Analyzing Vegetation Heterogeneity Trends in an Urban-Agricultural Landscape in Iran Using Continuous Metrics and NDVI
<p>Study area location in Iran. (<b>a</b>) NDVI and (<b>b</b>) color composite of bands 5,4,3 in August 2023 (Landsat 8 OLI).</p> "> Figure 2
<p>Methodology flowchart of comparing continuous metrics for vegetation heterogeneity analysis.</p> "> Figure 3
<p>(<b>a</b>) Slope coefficient, (<b>b</b>) <span class="html-italic">p</span>-value, (<b>c</b>) negative and positive trend, and (<b>d</b>) significant <span class="html-italic">p</span>-values of NDVI pixels between 2013–2023.</p> "> Figure 4
<p>(<b>a</b>) slope coefficient of dissimilarity of NDVI, (<b>b</b>) slope coefficient of entropy of NDVI, (<b>c</b>) slope coefficient of Sa of NDVI (<b>d</b>) slope coefficient of Moran of NDVI.</p> "> Figure 5
<p>Negative and positive trend, and significant <span class="html-italic">p</span>-values of (<b>a</b>) dissimilarity of NDVI, (<b>b</b>) entropy of NDVI, (<b>c</b>) homogeneity of NDVI, (<b>d</b>) Getis of NDVI, (<b>e</b>) Moran of NDVI, (<b>f</b>) Sa of NDVI, (<b>g</b>) SKU of NDVI, (<b>h</b>) SSK of NDVI.</p> "> Figure 6
<p>Correlation values between the slope of NDVI and the slope of other continuous metrics, illustrating the relationship between NDVI trends and vegetation heterogeneity or clustering trends.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Spatial Data
2.3. Vegetation Heterogeneity Analysis
2.4. NDVI Calculation
2.5. Local Spatial Autocorrelation Indices
2.6. Surface Metrics
2.7. Texture-Based Measures
2.8. Linear Regression
- -
- Y is the dependent variable (response variable),
- -
- X is the independent variable (predictor variable),
- -
- β is the intercept of the regression line,
- -
- β1 is the slope of the regression line,
- -
- ε represents the error term, which captures the difference between the observed values of Y and the values predicted by the regression line.
3. Results
Statistical Comparison
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tonetti, V.; Pena, J.C.; Scarpelli, M.D.; Sugai, L.S.; Barros, F.M.; Anunciação, P.R.; Santos, P.M.; Tavares, A.L.; Ribeiro, M.C. Landscape heterogeneity: Concepts, quantification, challenges and future perspectives. Environ. Conserv. 2023, 50, 83–92. [Google Scholar] [CrossRef]
- Kie, J.G.; Bowyer, R.T.; Nicholson, M.C.; Boroski, B.B.; Loft, E.R. Landscape heterogeneity at differing scales: Effects on spatial distribution of mule deer. Ecology 2002, 83, 530–544. [Google Scholar] [CrossRef]
- Turner, M.G.; Donato, D.C.; Romme, W.H. Consequences of spatial heterogeneity for ecosystem services in changing forest landscapes: Priorities for future research. Landsc. Ecol. 2013, 28, 1081–1097. [Google Scholar] [CrossRef]
- Fahrig, L. Ecological responses to habitat fragmentation per se. Annu. Rev. Ecol. Evol. Syst. 2017, 48, 1–23. [Google Scholar] [CrossRef]
- Wagner, H.H.; Fortin, M.-J. Spatial analysis of landscapes: Concepts and statistics. Ecology 2005, 86, 1975–1987. [Google Scholar] [CrossRef]
- Pickett, S.T.; Cadenasso, M.L. Landscape ecology: Spatial heterogeneity in ecological systems. Science 1995, 269, 331–334. [Google Scholar] [CrossRef] [PubMed]
- Forman, R.T. Land Mosaics: The Ecology of Landscapes and Regions; Cambridge University Press: Cambridge, UK, 1995; Volume 652. [Google Scholar]
