Understanding Galectin-3’s Role in Diastolic Dysfunction: A Contemporary Perspective
<p>Cellular signaling pathways of galectin-3 in cardiac diastolic pathophysiology.</p> "> Figure 2
<p>The pathophysiology of galectin-3 interacted with extracellular matrix components in cardiac diastolic dysfunction.</p> "> Figure 3
<p>The role of galectin-3 in inflammation, fibrosis, and heart remodeling leading to cardiac diastolic dysfunction.</p> ">
Abstract
:1. Introduction
1.1. Overview of Diastolic Dysfunction
1.2. Introduction to Galectin-3
1.3. Rationale for Exploring Galectin-3 in Diastolic Dysfunction
2. Molecular Mechanisms of Galectin-3
2.1. Structure and Function of Galectin-3
2.2. Cellular Signaling Pathways
2.3. Interaction with Extracellular Matrix Components
3. Role of Galectin-3 in Diastolic Dysfunction
3.1. Experimental Evidence from Animal Models
3.2. Clinical Studies in Human Subjects
3.3. Galectin-3 as a Biomarker for Diastolic Dysfunction
4. Pathophysiological Insights
4.1. Inflammation and Fibrosis
4.2. Cardiac Remodeling
4.3. Endothelial Dysfunction
5. Diagnostic and Therapeutic Implications
5.1. Potential Diagnostic Utility of Galectin-3
5.2. Therapeutic Targeting of Galectin-3
5.3. Future Directions and Research Opportunities
6. Conclusions
6.1. Summary of Key Findings
6.2. Clinical Relevance and Implications
6.3. Closing Remarks on the Role of Galectin-3 in Diastolic Dysfunction
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Aboonabi, A.; McCauley, M.D. Myofilament dysfunction in diastolic heart failure. Heart Fail. Rev. 2024, 29, 79–93. [Google Scholar] [CrossRef] [PubMed]
- Simmonds, S.J.; Grootaert, M.O.J.; Cuijpers, I.; Carai, P.; Geuens, N.; Herwig, M.; Baatsen, P.; Hamdani, N.; Luttun, A.; Heymans, S.; et al. Pericyte loss initiates microvascular dysfunction in the development of diastolic dysfunction. Eur. Heart J. Open 2024, 4, oead129. [Google Scholar] [CrossRef] [PubMed]
- Janssens, J.V.; Raaijmakers, A.J.A.; Weeks, K.L.; Bell, J.R.; Mellor, K.M.; Curl, C.L.; Delbridge, L.M.D. The cardiomyocyte origins of diastolic dysfunction: Cellular components of myocardial “stiffness”. Am. J. Physiol. Heart Circ. Physiol. 2024, 326, H584–H598. [Google Scholar] [CrossRef] [PubMed]
- Aldujeli, A.; Tsai, T.Y.; Haq, A.; Tatarunas, V.; Knokneris, A.; Briedis, K.; Unikas, R.; Onuma, Y.; Brilakis, E.S.; Serruys, P.W. Impact of Coronary Microvascular Dysfunction on Functional Left Ventricular Remodeling and Diastolic Dysfunction. J. Am. Heart Assoc. 2024, 13, e033596. [Google Scholar] [CrossRef] [PubMed]
- Baccouche, B.M.; Rhodenhiser, E. Galectin-3 and HFpEF: Clarifying an Emerging Relationship. Curr. Cardiol. Rev. 2023, 19, 19–26. [Google Scholar] [CrossRef] [PubMed]
- Seropian, I.M.; Cassaglia, P.; Miksztowicz, V.; Gonzalez, G.E. Unraveling the role of galectin-3 in cardiac pathology and physiology. Front. Physiol. 2023, 14, 1304735. [Google Scholar] [CrossRef]
- Sethi, A.; Sanam, S.; Alvala, R.; Alvala, M. An updated patent review of galectin-1 and galectin-3 inhibitors and their potential therapeutic applications (2016-present). Expert Opin. Ther. Pat. 2021, 31, 709–721. [Google Scholar] [CrossRef] [PubMed]
- Khadeja Bi, A.; Santhosh, V.; Sigamani, K. Levels of Galectin-3 in Chronic Heart Failure: A Case-Control Study. Cureus 2022, 14, e28310. [Google Scholar] [CrossRef]
- Shi, Y.; Dong, G.; Liu, J.; Shuang, X.; Liu, C.; Yang, C.; Qing, W.; Qiao, W. Clinical Implications of Plasma Galectin-3 in Heart Failure With Preserved Ejection Fraction: A Meta-Analysis. Front. Cardiovasc. Med. 2022, 9, 854501. [Google Scholar] [CrossRef]
- Lee, H.J.; Park, C.S.; Lee, S.; Park, J.B.; Kim, H.K.; Park, S.J.; Kim, Y.J.; Lee, S.P. Systemic proinflammatory-profibrotic response in aortic stenosis patients with diabetes and its relationship with myocardial remodeling and clinical outcome. Cardiovasc. Diabetol. 2023, 22, 30. [Google Scholar] [CrossRef]
- Kocyigit, D.; Gurses, K.M.; Yalcin, M.U.; Canpinar, H.; Canpolat, U.; Evranos, B.; Yorgun, H.; Ozer, N.; Guc, D.; Aytemir, K. Serum galectin-3 level as a marker of thrombogenicity in atrial fibrillation. J. Clin. Lab. Anal. 2017, 31, 22120. [Google Scholar] [CrossRef] [PubMed]
- Yalcin, M.U.; Gurses, K.M.; Kocyigit, D.; Canpinar, H.; Canpolat, U.; Evranos, B.; Yorgun, H.; Sahiner, M.L.; Kaya, E.B.; Hazirolan, T.; et al. The Association of Serum Galectin-3 Levels with Atrial Electrical and Structural Remodeling. J. Cardiovasc. Electrophysiol. 2015, 26, 635–640. [Google Scholar] [CrossRef] [PubMed]
- Elsadek, A.; Ibrahim, M.; El Fallah, A.A.; Elian, M.; Deraz, S.E. Galectin-3 as an early marker of diastolic dysfunction in children with end-stage renal disease on regular hemodialysis. Ann. Pediatr. Cardiol. 2022, 15, 266–272. [Google Scholar] [CrossRef] [PubMed]
