A New Approach for Effective Retrieval of Medical Images: A Step towards Computer-Assisted Diagnosis
<p>Neutrosophic images of input medical image when transformed into neutrosophic domain: (<b>a</b>) Sample noise-free and noisy medical images, (<b>b</b>) truth image (<math display="inline"><semantics> <msub> <mi>T</mi> <mrow> <mi>N</mi> <mi>S</mi> </mrow> </msub> </semantics></math>), (<b>c</b>) indeterminacy image (<math display="inline"><semantics> <msub> <mi>I</mi> <mrow> <mi>N</mi> <mi>S</mi> </mrow> </msub> </semantics></math>), and (<b>d</b>) falsity image (<math display="inline"><semantics> <msub> <mi>F</mi> <mrow> <mi>N</mi> <mi>S</mi> </mrow> </msub> </semantics></math>).</p> "> Figure 2
<p>A sample image patch (around a center pixel <math display="inline"><semantics> <msub> <mi>p</mi> <mi>c</mi> </msub> </semantics></math>, highlighted in red) from noise-free and noisy image for illustration of noise robustness of the <math display="inline"><semantics> <msub> <mrow> <mi>T</mi> <mi>r</mi> <mi>P</mi> </mrow> <mi>r</mi> </msub> </semantics></math> pattern. The figure also shows the multi-resolution view of the image patches at four scales <math display="inline"><semantics> <msub> <mi>S</mi> <mn>1</mn> </msub> </semantics></math>, <math display="inline"><semantics> <msub> <mi>S</mi> <mn>2</mn> </msub> </semantics></math>, <math display="inline"><semantics> <msub> <mi>S</mi> <mn>3</mn> </msub> </semantics></math>, and <math display="inline"><semantics> <msub> <mi>S</mi> <mn>4</mn> </msub> </semantics></math>, corresponding to <math display="inline"><semantics> <mrow> <mi>r</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mn>3</mn> <mo>,</mo> <mn>4</mn> </mrow> </semantics></math>, respectively.</p> "> Figure 3
<p>Example illustrating the computation of proposed <math display="inline"><semantics> <msub> <mrow> <mi>T</mi> <mi>r</mi> <mi>P</mi> </mrow> <mi>r</mi> </msub> </semantics></math> pattern for center pixel <math display="inline"><semantics> <msub> <mi>p</mi> <mi>c</mi> </msub> </semantics></math> (highlighted in RED color) at multiples scales <math display="inline"><semantics> <msub> <mi>S</mi> <mn>1</mn> </msub> </semantics></math>, <math display="inline"><semantics> <msub> <mi>S</mi> <mn>2</mn> </msub> </semantics></math>, <math display="inline"><semantics> <msub> <mi>S</mi> <mn>3</mn> </msub> </semantics></math>, and <math display="inline"><semantics> <msub> <mi>S</mi> <mn>4</mn> </msub> </semantics></math>, corresponding to <math display="inline"><semantics> <mrow> <mi>r</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mn>3</mn> <mo>,</mo> <mn>4</mn> </mrow> </semantics></math>, respectively, on noise-free and noisy image patch shown in <a href="#jimaging-10-00210-f002" class="html-fig">Figure 2</a>: (<b>a</b>) Neighbor vectors <math display="inline"><semantics> <msub> <mi mathvariant="bold-italic">p</mi> <mi>r</mi> </msub> </semantics></math> at scales <math display="inline"><semantics> <msub> <mi>S</mi> <mn>1</mn> </msub> </semantics></math>, <math display="inline"><semantics> <msub> <mi>S</mi> <mn>2</mn> </msub> </semantics></math>, <math display="inline"><semantics> <msub> <mi>S</mi> <mn>3</mn> </msub> </semantics></math>, and <math display="inline"><semantics> <msub> <mi>S</mi> <mn>4</mn> </msub> </semantics></math> for noise-free image patch; (<b>b</b>) median quantized neighbor vectors <math display="inline"><semantics> <msub> <mi mathvariant="bold-italic">mqp</mi> <mi>r</mi> </msub> </semantics></math> at scales <math display="inline"><semantics> <msub> <mi>S</mi> <mn>1</mn> </msub> </semantics></math>, <math display="inline"><semantics> <msub> <mi>S</mi> <mn>2</mn> </msub> </semantics></math>, <math