Quantitative Standardized Expansion Assay: An Artificial Intelligence-Powered Morphometric Description of Blastocyst Expansion and Zona Thinning Dynamics
"> Figure 1
<p>Definition of the features and timings under investigation. The AI-powered software CHLOE™ (Fairtility, Tel Aviv, Israel) was adopted to automatically annotate the time of blastulation (tB); the time of expanding blastocyst (tEB) (according to the definitions of the ESHRE TLT working group); and the time of biopsy (t-biopsy; i.e., the end of the video, when trophectoderm biopsy was performed) in hours post insemination (hpi). The same software annotated the area of embryo including the zp (zp-A; green circle); the area of the embryo proper (emb-A; yellow circle); the thickness of the zona pellucida (zp-T; calculated as the largest distance between the emb-A and the zp-A edges; orange line); the area of the ICM (ICM-A; purple shade); and the ratio between the area of ICM and the area of the trophectoderm (ICM/TE ratio). All of these metrics were calculated by the software at the median focal plane as the proportions of video frames occupied by each feature under investigation (single pixel = 300 µm; whole wells’ area = 90,000 µm<sup>2</sup>) at each blastulation timing. The quantitative standardized expansion assay (qSEA) was also automatically generated for each embryo by annotating the zp-A, emb-A, and the zp-T every 30 min across the 5 h following the tB. These data were then clustered according to blastocyst chromosomal constitution (euploid versus aneuploid) and reproductive competence (transferred euploid blastocysts that resulted in a LB versus transferred euploid blastocysts that did not result in a LB). This process generated six expansion maps (like the example with the blue and red lines for the two different outcomes) that were scrutinized to assess putative differences. Scale bar, 100 µm.</p> "> Figure 2
<p>(<b>A</b>) The zp-A (area of the embryo including the zona pellucida in µm<sup>2</sup>) qSEA (quantitative standardized expansion assay) outlined a larger expansion among euploid blastocysts that resulted in a live birth (LB) (green line) versus euploid blastocysts that did not result in a LB (orange line), which became significant 150 min following the time of blastulation (tB). The stars (*) identify the significant datapoints showing the mean ± SD in the two groups at that timing. (<b>B</b>) Receiver Characteristics Operating (ROC) curve analyses outlined a significant association between the zp-A qSEA with a LB after euploid blastocyst transfer unadjusted, adjusted for blastocyst morphology, and adjusted for blastocyst morphology and time of biopsy (t-biopsy). AUC, area under the curve.</p> "> Figure 3
