close=")"> <mover> <mi>r</mi> <mo>¯</mo> </mover> <msup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>−</mo> <msubsup> <mi>r</mi> <mn>0</mn> <mn>2</mn> </msubsup> </mfenced> <mrow> <mo>(</mo> <mi>L</mi> <mo>+</mo> <mo>Δ</mo> <mi>z</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>)</mo> </mrow> </mrow> </semantics></math> and represents the liquid that will scatter throughout the top surface of the cylinder or the volume of liquid that must be removed from the cylindrical unit.</p> "> Figure 2
<p>Logarithmic relation between the two mass-accommodation methods previously discussed <math display="inline"><semantics> <mrow> <mo form="prefix">ln</mo> <mfenced separators="" open="(" close=")"> <msup> <mover> <mi>r</mi> <mo>¯</mo> </mover> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </msup> <mo>/</mo> <msup> <mover> <mi>r</mi> <mo>¯</mo> </mover> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </msup> </mfenced> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mo form="prefix">ln</mo> <mfenced separators="" open="(" close=")"> <msup> <mi>R</mi> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </msup> <mo>/</mo> <msup> <mi>R</mi> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </msup> </mfenced> </mrow> </semantics></math>, obtained from the exact steady-state solutions given through Equations (<a href="#FD21-molecules-27-01189" class="html-disp-formula">21</a>) and (<a href="#FD22-molecules-27-01189" class="html-disp-formula">22</a>), and the asymptotic time values estimated through the FDM. Asterisk and cross symbols are used to represent the relation obtained through the exact steady-state values. Empty circles and squares represent the relation between the asymptotic time limits according to the numerical solutions for each mass-accommodation method. The dashed line corresponds to the predicted relation for high melting fractions according to Equation (<a href="#FD28-molecules-27-01189" class="html-disp-formula">28</a>).</p> "> Figure 3
<p>(<b>a</b>) Experimental setup with the cylindrical unit and thermocouple array. (<b>b</b>) Schematic representation of the experimental setup with the following components: 1. Lauda Thermostatic Bath, 2. Thermal energy-storage unit, 3. SCXI-1000 National Instruments module for thermocouple signal conditioning, 4. Laptop for data processing, A. 1 K-type thermocouple for heat bath temperature sensing, B. 1 K-type thermocouple for HTF inlet temperature sensing, C. 22 K-type thermocouple array for temperature sensing at the copper–PCM interface, aluminium–PCM interface and PCM temperature field estimation and D. 1 K-type thermocouple for HTF outlet temperature sensing. E. 1 K-type thermocouple for ambient temperature sensing.</p> "> Figure 4
<p>Cylindrical unit with thermocouple array for temperature sensing.</p> "> Figure 5
<p>Data acquisition and processing system. (<b>a</b>) Data acquisition system. (<b>b</b>) Laptop for temperature data processing.</p> "> Figure 6
<p>Nonhomogeneous isothermal boundary conditions. (<b>a</b>) Symbols represent time-dependent temperature values registered by the thermocouple located at the copper–PCM interface and the solid line corresponds to the best fit with the highest correlation. (<b>b</b>) Time-dependent temperature readings at the aluminium–PCM interface. Symbols represent the temperature values registered by the thermocouples located at <math display="inline"><semantics> <mrow> <mi>r</mi> <mo>=</mo> <mn>0.108</mn> <mspace width="0.166667em"/> <mi mathvariant="normal">m</mi> </mrow> </semantics></math> and the solid line is the best fit with the highest correlation.</p> "> Figure 7
