Comparison of the Effect of Hydrostatic and Dynamic High Pressure Processing on the Enzymatic Activity and Physicochemical Quality Attributes of ‘Ataulfo’ Mango Nectar
<p>Polar plot of °hue vs. chroma of ‘Ataulfo’ mango nectar processed by high pressure: (<b>A</b>) hydrostatic pressure, (<b>B</b>) dynamic pressure.</p> "> Figure 2
<p>Apparent viscosity as a function of shear rate in mango nectar processed by high pressures: (<b>A</b>) hydrostatic pressure, (<b>B</b>) dynamic pressure. Bars show standard errors.</p> "> Figure 3
<p>Experimental domain for hydrostatic and dynamic pressure treatments: (<b>A</b>) hydrostatic, (<b>B</b>) dynamic.</p> ">
Abstract
:1. Introduction
2. Results and Discussion
2.1. Effect of High Hydrostatic and Dynamic Pressure on the Relative Enzymatic Activity of Pectin Methylesterase
2.2. Effect of High Hydrostatic and Dynamic Pressure on Relative Enzymatic Activity of Polyphenol Oxidase
2.3. Effect of High Hydrostatic and Dynamic Pressure on Color Parameters
2.4. Effect of High Hydrostatic and Dynamic Pressure on Rheological Parameters
3. Materials and Methods
3.1. Plant Material
3.2. Mango Nectar Formulation
3.3. High Hydrostatic Pressure Processing
3.4. High Dynamic Pressure Processing
3.5. Enzymatic Activity Assays
3.5.1. Enzyme Extraction
3.5.2. Pectin Methylesterase Activity Assay
3.5.3. Polyphenol Oxidase Activity Assay
3.5.4. Relative Enzymatic Activity Calculation
3.6. Color Parameters
3.7. Rheological Parameters
3.8. Design of Experiments and Statistical Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Ağçam, E.; Akyildiz, A.; Dündar, B. Thermal Pasteurization and Microbial Inactivation of Fruit Juices; Elsevier: Cambridge, MA, USA, 2017; ISBN 9780128024911. [Google Scholar]
- Moschopoulou, E.; Moatsou, G.; Syrokou, M.K.; Paramithiotis, S.; Drosinos, E.H. Food Quality Changes during Shelf Life; Elsevier: Amsterdam, The Netherlands, 2019; ISBN 9780128171905. [Google Scholar]
- Santhirasegaram, V.; Razali, Z.; George, D.S.; Somasundram, C. Effects of Thermal and Non-thermal Processing on Phenolic Compounds, Antioxidant Activity and Sensory Attributes of Chokanan Mango (Mangifera indica L.) Juice. Food Bioprocess. Technol. 2015, 8, 2256–2267. [Google Scholar] [CrossRef]
- Bevilacqua, A.; Campaniello, D.; Speranza, B.; Altieri, C.; Sinigaglia, M.; Corbo, M.R. Two nonthermal technologies for food safety and quality—Ultrasound and high pressure homogenization: Effects on microorganisms, advances, and possibilities: A review. J. Food Prot. 2019, 82, 2049–2064. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moreno-Vilet, L.; Hernández-Hernández, H.M.; Villanueva-Rodríguez, S.J. Current status of emerging food processing technologies in Latin America: Novel thermal processing. Innov. Food Sci. Emerg. Technol. 2018, 50, 196–206. [Google Scholar] [CrossRef]
- Yamamoto, K. Food processing by high hydrostatic pressure. Biosci. Biotechnol. Biochem. 2017, 81, 672–679. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Augusto, P.E.D.; Tribst, A.A.L.; Cristianini, M. High Hydrostatic Pressure and High-Pressure Homogenization Processing of Fruit Juices. In Fruit Juices; Elsevier: Amsterdam, The Netherlands, 2018; pp. 393–421. ISBN 9780128024911. [Google Scholar]