<p>(<b>A</b>) The emb-A (area of the embryo proper in µm<sup>2</sup>) qSEA (quantitative standardized expansion assay) outlined a large expansion among euploid blastocysts that resulted in a live birth (LB) (green line) versus euploid blastocysts that did not result in a LB (orange line), which became significant already 180 min following the time of blastulation (tB). The stars (*) identify the significant datapoints showing the mean ± SD in the two groups at that timing. (<b>B</b>) Receiver Operating Characteristics (ROC) curve analyses outlined a significant association between the emb-A qSEA with a LB after euploid blastocyst transfer unadjusted, adjusted for blastocyst morphology, and adjusted for blastocyst morphology and time of biopsy (t-biopsy). AUC, area under the curve.</p> "> Figure 4
<p>(<b>A</b>) The zp-T (thickness of the zona pellucida in µm) qSEA (quantitative standardized expansion assay) outlined a more consistent zona thinning among euploid blastocysts that resulted in a live birth (LB) (green line) versus euploid blastocysts that did not result in a LB (orange line), which became significant already 180 min following the time of blastulation (tB). The stars (*) identify the significant datapoints showing the mean ± SD in the two groups at that timing. (<b>B</b>) Receiver Characteristics Operating (ROC) curve analyses outlined a significant association between the zp-T qSEA with a LB after euploid blastocyst transfer unadjusted, adjusted for blastocyst morphology, and adjusted for blastocyst morphology and time of biopsy (t-biopsy). AUC, area under the curve.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population and Study Design
2.2. IVF and PGT-A Laboratory Protocols
2.3. Blastocyst Expansion AI-Powered Morphometric and Morphodynamic Analysis
2.4. AI-Powered qSEA
2.5. Clinical Simulations
2.6. Statistical Analysis
3. Results
3.1. Aneuploid Blastocysts Were Slower, Expanded Less and Showed a Thicker Zona Pellucida with Respect to Euploid Embryos
3.2. The Zona Pellucida Thinning Process in the 5 h Following the tB Was More Substantial Among Euploid Blastocysts than Aneuploid
3.3. zp-A, emb-A, and zp-T qSEA Were Significantly Associated with Euploid Blastocysts’ Reproductive Competence
3.4. The zp-T qSEA Would Have Ranked a Euploid Blastocyst as Top Quality in Its Cohort in 57% of the Cycles with >1 Biopsied Blastocyst and Both Euploid and Aneuploid Embryos
3.5. In 69% of the Cycles with >1 Biopsied Blastocyst and Both Euploid and Aneuploid Embryos, the zp-T qSEA Ranking Would Be Equal or Better than Embryologist Rankings
3.6. In 46% of the Cases, the zp-A and emb-A qSEAs Would Have Disagreed with the Embryologists in Prioritizing Euploid Blastocysts for Transfer; The zp-T qSEA, Instead, Would Have Disagreed in 60% of the Cases
4. Discussion
4.1. Clinical Implications of the Evidence Produced in This Study
4.2. Basic Science Data Supporting the Evidence Produced in This Study
4.3. Future Perspectives of Molecular Investigations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Gardner, D.K.; Meseguer, M.; Rubio, C.; Treff, N.R. Diagnosis of human preimplantation embryo viability. Hum. Reprod. Update 2015, 21, 727–747. [Google Scholar] [CrossRef] [PubMed]
- Khosravi, P.; Kazemi, E.; Zhan, Q.; Malmsten, J.E.; Toschi, M.; Zisimopoulos, P.; Sigaras, A.; Lavery, S.; Cooper, L.A.D.; Hickman, C.; et al. Deep learning enables robust assessment and selection of human blastocysts after in vitro fertilization. NPJ Digit. Med. 2019, 2, 21. [Google Scholar] [CrossRef]