- An, L.; Chang, G.; Zhang, L.; Wang, P.; Gao, W.; Li, X. Pectin: Health-promoting properties as a natural galectin-3 inhibitor. Glycoconj. J. 2024, 41, 93–118. [Google Scholar] [CrossRef] [PubMed]
- Mayya, C.; Naveena, A.H.; Sinha, P.; Bhatia, D. Dynein functions in galectin-3 mediated processes of clathrin-independent endocytosis. J. Biosci. 2024, 49, 42. [Google Scholar] [CrossRef]
- Liu, H.; Hwang, S.Y.; Lee, S.S. Role of Galectin in Cardiovascular Conditions including Cirrhotic Cardiomyopathy. Pharmaceuticals 2023, 16, 978. [Google Scholar] [CrossRef] [PubMed]
- Ortega-Ferreira, C.; Soret, P.; Robin, G.; Speca, S.; Hubert, S.; Le Gall, M.; Desvaux, E.; Jendoubi, M.; Saint-Paul, J.; Chadli, L.; et al. Antibody-mediated neutralization of galectin-3 as a strategy for the treatment of systemic sclerosis. Nat. Commun. 2023, 14, 5291. [Google Scholar] [CrossRef]
- Tian, L.; Wang, Y.; Zhang, R. Galectin-3 induces vascular smooth muscle cells calcification via AMPK/TXNIP pathway. Aging 2022, 14, 5086–5096. [Google Scholar] [CrossRef]
- Cheng, W.L.; Chen, Y.C.; Li, S.J.; Lee, T.I.; Lee, T.W.; Higa, S.; Chung, C.C.; Kao, Y.H.; Chen, S.A.; Chen, Y.J. Galectin-3 enhances atrial remodelling and arrhythmogenesis through CD98 signalling. Acta Physiol. 2022, 234, e13784. [Google Scholar] [CrossRef]
- Sun, Z.; Zhang, L.; Li, L.; Shao, C.; Liu, J.; Zhou, M.; Wang, Z. Galectin-3 mediates cardiac remodeling caused by impaired glucose and lipid metabolism through inhibiting two pathways of activating Akt. Am. J. Physiol. Heart Circ. Physiol. 2021, 320, H364–H380. [Google Scholar] [CrossRef]
- Luo, J.; Wang, S.; Liu, X.; Zheng, Q.; Wang, Z.; Huang, Y.; Shi, J. Galectin-3 promotes calcification of human aortic valve interstitial cells via the NF-kappa B signaling pathway. Cardiovasc. Diagn. Ther. 2022, 12, 196–207. [Google Scholar] [CrossRef] [PubMed]
- Xiao, M.; Zhang, M.; Bie, M.; Wang, X.; Guo, J.; Xiao, H. Galectin-3 Induces Atrial Fibrosis by Activating the TGF-beta1/Smad Pathway in Patients with Atrial Fibrillation. Cardiology 2020, 145, 446–455. [Google Scholar] [CrossRef] [PubMed]
- Nuzzi, V.; Raafs, A.; Manca, P.; Henkens, M.; Gregorio, C.; Boscutti, A.; Verdonschot, J.; Hazebroek, M.; Knackstedt, C.; Merlo, M.; et al. Left Atrial Reverse Remodeling in Dilated Cardiomyopathy. J. Am. Soc. Echocardiogr. 2023, 36, 154–162. [Google Scholar] [CrossRef] [PubMed]
- Rubis, P.; Holcman, K.; Dziewiecka, E.; Wisniowska-Smialek, S.; Karabinowska, A.; Szymonowicz, M.; Khachatryan, L.; Wypasek, E.; Garlitski, A.; Gackowski, A.; et al. Relationships between circulating galectin-3, extracellular matrix fibrosis and outcomes in dilated cardiomyopathy. Adv. Clin. Exp. Med. 2021, 30, 245–253. [Google Scholar] [CrossRef] [PubMed]
- Ansari, U.; Behnes, M.; Hoffmann, J.; Weidner, K.; Kuche, P.; Rusnak, J.; Kim, S.H.; Natale, M.; Reckord, N.; Lang, S.; et al. Galectin-3 reflects the echocardiographic quantification of right ventricular failure. Scand. Cardiovasc. J. 2021, 55, 362–370. [Google Scholar] [CrossRef] [PubMed]
- Hartmann, F.; Gorski, D.J.; Newman, A.A.C.; Homann, S.; Petz, A.; Owsiany, K.M.; Serbulea, V.; Zhou, Y.Q.; Deaton, R.A.; Bendeck, M.; et al. SMC-Derived Hyaluronan Modulates Vascular SMC Phenotype in Murine Atherosclerosis. Circ. Res. 2021, 129, 992–1005. [Google Scholar] [CrossRef]
- Petz, A.; Grandoch, M.; Gorski, D.J.; Abrams, M.; Piroth, M.; Schneckmann, R.; Homann, S.; Muller, J.; Hartwig, S.; Lehr, S.; et al. Cardiac Hyaluronan Synthesis Is Critically Involved in the Cardiac Macrophage Response and Promotes Healing After Ischemia Reperfusion Injury. Circ. Res. 2019, 124, 1433–1447. [Google Scholar] [CrossRef] [PubMed]
- De Marco, C.; Claggett, B.L.; de Denus, S.; Zile, M.R.; Huynh, T.; Desai, A.S.; Sirois, M.G.; Solomon, S.D.; Pitt, B.; Rouleau, J.L.; et al. Impact of diabetes on serum biomarkers in heart failure with preserved ejection fraction: Insights from the TOPCAT trial. ESC Heart Fail. 2021, 8, 1130–1138. [Google Scholar] [CrossRef]
- Sharma, U.C.; Pokharel, S.; van Brakel, T.J.; van Berlo, J.H.; Cleutjens, J.P.; Schroen, B.; André, S.; Crijns, H.J.; Gabius, H.J.; Maessen, J.; et al. Galectin-3 marks activated macrophages in failure-prone hypertrophied hearts and contributes to cardiac dysfunction. Circulation 2004, 110, 3121–3128. [Google Scholar] [CrossRef]
- Liu, Y.H.; D’Ambrosio, M.; Liao, T.D.; Peng, H.; Rhaleb, N.E.; Sharma, U.; André, S.; Gabius, H.J.; Carretero, O.A. N-acetyl-seryl-aspartyl-lysyl-proline prevents cardiac remodeling and dysfunction induced by galectin-3, a mammalian adhesion/growth-regulatory lectin. Am. J. Physiol. Heart Circ. Physiol. 2009, 296, H404–H412. [Google Scholar] [CrossRef]
- Nguyen, M.N.; Su, Y.; Vizi, D.; Fang, L.; Ellims, A.H.; Zhao, W.B.; Kiriazis, H.; Gao, X.M.; Sadoshima, J.; Taylor, A.J.; et al. Mechanisms responsible for increased circulating levels of galectin-3 in cardiomyopathy and heart failure. Sci. Rep. 2018, 8, 8213. [Google Scholar] [CrossRef]