- Dumay, E.; Chevalier-Lucia, D.; Picart-Palmade, L.; Benzaria, A.; Gràcia-Julià, A.; Blayo, C. Technological aspects and potential applications of (ultra) high-pressure homogenisation. Trends Food Sci. Technol. 2013, 31, 13–26. [Google Scholar] [CrossRef]
- Zamora, A.; Guamis, B. Opportunities for Ultra-High-Pressure Homogenisation (UHPH) for the Food Industry. Food Eng. Rev. 2015, 7, 130–142. [Google Scholar] [CrossRef]
- Mesa, J.; Barrera, C.; Betoret, E.; Betoret, N. High Homogenization Pressures to Improve Food. Molecules 2020, 25, 3305. [Google Scholar] [CrossRef] [PubMed]
- Terefe, N.S.; Yang, Y.H.; Knoerzer, K.; Buckow, R.; Versteeg, C. High pressure and thermal inactivation kinetics of polyphenol oxidase and peroxidase in strawberry puree. Innov. Food Sci. Emerg. Technol. 2010, 11, 52–60. [Google Scholar] [CrossRef]
- Zhou, L.; Liu, W.; Stockmann, R.; Terefe, N.S. Effect of citric acid and high pressure thermal processing on enzyme activity and related quality attributes of pear puree. Innov. Food Sci. Emerg. Technol. 2018, 45, 196–207. [Google Scholar] [CrossRef]
- Danalache, F.; Carvalho, C.Y.; Brito, L.; Mata, P.; Moldão-Martins, M.; Alves, V.D. Effect of thermal and high hydrostatic pressure treatments on mango bars shelf-life under refrigeration. J. Food Eng. 2017, 212, 113–120. [Google Scholar] [CrossRef]
- Carbonell, J.V.; Contreras, P.; Carbonell, L.; Navarro, J.L. Pectin methylesterase activity in juices from mandarins, oranges and hybrids. Eur. Food Res. Technol. 2006, 222, 83–87. [Google Scholar] [CrossRef]
- Navarro, J.L.; Izquierdo, L.; Carbonell, J.V.; Sentandreu, E. Effect of pH, temperature and maturity on pectinmethylesterase inactivation of citrus juices treated by high-pressure homogenization. LWT-Food Sci. Technol. 2014, 57, 785–788. [Google Scholar] [CrossRef]
- Velázquez-Estrada, R.M.; Hernández-Herrero, M.M.; Guamis-López, B.; Roig-Sagués, A.X. Impact of ultra high pressure homogenization on pectin methylesterase activity and microbial characteristics of orange juice: A comparative study against conventional heat pasteurization. Innov. Food Sci. Emerg. Technol. 2012, 13, 100–106. [Google Scholar] [CrossRef]
- Vervoort, L.; Van der Plancken, I.; Grauwet, T.; Timmermans, R.A.H.; Mastwijk, H.C.; Matser, A.M.; Hendrickx, M.E.; Van Loey, A. Comparing equivalent thermal, high pressure and pulsed electric field processes for mild pasteurization of orange juice: Part II: Impact on specific chemical and biochemical quality parameters. Innov. Food Sci. Emerg. Technol. 2011, 12, 466–477. [Google Scholar] [CrossRef]
- Wibowo, S.; Essel, E.A.; De Man, S.; Bernaert, N.; Van Droogenbroeck, B.; Grauwet, T.; Van Loey, A.; Hendrickx, M. Comparing the impact of high pressure, pulsed electric field and thermal pasteurization on quality attributes of cloudy apple juice using targeted and untargeted analyses. Innov. Food Sci. Emerg. Technol. 2019, 54, 64–77. [Google Scholar] [CrossRef]
- Feng, X.; Zhou, Z.; Wang, X.; Bi, X.; Ma, Y.; Xing, Y. Comparison of high hydrostatic pressure, ultrasound, and heat treatments on the quality of strawberry-apple-lemon juice blend. Foods 2020, 9, 218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tribst, A.A.L.; Ribeiro, L.R.; Cristianini, M. Comparison of the effects of high pressure homogenization and high pressure processing on the enzyme activity and antimicrobial profile of lysozyme. Innov. Food Sci. Emerg. Technol. 2017, 43, 60–67. [Google Scholar] [CrossRef]