- Apter, S.; Ebner, T.; Freour, T.; Guns, Y.; Kovacic, B.; Le Clef, N.; Marques, M.; Meseguer, M.; Montjean, D.; Sfontouris, I.; et al. Eshre Working group on Time-lapse technology: Good practice recommendations for the use of time-lapse technology. Hum. Reprod. Open 2020, 2020, hoaa008. [Google Scholar] [CrossRef]
- Armstrong, S.; Bhide, P.; Jordan, V.; Pacey, A.; Marjoribanks, J.; Farquhar, C. Time-lapse systems for embryo incubation and assessment in assisted reproduction. Cochrane Database Syst. Rev. 2019, 5, CD011320. [Google Scholar] [CrossRef] [PubMed]
- Ahlstrom, A.; Lundin, K.; Lind, A.K.; Gunnarsson, K.; Westlander, G.; Park, H.; Thurin-Kjellberg, A.; Thorsteinsdottir, S.A.; Einarsson, S.; Astrom, M.; et al. A double-blind randomized controlled trial investigating a time-lapse algorithm for selecting Day 5 blastocysts for transfer. Hum. Reprod. 2022, 37, 708–717. [Google Scholar] [CrossRef] [PubMed]
- Coticchio, G.; Barrie, A.; Lagalla, C.; Borini, A.; Fishel, S.; Griffin, D.; Campbell, A. Plasticity of the human preimplantation embryo: Developmental dogmas, variations on themes and self-correction. Hum. Reprod. Update 2021, 27, 848–865. [Google Scholar] [CrossRef]
- Kragh, M.F.; Karstoft, H. Embryo selection with artificial intelligence: How to evaluate and compare methods? J. Assist. Reprod. Genet. 2021, 38, 1675–1689. [Google Scholar] [CrossRef]
- Ahlstrom, A.; Westin, C.; Reismer, E.; Wikland, M.; Hardarson, T. Trophectoderm morphology: An important parameter for predicting live birth after single blastocyst transfer. Hum. Reprod. 2011, 26, 3289–3296. [Google Scholar] [CrossRef]
- Huang, T.T.; Chinn, K.; Kosasa, T.; Ahn, H.J.; Kessel, B. Morphokinetics of human blastocyst expansion in vitro. Reprod. Biomed. Online 2016, 33, 659–667. [Google Scholar] [CrossRef]
- Cockburn, K.; Rossant, J. Making the blastocyst: Lessons from the mouse. J. Clin. Investig. 2010, 120, 995–1003. [Google Scholar] [CrossRef]
- Mio, Y.; Maeda, K. Time-lapse cinematography of dynamic changes occurring during in vitro development of human embryos. Am. J. Obstet. Gynecol. 2008, 199, 660.e1–660.e5. [Google Scholar] [CrossRef]
- Marcos, J.; Perez-Albala, S.; Mifsud, A.; Molla, M.; Landeras, J.; Meseguer, M. Collapse of blastocysts is strongly related to lower implantation success: A time-lapse study. Hum. Reprod. 2015, 30, 2501–2508. [Google Scholar] [CrossRef] [PubMed]
- Gazzo, E.; Pena, F.; Valdez, F.; Chung, A.; Velit, M.; Ascenzo, M.; Escudero, E. Blastocyst contractions are strongly related with aneuploidy, lower implantation rates, and slow-cleaving embryos: A time lapse study. JBRA Assist. Reprod. 2020, 24, 77–81. [Google Scholar] [CrossRef] [PubMed]
- Bodri, D.; Sugimoto, T.; Yao Serna, J.; Kawachiya, S.; Kato, R.; Matsumoto, T. Blastocyst collapse is not an independent predictor of reduced live birth: A time-lapse study. Fertil. Steril. 2016, 105, 1476–1483.e3. [Google Scholar] [CrossRef] [PubMed]