<p>Time evolution of the temperature at each thermocouple radial position according to the the experimental and numerical results. Experimental values of the average temperature at each radial coordinate (<b>a</b>) <math display="inline"><semantics> <mrow> <msub> <mi>r</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>4.1</mn> <mspace width="0.166667em"/> <mi>cm</mi> </mrow> </semantics></math>, (<b>b</b>) <math display="inline"><semantics> <mrow> <msub> <mi>r</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>5.8</mn> <mspace width="0.166667em"/> <mi>cm</mi> </mrow> </semantics></math>, (<b>c</b>) <math display="inline"><semantics> <mrow> <msub> <mi>r</mi> <mn>3</mn> </msub> <mo>=</mo> <mn>7.5</mn> <mspace width="0.166667em"/> <mi>cm</mi> </mrow> </semantics></math> and (<b>d</b>) <math display="inline"><semantics> <mrow> <msub> <mi>r</mi> <mn>4</mn> </msub> <mo>=</mo> <mn>9.2</mn> <mspace width="0.166667em"/> <mi>cm</mi> </mrow> </semantics></math>, respectively are shown in red circles and the result obtained through the FDM is shown in solid lines. The numerical result was obtained through the solution of the model described by Equations (<a href="#FD9-molecules-27-01189" class="html-disp-formula">9</a>), (<a href="#FD14-molecules-27-01189" class="html-disp-formula">14</a>) and (<a href="#FD15-molecules-27-01189" class="html-disp-formula">15</a>) and through the set of thermodynamic variables <math display="inline"><semantics> <mrow> <msub> <mi>k</mi> <mo>ℓ</mo> </msub> <mo>,</mo> <mspace width="0.166667em"/> <msub> <mi>k</mi> <mi>s</mi> </msub> <mo>,</mo> <mspace width="0.166667em"/> <msub> <mi>C</mi> <mo>ℓ</mo> </msub> <mspace width="0.166667em"/> <mspace width="0.166667em"/> <mi>and</mi> <mspace width="0.166667em"/> <mspace width="0.166667em"/> <msub> <mi>C</mi> <mi>s</mi> </msub> </mrow> </semantics></math> with the lowest quadratic error shown by Equation (<a href="#FD40-molecules-27-01189" class="html-disp-formula">40</a>).</p> "> Figure 8
<p>(<b>a</b>) Numerical solution to the liquid–solid interface motion. The results illustrate the relation between the liquid’s thickness and the outer radius of the thermal unit, according to the numerical solution of the proposed model with the set of thermodynamic variables shown in <a href="#molecules-27-01189-t002" class="html-table">Table 2</a>. (<b>b</b>) Time evolution of <math display="inline"><semantics> <msub> <mi>f</mi> <mi>s</mi> </msub> </semantics></math> obtained from the numerical solutions to the proposed model and with the set of parameters shown in <a href="#molecules-27-01189-t002" class="html-table">Table 2</a>.</p> ">
Abstract
:1. Introduction
2. Mass-Accommodation Methods
2.1. Mass Accommodation through Radial Changes
2.2. Mass Accommodation through Axial Growth
2.3. Steady-State Regime
Numerical Examples
3. Experimental Setup
- 1
- A 10 L cylindrical container which constitutes a vertical annular region that is used to store paraffin wax. Four arrays of thermocouples distributed in concentric circles were placed inside the PCM in its solid phase. The inner radius of the annular region is formed by a copper tube that is placed along the axial symmetry axis of the cylindrical unit. Liquid water was gradually heated and circulated through the copper tube for thermal energy transfer at the copper–PCM interface.
- 2
- A data acquisition system for temperature processing and data collection through the thermocouple array.
- 3
- A system designed to control the liquid-water temperature and mass flow was developed.