- Kupfer, J.A. Landscape ecology and biogeography: Rethinking landscape metrics in a post-FRAGSTATS landscape. Prog. Phys. Geogr. 2012, 36, 400–420. [Google Scholar] [CrossRef]
- Li, J.; Song, C.; Cao, L.; Zhu, F.; Meng, X.; Wu, J. Impacts of landscape structure on surface urban heat islands: A case study of Shanghai, China. Remote Sens. Environ. 2011, 115, 3249–3263. [Google Scholar] [CrossRef]
- Kedron, P.J.; Frazier, A.E.; Ovando-Montejo, G.A.; Wang, J. Surface metrics for landscape ecology: A comparison of landscape models across ecoregions and scales. Landsc. Ecol. 2018, 33, 1489–1504. [Google Scholar] [CrossRef]
- Wu, J.; Shen, W.; Sun, W.; Tueller, P.T. Empirical patterns of the effects of changing scale on landscape metrics. Landsc. Ecol. 2002, 17, 761–782. [Google Scholar] [CrossRef]
- Šímová, P.; Gdulová, K. Landscape indices behavior: A review of scale effects. Appl. Geogr. 2012, 34, 385–394. [Google Scholar] [CrossRef]
- Liu, D.; Hao, S.; Liu, X.; Li, B.; He, S.; Warrington, D. Effects of land use classification on landscape metrics based on remote sensing and GIS. Environ. Earth Sci. 2013, 68, 2229–2237. [Google Scholar] [CrossRef]
- Lausch, A.; Blaschke, T.; Haase, D.; Herzog, F.; Syrbe, R.-U.; Tischendorf, L.; Walz, U. Understanding and quantifying landscape structure–A review on relevant process characteristics, data models and landscape metrics. Ecol. Model. 2015, 295, 31–41. [Google Scholar] [CrossRef]
- Tuanmu, M.N.; Jetz, W. A global, remote sensing-based characterization of terrestrial habitat heterogeneity for biodiversity and ecosystem modelling. Glob. Ecol. Biogeogr. 2015, 24, 1329–1339. [Google Scholar] [CrossRef]
- Park, Y.; Guldmann, J.-M. Measuring continuous landscape patterns with Gray-Level Co-Occurrence Matrix (GLCM) indices: An alternative to patch metrics? Ecol. Indic. 2020, 109, 105802. [Google Scholar] [CrossRef]
- Hall-Beyer, M. Practical guidelines for choosing GLCM textures to use in landscape classification tasks over a range of moderate spatial scales. Int. J. Remote Sens. 2017, 38, 1312–1338. [Google Scholar] [CrossRef]
- Iqbal, N.; Mumtaz, R.; Shafi, U.; Zaidi, S.M.H. Gray level co-occurrence matrix (GLCM) texture based crop classification using low altitude remote sensing platforms. PeerJ Comput. Sci. 2021, 7, e536. [Google Scholar] [CrossRef]
- Rahimi, E.; Barghjelveh, S.; Dong, P. Quantifying how urban landscape heterogeneity affects land surface temperature at multiple scales. J. Ecol. Environ. 2021, 45, 22. [Google Scholar] [CrossRef]
- Michishita, R.; Jiang, Z.; Xu, B. Monitoring two decades of urbanization in the Poyang Lake area, China through spectral unmixing. Remote Sens. Environ. 2012, 117, 3–18. [Google Scholar] [CrossRef]
- Lizarazo, I. Quantitative land cover change analysis using fuzzy segmentation. Int. J. Appl. Earth Obs. Geoinf. 2012, 15, 16–27. [Google Scholar] [CrossRef]
- McGarigal, K.; Tagil, S.; Cushman, S.A. Surface metrics: An alternative to patch metrics for the quantification of landscape structure. Landsc. Ecol. 2009, 24, 433–450. [Google Scholar] [CrossRef]
- Rahimi, E.; Barghjelveh, S.; Dong, P. A comparison of discrete and continuous metrics for measuring landscape changes. J. Indian Soc. Remote Sens. 2022, 50, 1257–1273. [Google Scholar] [CrossRef]
- Fan, C.; Myint, S. A comparison of spatial autocorrelation indices and landscape metrics in measuring urban landscape fragmentation. Landsc. Urban Plan. 2014, 121, 117–128. [Google Scholar] [CrossRef]