- Duvetter, T.; Sila, D.N.; Van Buggenhout, S.; Jolie, R.; Van Loey, A.; Hendrickx, M. Pectins in processed fruit and vegetables: Part I—Stability and catalytic activity of pectinases. Compr. Rev. Food Sci. Food Saf. 2009, 8, 75–85. [Google Scholar] [CrossRef]
- Bermúdez-Aguirre, D.; Guerrero-Beltrán, J.Á.; Barbosa-Cánovas, G.V.; Welti-Chanes, J. Study of the inactivation of Escherichia coli and pectin methylesterase in mango nectar under selected high hydrostatic pressure treatments. Food Sci. Technol. Int. 2011, 17, 541–547. [Google Scholar] [CrossRef]
- Welti-Chanes, J.; Ochoa-Velasco, C.E.; Guerrero-Beltrán, J.Á. High-pressure homogenization of orange juice to inactivate pectinmethylesterase. Innov. Food Sci. Emerg. Technol. 2009, 10, 457–462. [Google Scholar] [CrossRef]
- Terefe, N.S.; Buckow, R.; Versteeg, C. Quality-Related Enzymes in Fruit and Vegetable Products: Effects of Novel Food Processing Technologies, Part 1: High-Pressure Processing. Crit. Rev. Food Sci. Nutr. 2014, 54, 24–63. [Google Scholar] [CrossRef] [PubMed]
- Bot, F.; Calligaris, S.; Cortella, G.; Plazzotta, S.; Nocera, F.; Anese, M. Study on high pressure homogenization and high power ultrasound effectiveness in inhibiting polyphenoloxidase activity in apple juice. J. Food Eng. 2018, 221, 70–76. [Google Scholar] [CrossRef]
- Marszałek, K.; Woźniak, Ł.; Kruszewski, B.; Skąpska, S. The Effect of High Pressure Techniques on the Stability of Anthocyanins in Fruit and Vegetables. Int. J. Mol. Sci. 2017, 18, 277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mokrzycki, W.; Tatol, M. Color difference Delta E—A survey. Mach. Graph. Vis. 2011, 20, 383–411. [Google Scholar]
- Aaby, K.; Grimsbo, I.H.; Hovda, M.B.; Rode, T.M. Effect of high pressure and thermal processing on shelf life and quality of strawberry purée and juice. Food Chem. 2018, 260, 115–123. [Google Scholar] [CrossRef] [PubMed]
- Kubo, M.T.K.; Augusto, P.E.D.; Cristianini, M. Effect of high pressure homogenization (HPH) on the physical stability of tomato juice. Food Res. Int. 2013, 51, 170–179. [Google Scholar] [CrossRef] [Green Version]
- Guan, Y.; Zhou, L.; Bi, J.; Yi, J.; Liu, X.; Chen, Q.; Wu, X.; Zhou, M. Change of microbial and quality attributes of mango juice treated by high pressure homogenization combined with moderate inlet temperatures during storage. Innov. Food Sci. Emerg. Technol. 2016, 36, 320–329. [Google Scholar] [CrossRef]
- Kruszewski, B.; Zawada, K.; Karpiński, P. Impact of high-pressure homogenization parameters on physicochemical characteristics, bioactive compounds content, and antioxidant capacity of blackcurrant juice. Molecules 2021, 26, 1802. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Li, R.; Wang, Y.; Bi, X.; Liao, X. Effects of high hydrostatic pressure and high-temperature short-time on mango nectars: Changes in microorganisms, acid invertase, 5- hydroxymethylfurfural, sugars, viscosity, and cloud. Innov. Food Sci. Emerg. Technol. 2014, 22, 22–30. [Google Scholar] [CrossRef]
- Ramaswamy, H.S.; Gundurao, A. Effect of soluble solids and high pressure treatment on rheological properties of protein enriched mango puree. Foods 2019, 8, 39. [Google Scholar] [CrossRef] [Green Version]