- Huang, T.T.; Huang, D.H.; Ahn, H.J.; Arnett, C.; Huang, C.T. Early blastocyst expansion in euploid and aneuploid human embryos: Evidence for a non-invasive and quantitative marker for embryo selection. Reprod. Biomed. Online 2019, 39, 27–39. [Google Scholar] [CrossRef]
- Huang, T.T.F.; Kosasa, T.; Walker, B.; Arnett, C.; Huang, C.T.F.; Yin, C.; Harun, Y.; Ahn, H.J.; Ohta, A. Deep learning neural network analysis of human blastocyst expansion from time-lapse image files. Reprod. Biomed. Online 2021, 42, 1075–1085. [Google Scholar] [CrossRef] [PubMed]
- Maggiulli, R.; Cimadomo, D.; Fabozzi, G.; Papini, L.; Dovere, L.; Ubaldi, F.M.; Rienzi, L. The effect of ICSI-related procedural timings and operators on the outcome. Hum. Reprod. 2020, 35, 32–43. [Google Scholar] [CrossRef]
- Maggiulli, R.; Giancani, A.; Cimadomo, D.; Ubaldi, F.M.; Rienzi, L. Human Blastocyst Biopsy and Vitrification. J. Vis. Exp. 2019, 146, e59625. [Google Scholar] [CrossRef]
- Treff, N.R.; Tao, X.; Ferry, K.M.; Su, J.; Taylor, D.; Scott, R.T., Jr. Development and validation of an accurate quantitative real-time polymerase chain reaction-based assay for human blastocyst comprehensive chromosomal aneuploidy screening. Fertil. Steril. 2012, 97, 819–824. [Google Scholar] [CrossRef]
- Capalbo, A.; Poli, M.; Rienzi, L.; Girardi, L.; Patassini, C.; Fabiani, M.; Cimadomo, D.; Benini, F.; Farcomeni, A.; Cuzzi, J.; et al. Mosaic human preimplantation embryos and their developmental potential in a prospective, non-selection clinical trial. Am. J. Hum. Genet. 2021, 108, 2238–2247. [Google Scholar] [CrossRef]
- Gardner, D.K.; Schoolcraft, B. In vitro culture of human blastocysts. In Toward Reproductive Certainty: Fertility and Genetics Beyond; Parthenon Press: Carnforth, UK, 1999; pp. 378–388. [Google Scholar]
- Campbell, A.; Fishel, S.; Bowman, N.; Duffy, S.; Sedler, M.; Hickman, C.F. Modelling a risk classification of aneuploidy in human embryos using non-invasive morphokinetics. Reprod. Biomed. Online 2013, 26, 477–485. [Google Scholar] [CrossRef] [PubMed]
- Cimadomo, D.; Chiappetta, V.; Innocenti, F.; Saturno, G.; Taggi, M.; Marconetto, A.; Casciani, V.; Albricci, L.; Maggiulli, R.; Coticchio, G.; et al. Towards Automation in IVF: Pre-Clinical Validation of a Deep Learning-Based Embryo Grading System during PGT-A Cycles. J. Clin. Med. 2023, 12, 1806. [Google Scholar] [CrossRef] [PubMed]
- Zhan, Q.; Sierra, E.T.; Malmsten, J.; Ye, Z.; Rosenwaks, Z.; Zaninovic, N. Blastocyst score, a blastocyst quality ranking tool, is a predictor of blastocyst ploidy and implantation potential. F S Rep. 2020, 1, 133–141. [Google Scholar] [CrossRef]
- Salih, M.; Austin, C.; Warty, R.R.; Tiktin, C.; Rolnik, D.L.; Momeni, M.; Rezatofighi, H.; Reddy, S.; Smith, V.; Vollenhoven, B.; et al. Embryo selection through artificial intelligence versus embryologists: A systematic review. Hum. Reprod. Open 2023, 2023, hoad031. [Google Scholar] [CrossRef]
- Lagalla, C.; Barberi, M.; Orlando, G.; Sciajno, R.; Bonu, M.A.; Borini, A. A quantitative approach to blastocyst quality evaluation: Morphometric analysis and related IVF outcomes. J. Assist. Reprod. Genet. 2015, 32, 705–712. [Google Scholar] [CrossRef]