- Yu, L.; Ruifrok, W.P.; Meissner, M.; Bos, E.M.; van Goor, H.; Sanjabi, B.; van der Harst, P.; Pitt, B.; Goldstein, I.J.; Koerts, J.A.; et al. Genetic and pharmacological inhibition of galectin-3 prevents cardiac remodeling by interfering with myocardial fibrogenesis. Circ. Heart Fail. 2013, 6, 107–117. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Qi, Y.; Li, J.J.; He, W.J.; Gao, X.H.; Zhang, Y.; Sun, X.; Tong, J.; Zhang, J.; Deng, X.L.; et al. Stretch-induced sarcoplasmic reticulum calcium leak is causatively associated with atrial fibrillation in pressure-overloaded hearts. Cardiovasc. Res. 2021, 117, 1091–1102. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Lv, W.; Lu, C.; Jiang, Y.; Yang, X.; Song, M. Galectin-3 inhibition attenuates doxorubicin-induced cardiac dysfunction by upregulating the expression of peroxiredoxin-4. Can. J. Physiol. Pharmacol. 2020, 98, 700–707. [Google Scholar] [CrossRef] [PubMed]
- Beyhoff, N.; Lohr, D.; Foryst-Ludwig, A.; Klopfleisch, R.; Brix, S.; Grune, J.; Thiele, A.; Erfinanda, L.; Tabuchi, A.; Kuebler, W.M.; et al. Characterization of Myocardial Microstructure and Function in an Experimental Model of Isolated Subendocardial Damage. Hypertension 2019, 74, 295–304. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Martinez, E.; Brugnolaro, C.; Ibarrola, J.; Ravassa, S.; Buonafine, M.; Lopez, B.; Fernandez-Celis, A.; Querejeta, R.; Santamaria, E.; Fernandez-Irigoyen, J.; et al. CT-1 (Cardiotrophin-1)-Gal-3 (Galectin-3) Axis in Cardiac Fibrosis and Inflammation. Hypertension 2019, 73, 602–611. [Google Scholar] [CrossRef]
- Wu, C.K.; Su, M.Y.; Lee, J.K.; Chiang, F.T.; Hwang, J.J.; Lin, J.L.; Chen, J.J.; Liu, F.T.; Tsai, C.T. Galectin-3 level and the severity of cardiac diastolic dysfunction using cellular and animal models and clinical indices. Sci. Rep. 2015, 5, 17007. [Google Scholar] [CrossRef] [PubMed]
- Balbo, B.E.; Amaral, A.G.; Fonseca, J.M.; de Castro, I.; Salemi, V.M.; Souza, L.E.; Dos Santos, F.; Irigoyen, M.C.; Qian, F.; Chammas, R.; et al. Cardiac dysfunction in Pkd1-deficient mice with phenotype rescue by galectin-3 knockout. Kidney Int. 2016, 90, 580–597. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Andrès, N.; Rossignol, P.; Iraqi, W.; Fay, R.; Nuée, J.; Ghio, S.; Cleland, J.G.; Zannad, F.; Lacolley, P. Association of galectin-3 and fibrosis markers with long-term cardiovascular outcomes in patients with heart failure, left ventricular dysfunction, and dyssynchrony: Insights from the CARE-HF (Cardiac Resynchronization in Heart Failure) trial. Eur. J. Heart Fail. 2012, 14, 74–81. [Google Scholar] [CrossRef]
- Watson, C.J.; Gallagher, J.; Wilkinson, M.; Russell-Hallinan, A.; Tea, I.; James, S.; O’Reilly, J.; O’Connell, E.; Zhou, S.; Ledwidge, M.; et al. Biomarker profiling for risk of future heart failure (HFpEF) development. J. Transl. Med. 2021, 19, 61. [Google Scholar] [CrossRef]
- Edelmann, F.; Holzendorf, V.; Wachter, R.; Nolte, K.; Schmidt, A.G.; Kraigher-Krainer, E.; Duvinage, A.; Unkelbach, I.; Düngen, H.D.; Tschöpe, C.; et al. Galectin-3 in patients with heart failure with preserved ejection fraction: Results from the Aldo-DHF trial. Eur. J. Heart Fail. 2015, 17, 214–223. [Google Scholar] [CrossRef] [PubMed]
- Lok, D.J.; Van Der Meer, P.; de la Porte, P.W.; Lipsic, E.; Van Wijngaarden, J.; Hillege, H.L.; van Veldhuisen, D.J. Prognostic value of galectin-3, a novel marker of fibrosis, in patients with chronic heart failure: Data from the DEAL-HF study. Clin. Res. Cardiol. 2010, 99, 323–328. [Google Scholar] [CrossRef] [PubMed]
- Trippel, T.D.; Mende, M.; Düngen, H.D.; Hashemi, D.; Petutschnigg, J.; Nolte, K.; Herrmann-Lingen, C.; Binder, L.; Hasenfuss, G.; Pieske, B.; et al. The diagnostic and prognostic value of galectin-3 in patients at risk for heart failure with preserved ejection fraction: Results from the DIAST-CHF study. ESC Heart Fail. 2021, 8, 829–841. [Google Scholar] [CrossRef] [PubMed]
- Felker, G.M.; Fiuzat, M.; Shaw, L.K.; Clare, R.; Whellan, D.J.; Bettari, L.; Shirolkar, S.C.; Donahue, M.; Kitzman, D.W.; Zannad, F.; et al. Galectin-3 in ambulatory patients with heart failure: Results from the HF-ACTION study. Circ. Heart Fail. 2012, 5, 72–78. [Google Scholar] [CrossRef] [PubMed]
- Cheng, W.; Maciej, R.; Thiele, H.; Büttner, P. Galectin-3 levels and long-term all-cause mortality and hospitalization in heart failure patients: A meta-analysis. ESC Heart Fail. 2024. Available online: https://pubmed.ncbi.nlm.nih.gov/38698741/ (accessed on 17 July 2024). [CrossRef] [PubMed]