display="inline"><semantics> <msub> <mi>S</mi> <mn>3</mn> </msub> </semantics></math>, and <math display="inline"><semantics> <msub> <mi>S</mi> <mn>4</mn> </msub> </semantics></math> for noise-free image patch; (<b>c</b>) proposed <math display="inline"><semantics> <msub> <mrow> <mi>T</mi> <mi>r</mi> <mi>P</mi> </mrow> <mi>r</mi> </msub> </semantics></math> binary pattern; (<b>d</b>) median quantized neighbor vectors <math display="inline"><semantics> <msub> <mi mathvariant="bold-italic">mqp</mi> <mi>r</mi> </msub> </semantics></math> at scales <math display="inline"><semantics> <msub> <mi>S</mi> <mn>1</mn> </msub> </semantics></math>, <math display="inline"><semantics> <msub> <mi>S</mi> <mn>2</mn> </msub> </semantics></math>, <math display="inline"><semantics> <msub> <mi>S</mi> <mn>3</mn> </msub> </semantics></math>, and <math display="inline"><semantics> <msub> <mi>S</mi> <mn>4</mn> </msub> </semantics></math> for noisy image patch; (<b>e</b>) neighbor vectors <math display="inline"><semantics> <msub> <mi mathvariant="bold-italic">p</mi> <mi>r</mi> </msub> </semantics></math> at scales <math display="inline"><semantics> <msub> <mi>S</mi> <mn>1</mn> </msub> </semantics></math>, <math display="inline"><semantics> <msub> <mi>S</mi> <mn>2</mn> </msub> </semantics></math>, <math display="inline"><semantics> <msub> <mi>S</mi> <mn>3</mn> </msub> </semantics></math>, and <math display="inline"><semantics> <msub> <mi>S</mi> <mn>4</mn> </msub> </semantics></math> for noisy image patch.</p> "> Figure 4
<p>Sample image from each class of (<b>a</b>) Emphysema CT database, (<b>b</b>) NEMA CT database, (<b>c</b>) OASIS MRI database, and (<b>d</b>) NEMA MRI database.</p> "> Figure 5
<p>Sample noisy image from each class of (<b>a</b>) Emphysema CT database, (<b>b</b>) NEMA CT database, (<b>c</b>) OASIS MRI database, and (<b>d</b>) NEMA MRI database.</p> "> Figure 6
<p>Query results of the proposed method for noise-free query images on (<b>a</b>) Emphysema CT database, (<b>b</b>) NEMA CT database, (<b>c</b>) OASIS MRI database, and (<b>d</b>) NEMA MRI database.</p> "> Figure 7
<p>Query results of the proposed method for noisy query image on (<b>a</b>) Emphysema CT database, (<b>b</b>) NEMA CT database, (<b>c</b>) OASIS MRI database, and (<b>d</b>) NEMA MRI database.</p> "> Figure 8
<p>Proposed approach’s retrieval performance in comparison to all other methods in terms of <math display="inline"><semantics> <mrow> <mi>a</mi> <mi>v</mi> <mi>g</mi> <mi>P</mi> </mrow> </semantics></math> on noisy and noise-free images of four test datasets.</p> "> Figure 9
<p>Proposed approach’s retrieval performance in comparison to all other methods in terms of <math display="inline"><semantics> <mrow> <mi>M</mi> <mi>a</mi> <mi>v</mi> <mi>g</mi> <mi>P</mi> </mrow> </semantics></math> on noisy and noise-free images of four test datasets.</p> "> Figure 10
<p>Proposed approach’s retrieval performance in comparison to all other methods in terms of <math display="inline"><semantics> <mrow> <mi>C</mi> <mi>V</mi> </mrow> </semantics></math> (coefficient of variation) on noisy and noise-free images of four test datasets.</p> ">
Abstract
:1. Introduction
1.1. Background and Motivation
1.2. State of the Art
1.3. Identified Gap and Contributions
- A new idea of using neutrosophic information for extracting underlying textures from medical images. Neutrosophic images offer flexibility in representing texture information by allowing each pixel to have varying degrees of truth, indeterminacy, and falsity. This flexibility accommodates the diverse and complex nature of texture patterns in medical images, providing a more adaptable framework for feature extraction.