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
CSP | Concentrating Solar Power |
PCM | Phase-change material |
TES | Thermal energy storage |
LHTES | Latent heat thermal energy storage |
HTF | Heat-transfer fluid |
FDM | Finite difference method |
rmse | Root-mean-squared error |
Thermal conductivity of the liquid | |
Thermal conductivity of the solid | |
Specific heat capacity of the liquid | |
Specific heat capacity of the solid | |
Liquid density | |
Solid density | |
Latent heat of fusion | |
Melting temperature | |
L | Height of cylindrical unit |
R | Outer radius |
Copper tube radius | |
Radius of region delimited by the liquid–solid interface | |
Steady state of outer radius | |
Steady-state value of | |
Temperature at the copper–PCM interface | |
Temperature at the aluminium–PCM interface | |
Dimensionless exponent | |
Correlation coefficient | |
Fraction of melted solid |
References
- Gil, A.; Medrano, M.; Martorell, I.; Lázaro, A.; Dolado, P.; Zalba, B.; Cabeza, L.F. State of the art on high temperature thermal energy storage for power generation. Part 1-Concepts, materials and modellization. Renew. Sustain. Energy Rev. 2010, 14, 31–55. [Google Scholar] [CrossRef]
- Mathur, A.; Kasetty, R.; Oxley, J.; Mendez, J.; Nithyanandam, K. Using encapsulated phase change salts for concentrated solar power plant. Energy Procedia 2014, 49, 908–915. [Google Scholar] [CrossRef] [Green Version]
- Liu, M.; Saman, W.; Bruno, F. Review on storage materials and thermal performance enhancement techniques for high temperature phase change thermal storage systems. Renew. Sustain. Energy Rev. 2012, 16, 2118–2132. [Google Scholar] [CrossRef]
- Cabeza, L.F.; Ibanez, M.; Sole, C.; Roca, J.; Nogues, M. Experimentation with a water tank including a PCM module. Sol. Energy Mater. Sol. Cells 2006, 90, 1273–1282. [Google Scholar] [CrossRef]
- Akgün, M.; Aydın, O.; Kaygusuz, K. Experimental study on melting/solidification characteristics of a paraffin as PCM. Energy Convers. Manag. 2007, 48, 669–678. [Google Scholar] [CrossRef]
- Mao, Q.; Li, Y. Experimental and numerical investigation on enhancing heat transfer performance of a phase change thermal storage tank. J. Energy Storage 2020, 31, 101725. [Google Scholar] [CrossRef]
- Mao, Q.; Li, Y.; Li, G.; Badiei, A. Study on the influence of tank structure and fin configuration on heat transfer performance of phase change thermal storage system. Energy 2021, 235, 121382. [Google Scholar] [CrossRef]
- Avci, M.; Yazici, M.Y. Experimental study of thermal energy storage characteristics of a paraffin in a horizontal tube-in-shell storage unit. Energy Convers. Manag. 2013, 73, 271–277. [Google Scholar] [CrossRef]
- Seddegh, S.; Wang, X.; Joybari, M.M.; Haghighat, F. Investigation of the effect of geometric and operating parameters on thermal behavior of vertical shell-and-tube latent heat energy storage systems. Energy 2017, 137, 69–82. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Peng, C.; Guo, Y. Experimental and numerical study on melting process of paraffin in a vertical annular cylinder. Therm. Sci. 2019, 23, 525–535. [Google Scholar] [CrossRef] [Green Version]
- Akgün, M.; Aydın, O.; Kaygusuz, K. Thermal energy storage performance of paraffin in a novel tube-in-shell system. Appl. Therm. Eng. 2008, 28, 405–413. [Google Scholar] [CrossRef]
- Kaiser, J.; Adami, S.; Akhatov, I.; Adams, N. A semi-implicit conservative sharp-interface method for liquid-solid phase transition. Int. J. Heat Mass Transf. 2020, 155, 119800. [Google Scholar] [CrossRef]
- Dallaire, J.; Gosselin, L. Various ways to take into account density change in solid-liquid phase change models: Formulation and consequences. Int. J. Heat Mass Transf. 2016, 103, 672. [Google Scholar] [CrossRef]
- Dallaire, J.; Gosselin, L. Numerical modeling of solid-liquid phase change in a closed 2D cavity with density change, elastic wall and natural convection. Int. J. Heat Mass Transf. 2017, 114, 903. [Google Scholar] [CrossRef]