- Kowe, P.; Mutanga, O.; Odindi, J.; Dube, T. Exploring the spatial patterns of vegetation fragmentation using local spatial autocorrelation indices. J. Appl. Remote Sens. 2019, 13, 024523. [Google Scholar] [CrossRef]
- Lanorte, A.; Danese, M.; Lasaponara, R.; Murgante, B. Multiscale mapping of burn area and severity using multisensor satellite data and spatial autocorrelation analysis. Int. J. Appl. Earth Obs. Geoinf. 2013, 20, 42–51. [Google Scholar] [CrossRef]
- Rocchini, D.; Metz, M.; Ricotta, C.; Landa, M.; Frigeri, A.; Neteler, M. Fourier transforms for detecting multitemporal landscape fragmentation by remote sensing. Int. J. Remote Sens. 2013, 34, 8907–8916. [Google Scholar] [CrossRef]
- Rahimi, E.; Dong, P. Assessing landscape fragmentation dynamics with fourier transforms. J. Landsc. Ecol. 2024, 17, 97–112. [Google Scholar] [CrossRef]
- Li, J.; Narayanan, R.M. Integrated spectral and spatial information mining in remote sensing imagery. IEEE Trans. Geosci. Remote Sens. 2004, 42, 673–685. [Google Scholar] [CrossRef]
- McGarigal, K.; Cushman, S.A.; Neel, M.C.; Ene, E. FRAGSTATS: Spatial Pattern Analysis Program for Categorical Maps. 2002. Available online: https://research.fs.usda.gov/treesearch/3064 (accessed on 15 January 2025).
- Gustafson, E.J. How has the state-of-the-art for quantification of landscape pattern advanced in the twenty-first century? Landsc. Ecol. 2019, 34, 2065–2072. [Google Scholar] [CrossRef]
- Mondal, P. Quantifying surface gradients with a 2-band Enhanced Vegetation Index (EVI2). Ecol. Indic. 2011, 11, 918–924. [Google Scholar] [CrossRef]
- Higginbottom, T.P.; Symeonakis, E. Assessing land degradation and desertification using vegetation index data: Current frameworks and future directions. Remote Sens. 2014, 6, 9552–9575. [Google Scholar] [CrossRef]
- Yengoh, G.T.; Dent, D.; Olsson, L.; Tengberg, A.E.; Tucker, C.J., III. Use of the Normalized Difference Vegetation Index (NDVI) to Assess Land Degradation at Multiple Scales: Current Status, Future Trends, and Practical Considerations; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Adole, T.; Dash, J.; Atkinson, P.M. A systematic review of vegetation phenology in Africa. Ecol. Inform. 2016, 34, 117–128. [Google Scholar] [CrossRef]
- Eastman, J.R.; Sangermano, F.; Machado, E.A.; Rogan, J.; Anyamba, A. Global trends in seasonality of normalized difference vegetation index (NDVI), 1982–2011. Remote Sens. 2013, 5, 4799–4818. [Google Scholar] [CrossRef]
- Zeng, L.; Wardlow, B.D.; Xiang, D.; Hu, S.; Li, D. A review of vegetation phenological metrics extraction using time-series, multispectral satellite data. Remote Sens. Environ. 2020, 237, 111511. [Google Scholar] [CrossRef]
- da Silva, R.G.; dos Santos, A.R.; Pelúzio, J.B.E.; Fiedler, N.C.; Juvanhol, R.S.; de Souza, K.B.; Branco, E.R.F. Vegetation trends in a protected area of the Brazilian Atlantic forest. Ecol. Eng. 2021, 162, 106180. [Google Scholar] [CrossRef]
- Turner, D.; Clarke, K.; Lewis, M.; Ostendorf, B. Using NDVI dynamics as an indicator of native vegetation management in a heterogeneous and highly fragmented landscape. In Proceedings of the 20th International Congress on Modelling and Simulation, Adelaide, South Australia, 1–6 December 2013. [Google Scholar]