- Kobayashi, M.; Girerd, N.; Ferreira, J.P.; Kevin, D.; Huttin, O.; González, A.; Bozec, E.; Clark, A.L.; Cosmi, F.; Cuthbert, J.; et al. The association between markers of type I collagen synthesis and echocardiographic response to spironolactone in patients at risk of heart failure: Findings from the HOMAGE trial. Eur. J. Heart Fail. 2022, 24, 1559–1568. [Google Scholar] [CrossRef] [PubMed]
- Gottdiener, J.S.; Seliger, S.; deFilippi, C.; Christenson, R.; Baldridge, A.S.; Kizer, J.R.; Psaty, B.M.; Shah, S.J. Relation of Biomarkers of Cardiac Injury, Stress, and Fibrosis With Cardiac Mechanics in Patients ≥ 65 Years of Age. Am. J. Cardiol. 2020, 136, 156–163. [Google Scholar] [CrossRef] [PubMed]
- Parcha, V.; Patel, N.; Kalra, R.; Bhargava, A.; Prabhu, S.D.; Arora, G.; Arora, P. Clinical, Demographic, and Imaging Correlates of Anemia in Heart Failure With Preserved Ejection Fraction (from the RELAX Trial). Am. J. Cardiol. 2020, 125, 1870–1878. [Google Scholar] [CrossRef]
- Tyminska, A.; Kaplon-Cieslicka, A.; Ozieranski, K.; Budnik, M.; Wancerz, A.; Sypien, P.; Peller, M.; Balsam, P.; Opolski, G.; Filipiak, K.J. Association of Galectin-3 and Soluble ST2, and Their Changes, with Echocardiographic Parameters and Development of Heart Failure after ST-Segment Elevation Myocardial Infarction. Dis. Markers 2019, 2019, 9529053. [Google Scholar] [CrossRef]
- Ferreira, J.P.; Bauters, C.; Eschalier, R.; Lamiral, Z.; Fay, R.; Huttin, O.; Girerd, N.; Zannad, F.; Pinet, F.; Rossignol, P. Echocardiographic diastolic function evolution in patients with an anterior Q-wave myocardial infarction: Insights from the REVE-2 study. ESC Heart Fail. 2019, 6, 70–79. [Google Scholar] [CrossRef]
- Di Tano, G.; Caretta, G.; De Maria, R.; Parolini, M.; Bassi, L.; Testa, S.; Pirelli, S. Galectin-3 predicts left ventricular remodelling after anterior-wall myocardial infarction treated by primary percutaneous coronary intervention. Heart 2017, 103, 71–77. [Google Scholar] [CrossRef] [PubMed]
- Gurel, O.M.; Yilmaz, H.; Celik, T.H.; Cakmak, M.; Namuslu, M.; Bilgiç, A.M.; Bavbek, N.; Akcay, A.; Eryonucu, B. Galectin-3 as a new biomarker of diastolic dysfunction in hemodialysis patients. Herz 2015, 40, 788–794. [Google Scholar] [CrossRef] [PubMed]
- Mitic, V.T.; Stojanovic, D.R.; Deljanin Ilic, M.Z.; Stojanovic, M.M.; Petrovic, D.B.; Ignjatovic, A.M.; Stefanovic, N.Z.; Kocic, G.M.; Bojanic, V.V. Cardiac Remodeling Biomarkers as Potential Circulating Markers of Left Ventricular Hypertrophy in Heart Failure with Preserved Ejection Fraction. Tohoku J. Exp. Med. 2020, 250, 233–242. [Google Scholar] [CrossRef]
- Ureche, C.; Dodi, G.; Covic, A.; Nedelcu, A.; Volovăț, S.R.; Sascău, R.A.; Stătescu, C.; Covic, A. Connection between Cardiac Fibrosis Biomarkers and Echocardiography Parameters in Advanced Chronic Kidney Disease Patients. J. Clin. Med. 2023, 12, 3003. [Google Scholar] [CrossRef] [PubMed]
- Revnic, R.; Cojan-Minzat, B.O.; Zlibut, A.; Orzan, R.I.; Agoston, R.; Muresan, I.D.; Horvat, D.; Cionca, C.; Chis, B.; Agoston-Coldea, L. The Role of Circulating Collagen Turnover Biomarkers and Late Gadolinium Enhancement in Patients with Non-Ischemic Dilated Cardiomyopathy. Diagnostics 2022, 12, 1435. [Google Scholar] [CrossRef]
- Echeverria, L.E.; Gomez-Ochoa, S.A.; Rojas, L.Z.; Garcia-Rueda, K.A.; Lopez-Aldana, P.; Muka, T.; Morillo, C.A. Cardiovascular Biomarkers and Diastolic Dysfunction in Patients With Chronic Chagas Cardiomyopathy. Front. Cardiovasc. Med. 2021, 8, 751415. [Google Scholar] [CrossRef]
- Yang, X.; Yang, J.; Zeng, Y.; Peng, L.; Liu, X.; Mo, J.; Wang, T.; Yao, Y.; Zheng, Y.; Song, G. Circulating galectin-3 level association with cardiovascular risk factors during peritoneal dialysis. Clin. Exp. Nephrol. 2024. Available online: https://pubmed.ncbi.nlm.nih.gov/38643287/ (accessed on 17 July 2024). [CrossRef]
- Iyer, N.R.; Chan, S.P.; Liew, O.W.; Chong, J.P.C.; Bryant, J.A.; Le, T.T.; Chandramouli, C.; Cozzone, P.J.; Eisenhaber, F.; Foo, R.; et al. Global longitudinal strain and plasma biomarkers for prognosis in heart failure complicated by diabetes: A prospective observational study. BMC Cardiovasc. Disord. 2024, 24, 141. [Google Scholar] [CrossRef]
- Zhu, J.; Guo, D.; Liu, L.; Zhong, J. Serum Galectin-3 Predicts Mortality in Venoarterial Extracorporeal Membrane Oxygenation Patients. Cardiol. Res. Pract. 2023, 2023, 3917156. [Google Scholar] [CrossRef]
- Horiuchi, Y.U.; Wettersten, N.; Vanveldhuisen, D.J.; Mueller, C.; Nowak, R.; Hogan, C.; Kontos, M.C.; Cannon, C.M.; Birkhahn, R.; Vilke, G.M.; et al. The Influence of Body Mass Index on Clinical Interpretation of Established and Novel Biomarkers in Acute Heart Failure. J. Card. Fail. 2023, 29, 1121–1131. [Google Scholar] [CrossRef]