- A new approach, , is presented that extracts texture features from all three neutrosophic images, i.e., truth (T), indeterminacy (I), and falsity (F). The texture features from each of the T, I, and F images are appended together to form the final feature vector for .
- The presented work delineates an innovative approach which exhibits a significant enhancement over the existing CBMIR approaches by integrating a comprehensive set of features, i.e., noise resilience, rotation invariance, local and neighborhood information embedding, global information embedding, multi-scale feature representation, etc., under one umbrella. This approach is distinguished by its holistic one-stop solution strategy, which seamlessly amalgamates multiple traits into a singular, cohesive technique.
- The proposed approach demonstrates superior retrieval performance by significantly outperforming the existing state-of-the-art LBP-based CBMIR and texture feature extraction approaches on four standard medical test datasets. To further substantiate the effectiveness of the proposed approach, an additional set of experiments is performed on noisy images of four test datasets.
2. Proposed Multi-Scale Noise-Resistant Rotation-Invariant Texture Pattern () Approach
- Firstly, the medical image is transformed to the neutrosophic domain, such that for every input medical image, we obtain three neutrosophic images, i.e., truth (T), indeterminacy (I), and falsity (F).
- Secondly, from each of the T, I, and F images, rotation-invariant and noise-robust texture feature pattern descriptors, , , and are extracted. The computation of the proposed pattern is based on construction of a symmetric neighborhood of members around every pixel at a distance r from it. The parameter r also determines the spatial scale of the , , and patterns, which produces a constant dimensionality histogram at any spatial scale r with sampling points for each neutrosophic image. In our work, texture features are extracted at multiples scales to capture the multi-resolution view of the image.
- Lastly, the final pattern is formed by scale-wise appending of the individual patterns , , and extracted from the T, I, and F images, respectively. In other words, the pattern is formed by appending the patterns , , , and so on, where each pattern is obtained by concatenating the patterns , , and .
2.1. Construction of Neutrosophic Images
2.2. Proposed Pattern Descriptor
2.2.1. Pattern 1:
2.2.2. Pattern 2:
2.2.3. Pattern 3:
2.2.4. Final Construction of Pattern Descriptor
3. Experimental Setup
3.1. Similarity Measure
3.2. Performance Measures
3.3. Dataset Description
4. Experimental Results and Discussions
4.1. Performance Analysis on Noise-Free Images
4.2. Performance Analysis on Noisy Images
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Webb, A. Introduction to Biomedical Imaging, 2nd ed.; Wiley-IEEE Press: Hoboken, NJ, USA, 2022. [Google Scholar]
- Nishikawa, R.M. Computer-aided detection and diagnosis. In Digital Mammography; Springer: Berlin/Heidelberg, Germany, 2010; pp. 85–106. [Google Scholar]
- Ghosh, P.; Antani, S.; Long, L.R.; Thoma, G.R. Review of medical image retrieval systems and future directions. In Proceedings of the 2011 24th International Symposium on Computer-Based Medical Systems (CBMS), Bristol, UK, 27–30 June 2011; pp. 1–6. [Google Scholar]
- Kumar, A.; Kim, J.; Cai, W.; Fulham, M.; Feng, D. Content-based medical image retrieval: A survey of applications to multidimensional and multimodality data. J. Digit. Imaging 2013, 26, 1025–1039. [Google Scholar] [CrossRef] [PubMed]