- Zhao, J.; Yan, Y.; Huang, X.; Sun, L.; Li, Y. Blastocoele expansion: An important parameter for predicting clinical success pregnancy after frozen-warmed blastocysts transfer. Reprod. Biol. Endocrinol. 2019, 17, 15. [Google Scholar] [CrossRef] [PubMed]
- Coticchio, G.; Ezoe, K.; Lagalla, C.; Zaca, C.; Borini, A.; Kato, K. The destinies of human embryos reaching blastocyst stage between Day 4 and Day 7 diverge as early as fertilization. Hum. Reprod. 2023, 38, 1690–1699. [Google Scholar] [CrossRef]
- Bamford, T.; Barrie, A.; Montgomery, S.; Dhillon-Smith, R.; Campbell, A.; Easter, C.; Coomarasamy, A. Morphological and morphokinetic associations with aneuploidy: A systematic review and meta-analysis. Hum. Reprod. Update 2022, 28, 656–686. [Google Scholar] [CrossRef]
- Hori, K.; Hori, K.; Kosasa, T.; Walker, B.; Ohta, A.; Ahn, H.J.; Huang, T.T.F. Comparison of euploid blastocyst expansion with subgroups of single chromosome, multiple chromosome, and segmental aneuploids using an AI platform from donor egg embryos. J. Assist. Reprod. Genet. 2023, 40, 1407–1416. [Google Scholar] [CrossRef]
- Baatarsuren, M.; Sengebaljir, D.; Ganbaatar, C.; Tserendorj, T.; Erdenekhuyag, B.; Baljinnyam, L.; Radnaa, E.; Dorjpurev, A.; Ganbat, G.; Boris, T.; et al. The trophectoderm could be better predictable parameter than inner cellular mass (ICM) for live birth rate and gender imbalance. Reprod. Biol. 2022, 22, 100596. [Google Scholar] [CrossRef]
- Thompson, S.M.; Onwubalili, N.; Brown, K.; Jindal, S.K.; McGovern, P.G. Blastocyst expansion score and trophectoderm morphology strongly predict successful clinical pregnancy and live birth following elective single embryo blastocyst transfer (eSET): A national study. J. Assist. Reprod. Genet. 2013, 30, 1577–1581. [Google Scholar] [CrossRef] [PubMed]
- Watson, A.J.; Barcroft, L.C. Regulation of blastocyst formation. Front. Biosci. 2001, 6, 708–730. [Google Scholar] [CrossRef]
- Aziz, M.; Alexandre, H. The origin of the nascent blastocoele in preimplantation mouse embryos ultrastructural cytochemistry and effect of chloroquine. Rouxs Arch. Dev. Biol. 1991, 200, 77–85. [Google Scholar] [CrossRef] [PubMed]
- Le Verge-Serandour, M.; Turlier, H. A hydro-osmotic coarsening theory of biological cavity formation. PLoS Comput. Biol. 2021, 17, e1009333. [Google Scholar] [CrossRef]
- Manejwala, F.M.; Cragoe, E.J., Jr.; Schultz, R.M. Blastocoel expansion in the preimplantation mouse embryo: Role of extracellular sodium and chloride and possible apical routes of their entry. Dev. Biol. 1989, 133, 210–220. [Google Scholar] [CrossRef]
- Wiley, L.M. Cavitation in the mouse preimplantation embryo: Na/K-ATPase and the origin of nascent blastocoele fluid. Dev. Biol. 1984, 105, 330–342. [Google Scholar] [CrossRef] [PubMed]
- Barcroft, L.C.; Offenberg, H.; Thomsen, P.; Watson, A.J. Aquaporin proteins in murine trophectoderm mediate transepithelial water movements during cavitation. Dev. Biol. 2003, 256, 342–354. [Google Scholar] [CrossRef]