- Seropian, I.M.; Fontana Estevez, F.S.; Villaverde, A.; Cacciagiu, L.; Bustos, R.; Touceda, V.; Penas, F.; Selser, C.; Morales, C.; Miksztowicz, V.; et al. Galectin-3 contributes to acute cardiac dysfunction and toxicity by increasing oxidative stress and fibrosis in doxorubicin-treated mice. Int. J. Cardiol. 2023, 393, 131386. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Gaur, M.; Mounzih, K.; Rodriguez, H.J.; Qiu, H.; Chen, M.; Yan, L.; Cooper, B.A.; Narayan, S.; Derakhshandeh, R.; et al. Inhibition of galectin-3 post-infarction impedes progressive fibrosis by regulating inflammatory profibrotic cascades. Cardiovasc. Res. 2023, 119, 2536–2549. [Google Scholar] [CrossRef]
- Hu, G.; Wu, J.; Gu, H.; Deng, X.; Xu, W.; Feng, S.; Wang, S.; Song, Y.; Pang, Z.; Deng, X.; et al. Galectin-3-centered paracrine network mediates cardiac inflammation and fibrosis upon beta-adrenergic insult. Sci. China Life Sci. 2023, 66, 1067–1078. [Google Scholar] [CrossRef] [PubMed]
- Fontana Estevez, F.S.; Betazza, M.C.; Miksztowicz, V.; Seropian, I.M.; Silva, M.G.; Penas, F.; Touceda, V.; Selser, C.; Villaverde, A.; Goren, N.; et al. Genetic Deletion of Galectin-3 Exacerbates Age-Related Myocardial Hypertrophy and Fibrosis in Mice. Cell. Physiol. Biochem. 2022, 56, 353–366. [Google Scholar] [CrossRef] [PubMed]
- Vlachou, F.; Varela, A.; Stathopoulou, K.; Ntatsoulis, K.; Synolaki, E.; Pratsinis, H.; Kletsas, D.; Sideras, P.; Davos, C.H.; Capetanaki, Y.; et al. Galectin-3 interferes with tissue repair and promotes cardiac dysfunction and comorbidities in a genetic heart failure model. Cell. Mol. Life Sci. 2022, 79, 250. [Google Scholar] [CrossRef] [PubMed]
- Fontana Estevez, F.S.; Miksztowicz, V.; Seropian, I.M.; Cassaglia, P.; Bustos, R.; Touceda, V.; Cianciulli, T.; Cassanova, V.; Morales, C.; Gonzalez, G.E. An Experimental Model of Myocardial Infarction for Studying Cardiac Repair and Remodeling in Knockout Mice. J. Vis. Exp. 2023, 197, e64143. [Google Scholar] [CrossRef] [PubMed]
- Sonkawade, S.D.; Pokharel, S.; Karthikeyan, B.; Kim, M.; Xu, S.; Kc, K.; Sexton, S.; Catalfamo, K.; Spernyak, J.A.; Sharma, U.C. Small Endogeneous Peptide Mitigates Myocardial Remodeling in a Mouse Model of Cardioselective Galectin-3 Overexpression. Circ. Heart Fail. 2021, 14, e008510. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Li, R.; Feng, C.; Li, K.; Liu, S.; Fu, Q. Galectin-3 is involved in inflammation and fibrosis in arteriogenic erectile dysfunction via the TLR4/MyD88/NF-kappaB pathway. Cell Death Discov. 2024, 10, 92. [Google Scholar] [CrossRef] [PubMed]
- Pang, Z.D.; Sun, X.; Bai, R.Y.; Han, M.Z.; Zhang, Y.J.; Wu, W.; Zhang, Y.; Lai, B.C.; Zhang, Y.; Wang, Y.; et al. YAP-galectin-3 signaling mediates endothelial dysfunction in angiotensin II-induced hypertension in mice. Cell. Mol. Life Sci. 2023, 80, 38. [Google Scholar] [CrossRef]
- Tsigkou, V.; Siasos, G.; Oikonomou, E.; Zaromitidou, M.; Mourouzis, K.; Dimitropoulos, S.; Bletsa, E.; Gouliopoulos, N.; Stampouloglou, P.K.; Panoilia, M.E.; et al. The prognostic role of galectin-3 and endothelial function in patients with heart failure. Cardiol. J. 2023, 30, 725–733. [Google Scholar] [CrossRef]
- Chen, X.; Lin, J.; Hu, T.; Ren, Z.; Li, L.; Hameed, I.; Zhang, X.; Men, C.; Guo, Y.; Xu, D.; et al. Galectin-3 exacerbates ox-LDL-mediated endothelial injury by inducing inflammation via integrin beta1-RhoA-JNK signaling activation. J. Cell. Physiol. 2019, 234, 10990–11000. [Google Scholar] [CrossRef] [PubMed]
- Sygitowicz, G.; Maciejak-Jastrzebska, A.; Sitkiewicz, D. The Diagnostic and Therapeutic Potential of Galectin-3 in Cardiovascular Diseases. Biomolecules 2021, 12, 46. [Google Scholar] [CrossRef] [PubMed]
- Zaborska, B.; Sikora-Frac, M.; Smarz, K.; Pilichowska-Paszkiet, E.; Budaj, A.; Sitkiewicz, D.; Sygitowicz, G. The Role of Galectin-3 in Heart Failure-The Diagnostic, Prognostic and Therapeutic Potential-Where Do We Stand? Int. J. Mol. Sci. 2023, 24, 13111. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Guan, S.; Xu, H.; Zhang, N.; Huang, M.; Liu, Z. Inflammation biomarkers are associated with the incidence of cardiovascular disease: A meta-analysis. Front. Cardiovasc. Med. 2023, 10, 1175174. [Google Scholar] [CrossRef] [PubMed]
- Baccouche, B.M.; Mahmoud, M.A.; Nief, C.; Patel, K.; Natterson-Horowitz, B. Galectin-3 is Associated with Heart Failure Incidence: A Meta-Analysis. Curr. Cardiol. Rev. 2023, 19, e171122211004. [Google Scholar] [CrossRef] [PubMed]
- Mohtasham Kia, Y.; Cannavo, A.; Bahiraie, P.; Alilou, S.; Saeedian, B.; Babajani, N.; Ghondaghsaz, E.; Khalaji, A.; Behnoush, A.H. Insights into the Role of Galectin-3 as a Diagnostic and Prognostic Biomarker of Atrial Fibrillation. Dis. Markers 2023, 2023, 2097012. [Google Scholar] [CrossRef] [PubMed]
- Gandhi, P.U.; Motiwala, S.R.; Belcher, A.M.; Gaggin, H.K.; Weiner, R.B.; Baggish, A.L.; Fiuzat, M.; Brunner-La Rocca, H.P.; Januzzi, J.L., Jr. Galectin-3 and mineralocorticoid receptor antagonist use in patients with chronic heart failure due to left ventricular systolic dysfunction. Am. Heart J. 2015, 169, 404–411.e3. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, R.; Anam, K.; Ahmed, H. Development of Galectin-3 Targeting Drugs for Therapeutic Applications in Various Diseases. Int. J. Mol. Sci. 2023, 24, 8116. [Google Scholar] [CrossRef]