- Cai, W.; Song, Y.; Kumar, A.; Kim, J.; Feng, D.D. Content-based large-scale medical image retrieval. In Biomedical Information Technology; Academic Press: Amsterdam, The Netherlands, 2020; pp. 321–368. [Google Scholar]
- Rui, Y.; Huang, T.S.; Chang, S.F. Image retrieval: Current techniques, promising directions, and open issues. J. Vis. Commun. Image Represent. 1999, 10, 39–62. [Google Scholar] [CrossRef]
- Banuchitra, S.; Kungumaraj, K. A comprehensive survey of content based image retrieval techniques. Int. J. Eng. Comput. Sci. 2016, 5, 17577–17584. [Google Scholar] [CrossRef]
- Nixon, M.; Aguado, A. Feature Extraction and Image Processing for Computer Vision; Academic Press: Amsterdam, The Netherlands, 2019. [Google Scholar]
- Ping Tian, D. A review on image feature extraction and representation techniques. Int. J. Multimed. Ubiquitous Eng. 2013, 8, 385–396. [Google Scholar]
- Ojala, T.; Pietikäinen, M.; Harwood, D. A comparative study of texture measures with classification based on featured distributions. Pattern Recognit. 1996, 29, 51–59. [Google Scholar] [CrossRef]
- Nanni, L.; Lumini, A.; Brahnam, S. Local binary patterns variants as texture descriptors for medical image analysis. Artif. Intell. Med. 2010, 49, 117–125. [Google Scholar] [CrossRef] [PubMed]
- Tan, X.; Triggs, B. Enhanced local texture feature sets for face recognition under difficult lighting conditions. IEEE Trans. Image Process. 2010, 19, 1635–1650. [Google Scholar]
- Murala, S.; Wu, Q.J. Local ternary co-occurrence patterns: A new feature descriptor for MRI and CT image retrieval. Neurocomputing 2013, 119, 399–412. [Google Scholar] [CrossRef]
- Murala, S.; Wu, Q.J. Local mesh patterns versus local binary patterns: Biomedical image indexing and retrieval. IEEE J. Biomed. Health Inform. 2013, 18, 929–938. [Google Scholar] [CrossRef]
- Murala, S.; Wu, Q.J. MRI and CT image indexing and retrieval using local mesh peak valley edge patterns. Signal Process. Image Commun. 2014, 29, 400–409. [Google Scholar] [CrossRef]
- Murala, S.; Wu, Q.J. Spherical symmetric 3D local ternary patterns for natural, texture and biomedical image indexing and retrieval. Neurocomputing 2015, 149, 1502–1514. [Google Scholar] [CrossRef]
- Dubey, S.R.; Singh, S.K.; Singh, R.K. Local wavelet pattern: A new feature descriptor for image retrieval in medical CT databases. IEEE Trans. Image Process. 2015, 24, 5892–5903. [Google Scholar] [CrossRef] [PubMed]
- Dubey, S.R.; Singh, S.K.; Singh, R.K. Local diagonal extrema pattern: A new and efficient feature descriptor for CT image retrieval. IEEE Signal Process. Lett. 2015, 22, 1215–1219. [Google Scholar] [CrossRef]
- Dubey, S.R.; Singh, S.K.; Singh, R.K. Novel local bit-plane dissimilarity pattern for computed tomography image retrieval. Electron. Lett. 2016, 52, 1290–1292. [Google Scholar] [CrossRef]
- Dubey, S.R.; Singh, S.K.; Singh, R.K. Local bit-plane decoded pattern: A novel feature descriptor for biomedical image retrieval. IEEE J. Biomed. Health Inform. 2015, 20, 1139–1147. [Google Scholar] [CrossRef]
- Deep, G.; Kaur, L.; Gupta, S. Local mesh ternary patterns: A new descriptor for MRI and CT biomedical image indexing and retrieval. Comput. Methods Biomech. Biomed. Eng. Imaging Vis. 2018, 6, 155–169. [Google Scholar] [CrossRef]
- Deep, G.; Kaur, L.; Gupta, S. Directional local ternary quantized extrema pattern: A new descriptor for biomedical image indexing and retrieval. Eng. Sci. Technol. Int. J. 2016, 19, 1895–1909. [Google Scholar] [CrossRef]
- Deep, G.; Kaur, L.; Gupta, S. Local quantized extrema quinary pattern: A new descriptor for biomedical image indexing and retrieval. Comput. Methods Biomech. Biomed. Eng. Imaging Vis. 2018, 6, 687–703. [Google Scholar] [CrossRef]