- Torres, E.M.; Williams, B.R.; Amon, A. Aneuploidy: Cells losing their balance. Genetics 2008, 179, 737–746. [Google Scholar] [CrossRef]
- Williams, B.R.; Prabhu, V.R.; Hunter, K.E.; Glazier, C.M.; Whittaker, C.A.; Housman, D.E.; Amon, A. Aneuploidy affects proliferation and spontaneous immortalization in mammalian cells. Science 2008, 322, 703–709. [Google Scholar] [CrossRef]
- Ben-David, U.; Amon, A. Context is everything: Aneuploidy in cancer. Nat. Rev. Genet. 2020, 21, 44–62. [Google Scholar] [CrossRef]
- Vinals Gonzalez, X.; Odia, R.; Cawood, S.; Gaunt, M.; Saab, W.; Seshadri, S.; Serhal, P. Contraction behaviour reduces embryo competence in high-quality euploid blastocysts. J. Assist. Reprod. Genet. 2018, 35, 1509–1517. [Google Scholar] [CrossRef] [PubMed]
- DiZio, S.M.; Tasca, R.J. Sodium-dependent amino acid transport in preimplantation mouse embryos. III. Na+-k+-atpase-linked mechanism in blastocysts. Dev. Biol. 1977, 59, 198–205. [Google Scholar] [CrossRef] [PubMed]
- Kort, J.; Behr, B. Biomechanics and developmental potential of oocytes and embryos. Fertil. Steril. 2017, 108, 738–741. [Google Scholar] [CrossRef]
- Seshagiri, P.B.; Vani, V.; Madhulika, P. Cytokines and Blastocyst Hatching. Am. J. Reprod. Immunol. 2016, 75, 208–217. [Google Scholar] [CrossRef] [PubMed]
- Shafei, R.A.; Syrkasheva, A.G.; Romanov, A.Y.; Makarova, N.P.; Dolgushina, N.V.; Semenova, M.L. Blastocyst Hatching in Humans. Ontogenez 2017, 48, 8–20. [Google Scholar] [CrossRef]
- Yang, G.; Chen, J.; He, Y.; Luo, H.; Yuan, H.; Chen, L.; Huang, L.; Mao, F.; Hu, S.; Qian, Y.; et al. Neddylation Inhibition Causes Impaired Mouse Embryo Quality and Blastocyst Hatching Failure Through Elevated Oxidative Stress and Reduced IL-1beta. Front. Immunol. 2022, 13, 925702. [Google Scholar] [CrossRef]
- Almagor, M.; Levin, Y.; Halevy Amiran, R.; Fieldust, S.; Harir, Y.; Or, Y.; Shoham, Z. Spontaneous in vitro hatching of the human blastocyst: The proteomics of initially hatching cells. Vitr. Cell Dev. Biol. Anim. 2020, 56, 859–865. [Google Scholar] [CrossRef]
- Seshagiri, P.B.; Sen Roy, S.; Sireesha, G.; Rao, R.P. Cellular and molecular regulation of mammalian blastocyst hatching. J. Reprod. Immunol. 2009, 83, 79–84. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J.; Inge, K.L.; Suzman, M.; Wiker, S.R.; Wright, G. Videocinematography of fresh and cryopreserved embryos: A retrospective analysis of embryonic morphology and implantation. Fertil. Steril. 1989, 51, 820–827. [Google Scholar] [CrossRef]
- Palmstierna, M.; Murkes, D.; Csemiczky, G.; Andersson, O.; Wramsby, H. Zona pellucida thickness variation and occurrence of visible mononucleated blastomers in preembryos are associated with a high pregnancy rate in IVF treatment. J. Assist. Reprod. Genet. 1998, 15, 70–75. [Google Scholar] [CrossRef]
- Bertrand, E.; Van den Bergh, M.; Englert, Y. Does zona pellucida thickness influence the fertilization rate? Hum. Reprod. 1995, 10, 1189–1193. [Google Scholar] [CrossRef] [PubMed]