- Bouffette, S.; Botez, I.; De Ceuninck, F. Targeting galectin-3 in inflammatory and fibrotic diseases. Trends Pharmacol. Sci. 2023, 44, 519–531. [Google Scholar] [CrossRef]
- Blanda, V.; Bracale, U.M.; Di Taranto, M.D.; Fortunato, G. Galectin-3 in Cardiovascular Diseases. Int. J. Mol. Sci. 2020, 21, 9232. [Google Scholar] [CrossRef]
- Henderson, N.C.; Mackinnon, A.C.; Farnworth, S.L.; Kipari, T.; Haslett, C.; Iredale, J.P.; Liu, F.T.; Hughes, J.; Sethi, T. Galectin-3 expression and secretion links macrophages to the promotion of renal fibrosis. Am. J. Pathol. 2008, 172, 288–298. [Google Scholar] [CrossRef]
- Calvier, L.; Miana, M.; Reboul, P.; Cachofeiro, V.; Martinez-Martinez, E.; de Boer, R.A.; Poirier, F.; Lacolley, P.; Zannad, F.; Rossignol, P.; et al. Galectin-3 mediates aldosterone-induced vascular fibrosis. Arterioscler. Thromb. Vasc. Biol. 2013, 33, 67–75. [Google Scholar] [CrossRef]
- Chalasani, N.; Abdelmalek, M.F.; Garcia-Tsao, G.; Vuppalanchi, R.; Alkhouri, N.; Rinella, M.; Noureddin, M.; Pyko, M.; Shiffman, M.; Sanyal, A.; et al. Effects of Belapectin, an Inhibitor of Galectin-3, in Patients With Nonalcoholic Steatohepatitis With Cirrhosis and Portal Hypertension. Gastroenterology 2020, 158, 1334–1345.e5. [Google Scholar] [CrossRef]
- Hirani, N.; MacKinnon, A.C.; Nicol, L.; Ford, P.; Schambye, H.; Pedersen, A.; Nilsson, U.J.; Leffler, H.; Sethi, T.; Tantawi, S.; et al. Target inhibition of galectin-3 by inhaled TD139 in patients with idiopathic pulmonary fibrosis. Eur. Respir. J. 2021, 57, 2002559. [Google Scholar] [CrossRef] [PubMed]
- Keizman, D.; Frenkel, M.; Peer, A.; Rosenbaum, E.; Sarid, D.; Leibovitch, I.; Mano, R.; Yossepowitch, O.; Wolf, I.; Geva, R.; et al. Modified Citrus Pectin Treatment in Non-Metastatic Biochemically Relapsed Prostate Cancer: Long-Term Results of a Prospective Phase II Study. Nutrients 2023, 15, 3533. [Google Scholar] [CrossRef] [PubMed]
- Bellos, I.; Marinaki, S.; Lagiou, P.; Benetou, V. Association of serum galectin-3 levels with mortality and cardiovascular disease outcomes in hemodialysis patients: A systematic review and dose-response meta-analysis. Int. Urol. Nephrol. 2024. [Google Scholar] [CrossRef]
- Spahillari, A.; Jackson, L.; Varrias, D.; Michelhaugh, S.A.; Januzzi, J.L.; Shahideh, B.; Daghfal, D.; Valkov, N.; Murtagh, G.; Das, S. MicroRNAs are associated with cardiac biomarkers, cardiac structure and function and incident outcomes in heart failure. ESC Heart Fail. 2024, 11, 1400–1410. [Google Scholar] [CrossRef] [PubMed]
- Winter, R.L.; Maneval, K.L.; Ferrel, C.S.; Clark, W.A.; Herrold, E.J.; Rhinehart, J.D. Evaluation of right ventricular diastolic function, systolic function, and circulating galectin-3 concentrations in dogs with pulmonary stenosis. J. Vet. Intern. Med. 2023, 37, 2030–2038. [Google Scholar] [CrossRef]
- Kondratavičienė, L.; Tamulėnaitė, E.; Vasylė, E.; Januškevičius, A.; Ereminienė, E.; Malakauskas, K.; Žemaitis, M.; Miliauskas, S. Changes in Left Heart Geometry, Function, and Blood Serum Biomarkers in Patients with Obstructive Sleep Apnea after Treatment with Continuous Positive Airway Pressure. Medicina 2022, 58, 1511. [Google Scholar] [CrossRef]
- Karolko, B.; Serafin, A.; Przewłocka-Kosmala, M. Impact of moderately reduced renal function on the diagnostic and prognostic value of galectin-3 in patients with exertional dyspnea. Adv. Clin. Exp. Med. 2022, 31, 873–879. [Google Scholar] [CrossRef]
- Węgiel, M.; Wojtasik-Bakalarz, J.; Malinowski, K.; Surmiak, M.; Dziewierz, A.; Sorysz, D.; Tokarek, T.; Dudek, D.; Bartuś, S.; Surdacki, A.; et al. Mid-regional pro-adrenomedullin and lactate dehydrogenase as predictors of left ventricular remodeling in patients with myocardial infarction treated with percutaneous coronary intervention. Pol. Arch. Intern. Med. 2022, 132, 16150. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.K.; Lee, Y.H.; Kim, J.S.; Kim, Y.G.; Lee, S.Y.; Ahn, S.Y.; Lee, D.Y.; Jeong, K.H.; Lee, S.H.; Hwang, H.S.; et al. Circulating Vascular Adhesion Protein-1 Level Predicts the Risk of Cardiovascular Events and Mortality in Hemodialysis Patients. Front. Cardiovasc. Med. 2021, 8, 701079. [Google Scholar] [CrossRef] [PubMed]
Title | Authors | Years | Results |
---|---|---|---|
Galectin-3 as an early marker of diastolic dysfunction in children with end-stage renal disease on regular hemodialysis. | Akram et al. [13] | 2022 | Galectin-3 is a potential early biomarker that can be used in early diagnosis and grading of diastolic dysfunction in end-stage renal disease children on regular hemodialysis. |