- Li, S.; Xu, L.; Jing, Y.; Yin, H.; Li, X.; Guan, X. High-quality vegetation index product generation: A review of NDVI time series reconstruction techniques. Int. J. Appl. Earth Obs. Geoinf. 2021, 105, 102640. [Google Scholar] [CrossRef]
- Rahimi, E. The Efficiency of Long Short-Term Memory (LSTM) in Phenology-Based Crop Classification. J. Korean Soc. Remote Sens. 2024, 40, 57–69. [Google Scholar]
- Forkel, M.; Carvalhais, N.; Verbesselt, J.; Mahecha, M.D.; Neigh, C.S.; Reichstein, M. Trend change detection in NDVI time series: Effects of inter-annual variability and methodology. Remote Sens. 2013, 5, 2113–2144. [Google Scholar] [CrossRef]
- Huang, S.; Tang, L.; Hupy, J.P.; Wang, Y.; Shao, G. A commentary review on the use of normalized difference vegetation index (NDVI) in the era of popular remote sensing. J. For. Res. 2021, 32, 1–6. [Google Scholar] [CrossRef]
- Firoozi, F.; Mahmoudi, P.; Jahanshahi, S.M.A.; Tavousi, T.; Liu, Y. Evaluating various methods of vegetative cover change trend analysis using satellite remote sensing productions (case study: Sistan Plain in Eastern Iran). Carpathian J. Earth Environ. Sci. 2020, 15, 211–222. [Google Scholar] [CrossRef]
- Beck, H.E.; McVicar, T.R.; van Dijk, A.I.; Schellekens, J.; de Jeu, R.A.; Bruijnzeel, L.A. Global evaluation of four AVHRR–NDVI data sets: Intercomparison and assessment against Landsat imagery. Remote Sens. Environ. 2011, 115, 2547–2563. [Google Scholar] [CrossRef]
- Khormizi, H.Z.; Malamiri, H.R.G.; Kalantari, Z.; Ferreira, C.S.S. Trend of Changes in Phenological Components of Iran’s Vegetation Using Satellite Observations. Remote Sens. 2023, 15, 4468. [Google Scholar] [CrossRef]
- Eisfelder, C.; Asam, S.; Hirner, A.; Reiners, P.; Holzwarth, S.; Bachmann, M.; Gessner, U.; Dietz, A.; Huth, J.; Bachofer, F. Seasonal Vegetation Trends for Europe over 30 Years from a Novel Normalised Difference Vegetation Index (NDVI) Time-Series—The TIMELINE NDVI Product. Remote Sens. 2023, 15, 3616. [Google Scholar] [CrossRef]
- Gholamnia, M.; Khandan, R.; Bonafoni, S.; Sadeghi, A. Spatiotemporal analysis of MODIS NDVI in the semi-arid region of Kurdistan (Iran). Remote Sens. 2019, 11, 1723. [Google Scholar] [CrossRef]
- Najafi, Z.; Fatehi, P.; Darvishsefat, A. Vegetation dynamics trend using satellite time series imagery. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, 42, 783–788. [Google Scholar] [CrossRef]
- Heshmati, G. Vegetation characteristics of four ecological zones of Iran. Int. J. Plant Prod. 2007, 1, 25–224. [Google Scholar]
- Akhani, H. Halophytic vegetation of Iran: Towards a syntaxonomical classification. Ann. Di Bot. 2004, 4, 65–82. [Google Scholar]
- Landsat, E. Landsat 8-9Operational Land Imager (OLI)-Thermal Infrared Sensor (TIRS) Collection 2 Level 2 (L2) Data Format Control Book (DFCB); United States Geological Survey: Reston, VA, USA, 2020. [Google Scholar]
- Frazier, A.E.; Kedron, P. Landscape metrics: Past progress and future directions. Curr. Landsc. Ecol. Rep. 2017, 2, 63–72. [Google Scholar] [CrossRef]
- Bolliger, J.; Wagner, H.H.; Turner, M.G. Identifying and quantifying landscape patterns in space and time. In A changing World: Challenges for Landscape Research; Springer: Berlin/Heidelberg, Germany, 2007; pp. 177–194. [Google Scholar]
- Nolè, G.; Lasaponara, R.; Lanorte, A.; Murgante, B. Quantifying urban sprawl with spatial autocorrelation techniques using multi-temporal satellite data. Int. J. Agric. Environ. Inf. Syst. (IJAEIS) 2014, 5, 19–37. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, S.; Bai, X.; Tan, Q.; Li, Q.; Wu, L.; Tian, S.; Hu, Z.; Li, C.; Deng, Y. Factors affecting long-term trends in global NDVI. Forests 2019, 10, 372. [Google Scholar] [CrossRef]