- Gabrielsen, A.; Bhatnager, P.R.; Petersen, K.; Lindenberg, S. Influence of zona pellucida thickness of human embryos on clinical pregnancy outcome following in vitro fertilization treatment. J. Assist. Reprod. Genet. 2000, 17, 323–328. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.P.; Xu, Y.; Cao, T.; Su, Y.C.; Guo, Y.H. Zona pellucida thickness and clinical pregnancy outcome following in vitro fertilization. Int. J. Gynaecol. Obstet. 2005, 89, 258–262. [Google Scholar] [CrossRef] [PubMed]
- Fuchs Weizman, N.; Wyse, B.A.; Antes, R.; Ibarrientos, Z.; Sangaralingam, M.; Motamedi, G.; Kuznyetsov, V.; Madjunkova, S.; Librach, C.L. Towards Improving Embryo Prioritization: Parallel Next Generation Sequencing of DNA and RNA from a Single Trophectoderm Biopsy. Sci. Rep. 2019, 9, 2853. [Google Scholar] [CrossRef] [PubMed]
- Nomm, M.; Ivask, M.; Parn, P.; Reimann, E.; Koks, S.; Jaakma, U. Detecting Embryo Developmental Potential by Single Blastomere RNA-Seq. Genes 2023, 14, 569. [Google Scholar] [CrossRef]
- Groff, A.F.; Resetkova, N.; DiDomenico, F.; Sakkas, D.; Penzias, A.; Rinn, J.L.; Eggan, K. RNA-seq as a tool for evaluating human embryo competence. Genome Res. 2019, 29, 1705–1718. [Google Scholar] [CrossRef]
Aneuploid N = 1298 | Euploid N = 886 | p-Value | Euploid–No LB N = 315 | Euploid–LB N = 233 | p-Value | |
---|---|---|---|---|---|---|
tSB, mean ± SD, hpi tB, mean ± SD, hpi tEB, mean ± SD, hpi t-biopsy, mean ± SD, hpi | 102.5 ± 10.5 113.0 ± 12.7 120.9 ± 14.5 136.0 ± 15.2 | 100.5 ± 9.6 109.7 ± 11.1 115.9 ± 12.0 131.6 ± 13.7 | p < 0.01 p < 0.01 p < 0.01 p < 0.01 | 100.3 ± 9.7 109.9 ± 11.2 116.7 ± 12.4 132.4 ± 13.9 | 99.0 ± 9.8 107.5 ± 10.9 112.6 ± 11.2 127.1 ± 12.5 | p = 0.10 p = 0.01 p < 0.01 p < 0.01 |
zp-A at tB, mean ± SD, µm2 | 14,288 ± 1257 | 14,168 ± 1119 | p = 0.02 * | 14,124 ± 1071 | 14,263 ± 1231 | p = 0.16 |
zp-A at tEB, mean ± SD, µm2 | 17,435 ± 1828 | 17,417 ± 1955 | p = 0.82 | 17,482 ± 2234 | 17,542 ± 1835 | p = 0.74 |
Ratio tEB/tB, mean ± SD | +22% ± 10% | +23% ± 12% | p = 0.74 * | +24% ± 14% | +23% ± 9% | p = 0.48 |
zp-A at t-biopsy, mean ± SD, µm2 | 24,082 ± 5763 | 25,438 ± 5968 | p < 0.01 * | 25,141 ± 5873 | 25,790 ± 6159 | p = 0.21 |
Ratio t-biopsy/tEB, mean ± SD | +38% ± 31% | +47% ± 33% | p < 0.01 * | +45% ± 33% | +47% ± 33% | p = 0.35 |
Ratio t-biopsy/tB, mean ± SD | +69% ± 39% | +80% ± 41% | p < 0.01 * | +79% ± 42% | +81% ± 42% | p = 0.47 |
emb-A at tB, mean ± SD, µm2 | 13,349 ± 1196 | 13,249 ± 1121 | p = 0.03 * | 13,235 ± 1107 | 13,309 ± 1121 | p = 0.44 |
emb-A at tEB, mean ± SD, µm2 | 16,900 ± 1867 | 16,922 ± 1986 | p = 0.79 | 16,996 ± 2274 | 17,030 ± 1757 | p = 0.85 |
Ratio tEB/tB, mean ± SD | +27% ± 11% | +28% ± 13% | p = 0.28 * | +29% ± 16% | +28% ± 10% | p = 0.64 |
emb-A at t-biopsy, mean ± SD, µm2 | 23,612 ± 5960 | 25,058 ± 6212 | p < 0.01 * | 24,694 ± 6169 | 25,512 ± 6299 | p = 0.13 |
Ratio t-biopsy/tEB, mean ± SD | +40% ± 34% | +48% ± 36% | p < 0.01 * | +46% ± 35% | +50% ± 34% | p = 0.22 |
Ratio t-biopsy/tB, mean ± SD | +77% ± 44% | +90% ± 47% | p < 0.01 * | +87% ± 48% | +92% ± 46% | p = 0.26 |
zp-T at tB, mean ± SD, µm | 16.4 ± 2.9 | 16.2 ± 2.9 | p = 0.25 | 16.5 ± 3.0 | 16.3 ± 3.1 | p = 0.55 |