Impact of diabetes on serum biomarkers in heart failure with preserved ejection fraction: insights from the TOPCAT trial. | De Marco et al. [28] | 2021 | Higher galectin-3 levels were measured in patients with HFpEF. |
The diagnostic and prognostic value of galectin-3 in patients at risk for heart failure with preserved ejection fraction: results from the DIAST-CHF study. | Trippel et al. [43] | 2021 | Galectin-3 differentiated patients with HFpEF from an overall cohort of well-characterized patients with risk factors for HFpEF. |
Cardiac remodeling biomarkers as potential circulating markersofleft ventricular hypertrophy in heart failure with preserved ejection fraction. | Mitic et al. [53] | 2020 | Cardiac remodeling biomarkers (e.g., galectin-3) are potential circulating indicators of left ventricular hypertrophy in HFpEF, which may ensure timely recognition of disease progression among high-risk patients. |
Clinical, demographic, and imaging correlates of anemia in heart failure with preserved ejection fraction (from the RELAX Trial). | Parcha et al. [48] | 2020 | Galectin-3 levels were higher in anemic HFpEF patients. |
Echocardiographic diastolic function evolution in patients with an anterior Q-wave myocardial infarction: insights from the REVE-2 study. | Ferreira et al. [50] | 2019 | The amino-terminal propeptide of type III procollagen, galectin-3, and BNP may be independently associated with new-onset diastolic dysfunction in post- myocardial infarction patients. |
Galectin-3 predicts left ventricular remodeling after anterior-wall myocardial infarction treated by primary percutaneous coronary intervention. | Di Tano et al. [51] | 2017 | Left ventricular end-diastolic volume and galectin-3 levels independently predicted left ventricular remodeling. |
Galectin-3 as a new biomarker of diastolic dysfunction in hemodialysis patients. | Gurel et al. [52] | 2015 | Galectin-3 may be a promising biomarker for the detection of left ventricular diastolic dysfunction in hemodialysis. |
Therapeutic Inhibitor | Development Stage | Methodology | Key Findings | Conclusion | Reference |
---|---|---|---|---|---|
GM-CT-01 (galactoarabino-rhamnogalacturonate) | Preclinical | Animal models | GM-CT-01 inhibited tumor growth and metastasis in mice by targeting galectin-3 | GM-CT-01 has potential for cancer therapy targeting galectin-3 | Henderson et al. (2006) [81] |
Modified citrus pectin (MCP) | Preclinical | Rat models of hypertension-induced heart failure | MCP treatment resulted in reduced cardiac hypertrophy and fibrosis | MCP is a promising agent for treating hypertension-induced cardiac complications | Calvier et al. (2013) [82] |
Modified citrus pectin (MCP) | Preclinical | Animal models and in vitro studies | MCP reduced myocardial fibrogenesis and improved cardiac function by inhibiting galectin-3 | MCP shows potential as a therapeutic agent for cardiac remodeling | Yu et al. (2013) [32] |
Belapectin (GR-MD-02) | Phase II clinical trial | Patients with NASH and advanced fibrosis | Belapectin significantly reduced liver fibrosis in patients | Belapectin is a promising therapeutic for advanced fibrosis in NASH patients | Chalasani et al. (2020) [83] |
TD139 (inhaled galectin-3 inhibitor) | Phase I clinical trial | Healthy volunteers | TD139 was well-tolerated with no significant adverse effects, demonstrating potential for inhaled delivery | TD139 shows promise for treating lung diseases mediated by galectin-3 | Hirani et al. (2021) [84] |
PectaSol-C (modified citrus pectin) | Phase II clinical trial | Human clinical trials, animal models | MCP significantly reduced metastasis and tumor growth in prostate and breast cancer models. In clinical settings, MCP improved patient outcomes with minimal side effects. | MCP shows promise as an effective therapeutic inhibitor of Galectin-3 in cancer treatment. Further large-scale clinical trials are needed to confirm its efficacy. | Keizman et al. (2023) [85] |
Study | Population | Key Findings | Conclusion |
---|---|---|---|
Bellos et al. (2024) [86] | Hemodialysis patients | Elevated serum galectin-3 levels are associated with higher mortality and cardiovascular outcomes. | Galectin-3 is a significant prognostic marker in hemodialysis patients. |
Spahillari et al. (2024) [87] | Heart failure patients | MicroRNAs associated with cardiac biomarkers, structure, function, and incident outcomes. | Galectin-3 correlates with cardiac remodeling and outcomes in heart failure. |
Winter et al. (2023) [88] | Dogs with pulmonary stenosis | Higher circulating galectin-3 levels linked to right ventricular diastolic and systolic dysfunction. | Galectin-3 can be a biomarker for cardiac function in canine models. |
Ureche et al. (2023) [54] | Advanced CKD patients | Cardiac fibrosis biomarkers, including galectin-3, correlate with echocardiographic parameters. | Galectin-3 is linked to cardiac fibrosis and diastolic dysfunction in CKD patients. |