- Getis, A.; Ord, J.K. The analysis of spatial association by use of distance statistics. Geogr. Anal. 1992, 24, 189–206. [Google Scholar] [CrossRef]
- Anselin, L. Local indicators of spatial association—LISA. Geogr. Anal. 1995, 27, 93–115. [Google Scholar] [CrossRef]
- Smith, A.C.; Dahlin, K.M.; Record, S.; Costanza, J.K.; Wilson, A.M.; Zarnetske, P.L. The geodiv r package: Tools for calculating gradient surface metrics. Methods Ecol. Evol. 2021, 12, 2094. [Google Scholar] [CrossRef] [PubMed]
- Frazier, A.E. Surface metrics: Scaling relationships and downscaling behavior. Landsc. Ecol. 2016, 31, 351–363. [Google Scholar] [CrossRef]
- Hofmann, S.; Everaars, J.; Schweiger, O.; Frenzel, M.; Bannehr, L.; Cord, A.F. Modelling patterns of pollinator species richness and diversity using satellite image texture. PLoS ONE 2017, 12, e0185591. [Google Scholar] [CrossRef]
- St-Louis, V.; Pidgeon, A.M.; Kuemmerle, T.; Sonnenschein, R.; Radeloff, V.C.; Clayton, M.K.; Locke, B.A.; Bash, D.; Hostert, P. Modelling avian biodiversity using raw, unclassified satellite imagery. Philos. Trans. R. Soc. B Biol. Sci. 2014, 369, 20130197. [Google Scholar] [CrossRef] [PubMed]
Date | Path | Row | Satellite | Sensor | Resolution |
---|---|---|---|---|---|
30 July 2013 | 164 | 37 | Landsat 8 | OLI | 30 m |
22 August 2014 | 164 | 37 | Landsat 8 | OLI | 30 m |
5 August 2015 | 164 | 37 | Landsat 8 | OLI | 30 m |
7 August 2016 | 164 | 37 | Landsat 8 | OLI | 30 m |
10 August 2017 | 164 | 37 | Landsat 8 | OLI | 30 m |
13 August 2018 | 164 | 37 | Landsat 8 | OLI | 30 m |
16 August 2019 | 164 | 37 | Landsat 8 | OLI | 30 m |
18 August 2020 | 164 | 37 | Landsat 8 | OLI | 30 m |
18 June 2021 | 164 | 37 | Landsat 8 | OLI | 30 m |
8 August 2022 | 164 | 37 | Landsat 8 | OLI | 30 m |
11 August 2023 | 164 | 37 | Landsat 8 | OLI | 30 m |
Metric | Name | Equation |
---|---|---|
Ssk | Surface Skewness | |
Sku | Surface Kurtosis | |
Sa | Average Roughness |
Metric | Measure | Value Range | Expected Relationship * | Equation |
---|---|---|---|---|
Dissimilarity | Inversely related to homogeneity. | ≥0 | H~X | |
Entropy | Shannon-diversity. High when the pixel values of the GLCM have varying values. | ≥0 | H~X | |
Homogeneity | A measure of homogenous pixel values across an image. | ≥0; ≤1 | H~−X |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rahimi, E.; Jung, C. Analyzing Vegetation Heterogeneity Trends in an Urban-Agricultural Landscape in Iran Using Continuous Metrics and NDVI. Land 2025, 14, 244. https://doi.org/10.3390/land14020244
Rahimi E, Jung C. Analyzing Vegetation Heterogeneity Trends in an Urban-Agricultural Landscape in Iran Using Continuous Metrics and NDVI. Land. 2025; 14(2):244. https://doi.org/10.3390/land14020244
Chicago/Turabian StyleRahimi, Ehsan, and Chuleui Jung. 2025. "Analyzing Vegetation Heterogeneity Trends in an Urban-Agricultural Landscape in Iran Using Continuous Metrics and NDVI" Land 14, no. 2: 244. https://doi.org/10.3390/land14020244
APA StyleRahimi, E., & Jung, C. (2025). Analyzing Vegetation Heterogeneity Trends in an Urban-Agricultural Landscape in Iran Using Continuous Metrics and NDVI. Land, 14(2), 244. https://doi.org/10.3390/land14020244