- Augusto, P.; Vitali, A. Assessing Juice Quality: Advances in the Determination of Rheological Properties of Fruit Juices and Derivatives. In Juice Processing; CRC Press: Boca Raton, FL, USA, 2014; pp. 83–136. ISBN 978-1-4665-7734-3. [Google Scholar]
- Leite, T.S.; Augusto, P.E.D.; Cristianini, M. Using High Pressure Homogenization (HPH) to Change the Physical Properties of Cashew Apple Juice. Food Biophys. 2015, 10, 169–180. [Google Scholar] [CrossRef]
- Cheema, S.; Sommerhalter, M. Characterization of polyphenol oxidase activity in Ataulfo mango. Food Chem. 2015, 171, 382–387. [Google Scholar] [CrossRef]
- Chakraborty, S.; Baier, D.; Knorr, D.; Mishra, H.N. High pressure inactivation of polygalacturonase, pectinmethylesterase and polyphenoloxidase in strawberry puree mixed with sugar. Food Bioprod. Process. 2015, 95, 281–291. [Google Scholar] [CrossRef]
- Rodrigo, D.; Cortés, C.; Clynen, E.; Schoofs, L.; Van Loey, A.; Hendrickx, M. Thermal and high-pressure stability of purified polygalacturonase and pectinmethylesterase from four different tomato processing varieties. Food Res. Int. 2006, 39, 440–448. [Google Scholar] [CrossRef]
- Palma-Orozco, G.; Marrufo-Hernández, N.A.; Sampedro, J.G.; Nájera, H. Purification and partial biochemical characterization of polyphenol oxidase from mango (Mangifera indica cv. Manila). J. Agric. Food Chem. 2014, 62, 9832–9840. [Google Scholar] [CrossRef] [PubMed]
High Hydrostatic Pressure (MPa) | Processing Time (min) | Relative Enzymatic Activity (%) | |
Pectin Methylesterase | Polyphenol Oxidase | ||
Control | 0 | 100.00 ± 4.84 a,* | 100.00 ± 7.09 d |
100 | 5 | 72.60 ± 1.79 c | 337.04 ± 48.02 c |
25 | 96.79 ± 6.27 ab | 382.64 ± 37.66 bc | |
250 | 15 | 94.92 ± 2.76 ab | 481.36 ± 23.99 a |
250 | 15 | 98.19 ± 2.80 a | 448.26 ± 49.81 ab |
250 | 15 | 99.2 ± 2.76 a | 398.23 ± 34.78 bc |
400 | 5 | 90.05 ± 3.03 b | 380.87 ± 33.24 bc |
25 | 89.28 ± 2.92 b | 421.02 ± 18.88 ab | |
High Dynamic Pressure (MPa) | Number of Passes | Relative Enzymatic Activity (%) | |
Pectin Methylesterase | Polyphenol Oxidase | ||
Control | 0 | 100.00 ± 4.84 ab | 100.00 ± 7.09 c |
100 | 1 | 104.98 ± 4.93 ab | 158.80 ± 7.60 ab |
3 | 93.13 ± 3.44 b | 149.87 ± 11.16 b | |
200 | 2 | 97.25 ± 4.93 b | 112.65 ± 7.57 c |
200 | 2 | 101.08 ± 7.78 ab | 142.34 ± 14.43 b |
200 | 2 | 95.13 ± 9.89 b | 179.43 ± 5.33 a |
300 | 1 | 119.95 ± 14.09 a | 26.74 ± 3.25 d |
3 | 99.53 ± 4.36 b | 10.73 ± 1.13 d |
Treatment | Temperature (°C) * |
---|---|
100 MPa/1P | 31.8 ± 1.1 |
100 MPa/3P | 37.5 ± 1.4 |
200 MPa/2P | 58.3 ± 1.1 |
200 MPa/2P | 55.1 ± 1.7 |
200 MPa/2P | 52.6 ± 0.9 |
300 MPa/1P | 65.3 ± 3.4 |
300 MPa/3P | 73.3 ± 1.2 |
Hydrostatic Pressure Level (MPa) | Processing Time (min) | L* | a* | b* | ΔE |
Control | 0 | 34.93 ± 0.37 a,* | 2.48 ± 0.31 a | 14.68 ± 0.50 b | 0.00 d |
100 | 5 | 33.15 ± 0.52 b | 1.75 ± 0.08 b | 14.14 ± 0.53 b | 2.18 ± 0.30 b |
25 | 35.96 ± 0.36 a | 3.04 ± 0.32 a | 11.38 ± 0.56 c | 3.28 ± 0.43 a | |
250 | 15 | 34.97 ± 1.06 a | 2.48 ± 0.56 a | 13.64 ± 1.34 b | 1.30 ± 0.24 c |
250 | 15 | 34.96 ± 0.45 a | 2.81 ± 0.09 a | 13.62 ± 0.74 b | 1.13 ± 0.15 c |
250 | 15 | 32.75 ± 0.98 b | 2.68 ± 0.26 a | 16.30 ± 1.15 a | 3.25 ± 0.55 a |
400 | 5 | 33.62 ± 0.17 b | 2.55 ± 0.20 a | 15.22 ± 0.19 ab | 1.54 ± 0.06 bc |