Baccouche et al. (2023) [5] | HFpEF patients | Galectin-3 associated with HFpEF. | Galectin-3 is an emerging marker in HFpEF. |
Lee et al. (2023) [10] | Aortic stenosis patients with diabetes | Proinflammatory-profibrotic response associated with myocardial remodeling and clinical outcomes. | Galectin-3 contributes to cardiac remodeling in diabetic aortic stenosis patients. |
Elsadek et al. (2022) [13] | Children with end-stage renal disease | Early increase in galectin-3 levels noted in children with diastolic dysfunction on hemodialysis. | Galectin-3 as an early marker for diastolic dysfunction in pediatric renal disease. |
Kondratavičienė et al. (2022) [89] | Obstructive sleep apnea patients | Treatment with continuous positive airway pressure (CPAP) improved left heart geometry, function, and reduced galectin-3 levels. | Galectin-3 reduction linked to improved cardiac function post-CPAP treatment. |
Revnic et al. (2022) [55] | Non-ischemic dilated cardiomyopathy (DCM) patients | Galectin-3 levels correlated with cardiac function and fibrosis markers. | Galectin-3 is a predictive biomarker for cardiac dysfunction in non-ischemic DCM. |
Kobayashi et al. (2022) [46] | Heart failure patients | Markers of type I collagen synthesis, including galectin-3, predict response to spironolactone. | Galectin-3 as a predictor for therapeutic response in heart failure. |
Shi et al. (2022) [9] | HFpEF patients | Meta-analysis showing significant association between galectin-3 and HFpEF outcomes. | Galectin-3 is a valuable biomarker for HFpEF prognosis. |
Karolko et al. (2022) [90] | Patients with exertional dyspnea | Moderately reduced renal function impacts the diagnostic and prognostic value of galectin-3. | Renal function must be considered when evaluating galectin-3 levels. |
Vlachou et al. (2022) [65] | Genetic heart failure model | Galectin-3 promotes cardiac dysfunction and comorbidities by interfering with tissue repair. | Targeting galectin-3 may help mitigate heart failure progression. |
Biomarker | Mechanism of Action/Role | Clinical Significance in Diastolic Dysfunction | References |
---|---|---|---|
Galectin-3 | Modulates fibrosis and inflammation by binding to β-galactosides on cell surfaces and extracellular matrix proteins. | Elevated levels are associated with heart failure, myocardial fibrosis, and poor outcomes in patients with diastolic dysfunction. | Baccouche and Rhodenhiser, 2023 [5] |
NT-proBNP | Released in response to ventricular stretching and pressure overload. | High levels indicate heart failure and correlate with severity of diastolic dysfunction. | Spahillari et al., 2024 [87] |
sST2 | A member of the interleukin-1 receptor family that modulates immune response. | Elevated levels are indicative of myocardial stress and fibrosis, predicting adverse outcomes in diastolic dysfunction. | Elsadek et al., 2022 [13] |
GDF-15 | A member of the TGF-β cytokine family, involved in inflammation and apoptosis. | Increased levels are linked to myocardial infarction, heart failure, and diastolic dysfunction severity. | Węgiel et al., 2022 [91] |
Collagen Turnover Markers | Indicators of collagen synthesis and degradation in the extracellular matrix. | Elevated in conditions leading to fibrosis, these markers correlate with severity and progression of diastolic dysfunction. | Kobayashi et al., 2022 [46] |
MiRNAs | Small non-coding RNAs that regulate gene expression post-transcriptionally. | Specific miRNAs are associated with cardiac fibrosis, hypertrophy, and diastolic dysfunction. | Spahillari et al., 2024 [87] |
VAP-1 | Enzyme involved in inflammation and leukocyte migration. | Higher levels predict cardiovascular events and are associated with endothelial dysfunction in diastolic heart failure. | Kim et al., 2021 [92] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hao, W.-R.; Cheng, C.-H.; Liu, J.-C.; Chen, H.-Y.; Chen, J.-J.; Cheng, T.-H. Understanding Galectin-3’s Role in Diastolic Dysfunction: A Contemporary Perspective. Life 2024, 14, 906. https://doi.org/10.3390/life14070906
Hao W-R, Cheng C-H, Liu J-C, Chen H-Y, Chen J-J, Cheng T-H. Understanding Galectin-3’s Role in Diastolic Dysfunction: A Contemporary Perspective. Life. 2024; 14(7):906. https://doi.org/10.3390/life14070906
Chicago/Turabian StyleHao, Wen-Rui, Chun-Han Cheng, Ju-Chi Liu, Huan-Yuan Chen, Jin-Jer Chen, and Tzu-Hurng Cheng. 2024. "Understanding Galectin-3’s Role in Diastolic Dysfunction: A Contemporary Perspective" Life 14, no. 7: 906. https://doi.org/10.3390/life14070906
APA StyleHao, W.-R., Cheng, C.-H., Liu, J.-C., Chen, H.-Y., Chen, J.-J., & Cheng, T.-H. (2024). Understanding Galectin-3’s Role in Diastolic Dysfunction: A Contemporary Perspective. Life, 14(7), 906. https://doi.org/10.3390/life14070906