zp-T at tEB, mean ± SD, µm | 12.9 ± 2.4 | 12.6 ± 2.5 | p = 0.01 * | 12.9 ± 2.5 | 12.8 ± 2.5 | p = 0.54 |
Ratio tEB/tB, mean ± SD | −21% ± 11% | −22% ± 11% | p = 0.53 * | −21% ± 11% | −22% ± 10% | p = 0.90 |
zp-T at t-biopsy, mean ± SD, µm | 8.1 ± 3.2 | 7.1 ± 2.7 | p < 0.01 * | 7.3 ± 2.9 | 6.9 ± 2.5 | p = 0.11 |
Ratio t-biopsy/tEB, mean ± SD | −37% ± 24% | −43% ± 22% | p = 0.01 * | −43% ± 22% | −44% ± 20% | p = 0.24 |
Ratio t-biopsy/tB, mean ± SD | −50% ± 20% | −55% ± 18% | p < 0.01 * | −55% ± 18% | −57% ± 16% | p = 0.21 |
ICM-A at tB, mean ± SD, µm2 | 3458 ± 905 | 3414 ± 902 | p = 0.27 | 3425 ± 953 | 3434 ± 852 | p = 0.91 |
ICM-A at tEB, mean ± SD, µm2 | 3497 ± 1047 | 3460 ± 1066 | p = 0.43 | 3414 ± 1078 | 3468 ± 984 | p = 0.55 |
Ratio tEB/tB, mean ± SD | +5% ± 35% | +5% ± 33% | p = 0.99 | +4% ± 33% | +3% ± 25% | p = 0.65 |
ICM-A at t-biopsy, mean ± SD, µm2 | 3804 ± 1471 | 3727 ± 1469 | p = 0.31 | 3800 ± 1547 | 3541 ± 1212 | p = 0.08 |
Ratio t-biopsy/tEB, mean ± SD | +11% ± 50% | +10% ± 45% | p = 0.42 | +13% ± 46% | +4% ± 36% | p = 0.17 ** |
Ratio t-biopsy/tB, mean ± SD | +12% ± 49% | +12% ± 51% | p = 0.97 | +16% ± 56% | +6% ± 45% | p = 0.08 |
ICM/TE ratio at tB, mean ± SD | 26% ± 7% | 26% ± 7% | p = 0.61 | 26% ± 7% | 26% ± 7% | p = 0.95 |
ICM/TE ratio at tEB, mean ± SD | 21% ± 6% | 21% ± 6% | p = 0.36 | 20% ± 6% | 20% ± 6% | p = 0.50 |
ICM/TE ratio at t-biopsy, mean ± SD | 17% ± 8% | 16% ± 7% | p = 0.97 * | 16% ± 7% | 15% ± 6% | p = 0.47 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cimadomo, D.; Trio, S.; Canosi, T.; Innocenti, F.; Saturno, G.; Taggi, M.; Soscia, D.M.; Albricci, L.; Kantor, B.; Dvorkin, M.; et al. Quantitative Standardized Expansion Assay: An Artificial Intelligence-Powered Morphometric Description of Blastocyst Expansion and Zona Thinning Dynamics. Life 2024, 14, 1396. https://doi.org/10.3390/life14111396
Cimadomo D, Trio S, Canosi T, Innocenti F, Saturno G, Taggi M, Soscia DM, Albricci L, Kantor B, Dvorkin M, et al. Quantitative Standardized Expansion Assay: An Artificial Intelligence-Powered Morphometric Description of Blastocyst Expansion and Zona Thinning Dynamics. Life. 2024; 14(11):1396. https://doi.org/10.3390/life14111396
Chicago/Turabian StyleCimadomo, Danilo, Samuele Trio, Tamara Canosi, Federica Innocenti, Gaia Saturno, Marilena Taggi, Daria Maria Soscia, Laura Albricci, Ben Kantor, Michael Dvorkin, and et al. 2024. "Quantitative Standardized Expansion Assay: An Artificial Intelligence-Powered Morphometric Description of Blastocyst Expansion and Zona Thinning Dynamics" Life 14, no. 11: 1396. https://doi.org/10.3390/life14111396
APA StyleCimadomo, D., Trio, S., Canosi, T., Innocenti, F., Saturno, G., Taggi, M., Soscia, D. M., Albricci, L., Kantor, B., Dvorkin, M., Svensson, A., Huang, T., Vaiarelli, A., Gennarelli, G., & Rienzi, L. (2024). Quantitative Standardized Expansion Assay: An Artificial Intelligence-Powered Morphometric Description of Blastocyst Expansion and Zona Thinning Dynamics. Life, 14(11), 1396. https://doi.org/10.3390/life14111396