25 | 33.36 ± 0.51 b | 1.87 ± 0.12 b | 14.56 ± 0.66 b | 1.67 ± 0.21 bc | |
Dynamic Pressure Level (MPa) | Number of Passes | L* | a* | b* | ΔE |
Control | 0 | 34.93 ± 0.37 d | 2.48 ± 0.31 ab | 14.68 ± 0.50 d | 0.00 d |
100 | 1 | 38.66 ± 0.48 ab | 1.78 ± 0.18 cd | 13.96 ± 0.58 d | 4.10 ± 0.30 bc |
3 | 37.02 ± 1.27 bcd | 2.00 ± 0.35 bc | 16.13 ± 1.12 bcd | 3.42 ± 0.40 c | |
200 | 2 | 38.43 ± 0.73 abc | 2.79 ± 0.15 a | 15.32 ± 1.01 cd | 3.73 ± 0.40 c |
200 | 2 | 39.87 ± 0.95 a | 1.97 ± 0.26 bc | 14.57 ± 0.46 d | 5.34 ± 0.60 a |
200 | 2 | 36.95 ± 1.61 bcd | 1.36 ± 0.41 d | 17.59 ± 1.74 abc | 3.71 ± 0.27 c |
300 | 1 | 36.60 ± 1.71 bcd | 1.30 ± 0.38 d | 18.22 ± 2.21 ab | 3.92 ± 0.19 c |
3 | 36.36 ± 0.26 cd | 1.59 ± 0.08 cd | 19.15 ± 0.27 a | 4.78 ± 0.17 ab |
Nectar Viscosity (mPa∙s) at Low Shear Rate (7 s−1) | Nectar Viscosity (mPa∙s) at High Shear Rate (53 s−1) | |
---|---|---|
High Hydrostatic Pressure | ||
Control | 174.7 ± 8.1 a,* | 36.2 ± 0.2 ab |
100 MPa 5 min | 183.0 ± 20.8 a | 36.6 ± 0.4 b |
100 MPa 25 min | 201.5 ± 31.8 a | 40.3 ± 7.2 a |
250 MPa 15 min | 173.9 ± 12.4 a | 38.7 ± 0.4 ab |
250 MPa 15 min | 172.7 ± 11.8 a | 41.7 ± 1.6 ab |
250 MPa 15 min | 177.3 ± 9.1 a | 37.5 ± 2.8 ab |
400 MPa 5 min | 189.4 ± 16.7 a | 44.3 ± 0.6 a |
400 MPa 25 min | 187.1 ± 29.5 a | 32.2 ± 0.4 b |
High Pressure Homogenization | ||
Control | 174.7 ± 8.1 b* | 36.2 ± 0.2 b |
100 MPa 1P | 281.2 ± 14.3 a | 39.4 ± 0.2 a |
100 MPa 3P | 221.0 ± 5.9 ab | 26.5 ± 0.6 c |
200 MPa 2P | 172.4 ± 7.3 b | 25.6 ± 0.7 c |
200 MPa 2P | 165.2 ± 6.2 b | 24.8 ± 0.4 c |
200 MPa 2P | 179.7 ± 5.8 b | 26.3 ± 0.5 c |
300 MPa 1P | 166.6 ± 7.7 b | 26.6 ± 0.8 c |
300 MPa 3P | 185.8 ± 8.6 b | 24.9 ± 0.1 c |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Uranga-Soto, M.A.; Vargas-Ortiz, M.A.; León-Félix, J.; Heredia, J.B.; Muy-Rangel, M.D.; Chevalier-Lucia, D.; Picart-Palmade, L. Comparison of the Effect of Hydrostatic and Dynamic High Pressure Processing on the Enzymatic Activity and Physicochemical Quality Attributes of ‘Ataulfo’ Mango Nectar. Molecules 2022, 27, 1190. https://doi.org/10.3390/molecules27041190
Uranga-Soto MA, Vargas-Ortiz MA, León-Félix J, Heredia JB, Muy-Rangel MD, Chevalier-Lucia D, Picart-Palmade L. Comparison of the Effect of Hydrostatic and Dynamic High Pressure Processing on the Enzymatic Activity and Physicochemical Quality Attributes of ‘Ataulfo’ Mango Nectar. Molecules. 2022; 27(4):1190. https://doi.org/10.3390/molecules27041190
Chicago/Turabian StyleUranga-Soto, Manuel Alejandro, Manuel Alejandro Vargas-Ortiz, Josefina León-Félix, José Basilio Heredia, María Dolores Muy-Rangel, Dominique Chevalier-Lucia, and Laetitia Picart-Palmade. 2022. "Comparison of the Effect of Hydrostatic and Dynamic High Pressure Processing on the Enzymatic Activity and Physicochemical Quality Attributes of ‘Ataulfo’ Mango Nectar" Molecules 27, no. 4: 1190. https://doi.org/10.3390/molecules27041190
APA StyleUranga-Soto, M. A., Vargas-Ortiz, M. A., León-Félix, J., Heredia, J. B., Muy-Rangel, M. D., Chevalier-Lucia, D., & Picart-Palmade, L. (2022). Comparison of the Effect of Hydrostatic and Dynamic High Pressure Processing on the Enzymatic Activity and Physicochemical Quality Attributes of ‘Ataulfo’ Mango Nectar. Molecules, 27(4), 1190. https://doi.org/10.3390/molecules27041190