- Wang, S.; Guo, Y.; Peng, C.; Wang, W. Experimental study of paraffin melting in cylindrical cavity with central electric heating rod. J. Environ. Manag. 2019, 237, 264–271. [Google Scholar] [CrossRef] [PubMed]
- Santiago, R.D.; Hernández, E.M.; Otero, J.A. Constant mass model for the liquid-solid phase transition on a one-dimensional Stefan problem: Transient and steady state regimes. Int. J. Therm. Sci. 2017, 118, 40. [Google Scholar] [CrossRef]
- Santiago Acosta, R.D.; Otero, J.A.; Hernández Cooper, E.M.; Pérez-Álvarez, R. Thermal expansion effects on the one-dimensional liquid-solid phase transition in high temperature phase change materials. AIP Adv. 2019, 9, 025125. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez-Aleman, S.; Hernandez-Cooper, E.M.; Otero, J.A. Consequences of total thermal balance during melting and solidification of high temperature phase change materials. Therm. Sci. Eng. Prog. 2020, 20, 100750. [Google Scholar] [CrossRef]
- Rodríguez-Alemán, S.; Hernández-Cooper, E.M.; Pérez-Álvarez, R.; Otero, J.A. Effects of Total Thermal Balance on the Thermal Energy Absorbed or Released by a High-Temperature Phase Change Material. Molecules 2021, 26, 365. [Google Scholar] [CrossRef] [PubMed]
- Caldwell, J.; Chiu, C. Numerical solution to two-phase Stefan problems by the heat balance integral method. WIT Trans. Eng. Sci. 1994, 5, 10. [Google Scholar]
- Madruga, S.; Curbelo, J. Effect of the inclination angle on the transient melting dynamics and heat transfer of a phase change material. Phys. Fluids 2021, 33, 055110. [Google Scholar] [CrossRef]
- Hetmaniok, E.; Slota, D.; Zielonka, A. Solution of the Direct Alloy Solidification Problem including the Phenomenon of Material Shrinkage. Therm. Sci. 2017, 21, 105. [Google Scholar] [CrossRef] [Green Version]
- Haji-Sheikh, A.; Eftekhar, J.; Lou, D. Some thermophysical properties of paraffin wax as a thermal storage medium. In Proceedings of the 3rd Joint Thermophysics, Fluids, Plasma and Heat Transfer Conference, St. Louis, MO, USA, 7–11 June 1982; p. 846. [Google Scholar]
- Hernández, E.; Castillo, F.; Santiago, R.; Martínez, R.; Otero, J.; Oseguera, J.; Jiménez, A. Numerical and semi-analytical solutions of the compound layer growth kinetics in cylindrical surfaces during plasma nitriding of pure iron. In Journal of Physics: Conference Series; IOP Publishing: Bristol, UK, 2017; Volume 792, p. 012056. [Google Scholar]
() | () | () | ||
---|---|---|---|---|
() | () | () | () | |
317 | () | () | 760 (818) |
() | () | () | ||
---|---|---|---|---|
() | () | () | () | |
328 | () | () | 760(818) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva-Nava, V.; Hernández-Cooper, E.M.; Chong-Quero, J.E.; Otero, J.A. Thermophysical Characterization of Paraffin Wax Based on Mass-Accommodation Methods Applied to a Cylindrical Thermal Energy-Storage Unit. Molecules 2022, 27, 1189. https://doi.org/10.3390/molecules27041189
Silva-Nava V, Hernández-Cooper EM, Chong-Quero JE, Otero JA. Thermophysical Characterization of Paraffin Wax Based on Mass-Accommodation Methods Applied to a Cylindrical Thermal Energy-Storage Unit. Molecules. 2022; 27(4):1189. https://doi.org/10.3390/molecules27041189
Chicago/Turabian StyleSilva-Nava, Valter, Ernesto M. Hernández-Cooper, Jesús Enrique Chong-Quero, and José A. Otero. 2022. "Thermophysical Characterization of Paraffin Wax Based on Mass-Accommodation Methods Applied to a Cylindrical Thermal Energy-Storage Unit" Molecules 27, no. 4: 1189. https://doi.org/10.3390/molecules27041189
APA StyleSilva-Nava, V., Hernández-Cooper, E. M., Chong-Quero, J. E., & Otero, J. A. (2022). Thermophysical Characterization of Paraffin Wax Based on Mass-Accommodation Methods Applied to a Cylindrical Thermal Energy-Storage Unit. Molecules, 27(4), 1189. https://doi.org/10.3390/molecules27041189