- Murala, S.; Maheshwari, R.P.; Balasubramanian, R. Local tetra patterns: A new feature descriptor for content-based image retrieval. IEEE Trans. Image Process. 2012, 21, 2874–2886. [Google Scholar] [CrossRef]
- Chakraborty, S.; Singh, S.K.; Chakraborty, P. Local gradient hexa pattern: A descriptor for face recognition and retrieval. IEEE Trans. Circuits Syst. Video Technol. 2016, 28, 171–180. [Google Scholar] [CrossRef]
- Verma, M.; Raman, B. Local tri-directional patterns: A new texture feature descriptor for image retrieval. Digit. Signal Process. 2016, 51, 62–72. [Google Scholar] [CrossRef]
- Verma, M.; Raman, B. Local neighborhood difference pattern: A new feature descriptor for natural and texture image retrieval. Multimed. Tools Appl. 2018, 77, 11843–11866. [Google Scholar] [CrossRef]
- Banerjee, P.; Bhunia, A.K.; Bhattacharyya, A.; Roy, P.P.; Murala, S. Local neighborhood intensity pattern—A new texture feature descriptor for image retrieval. Expert Syst. Appl. 2018, 113, 100–115. [Google Scholar] [CrossRef]
- Chakraborty, S.; Singh, S.K.; Chakraborty, P. Local directional gradient pattern: A local descriptor for face recognition. Multimed. Tools Appl. 2017, 76, 1201–1216. [Google Scholar] [CrossRef]
- Dubey, S.R. Local directional relation pattern for unconstrained and robust face retrieval. Multimed. Tools Appl. 2019, 78, 28063–28088. [Google Scholar] [CrossRef]
- Roy, S.K.; Chanda, B.; Chaudhuri, B.B.; Banerjee, S.; Ghosh, D.K.; Dubey, S.R. Local directional ZigZag pattern: A rotation invariant descriptor for texture classification. Pattern Recognit. Lett. 2018, 108, 23–30. [Google Scholar] [CrossRef]
- Roy, S.K.; Chanda, B.; Chaudhuri, B.B.; Ghosh, D.K.; Dubey, S.R. Local jet pattern: A robust descriptor for texture classification. Multimed. Tools Appl. 2020, 79, 4783–4809. [Google Scholar] [CrossRef]
- Roy, S.K.; Chanda, B.; Chaudhuri, B.B.; Ghosh, D.K.; Dubey, S.R. Local morphological pattern: A scale space shape descriptor for texture classification. Digit. Signal Process. 2018, 82, 152–165. [Google Scholar] [CrossRef]
- Agarwal, M.; Maheshwari, R.P. Multichannel local ternary co-occurrence pattern for content-based image retrieval. Iran. J. Sci. Technol. Trans. Electr. Eng. 2020, 44, 495–504. [Google Scholar] [CrossRef]
- Hu, S.; Li, J.; Fan, H.; Lan, S.; Pan, Z. Scale and pattern adaptive local binary pattern for texture classification. Expert Syst. Appl. 2024, 240, 122403. [Google Scholar] [CrossRef]
- Qayyum, A.; Anwar, S.M.; Awais, M.; Majid, M. Medical image retrieval using deep convolutional neural network. Neurocomputing 2017, 266, 8–20. [Google Scholar] [CrossRef]
- Swati, Z.N.K.; Zhao, Q.; Kabir, M.; Ali, F.; Ali, Z.; Ahmed, S.; Lu, J. Content-based brain tumor retrieval for MR images using transfer learning. IEEE Access 2019, 7, 17809–17822. [Google Scholar] [CrossRef]
- Sudhish, D.K.; Nair, L.R.; Shailesh, S. Content-based image retrieval for medical diagnosis using fuzzy clustering and deep learning. Biomed. Signal Process. Control 2024, 88, 105620. [Google Scholar] [CrossRef]
- Lundervold, A.S.; Lundervold, A. An overview of deep learning in medical imaging focusing on MRI. Z. Med. Phys. 2019, 29, 102–127. [Google Scholar] [CrossRef]
- Anwar, S.M.; Majid, M.; Qayyum, A.; Awais, M.; Alnowami, M.; Khan, M.K. Medical image analysis using convolutional neural networks: A review. J. Med. Syst. 2018, 42, 226. [Google Scholar] [CrossRef]
- Broumi, S.; Bakali, A.; Bahnasse, A. Neutrosophic sets: An overview. In New Trends in Neutrosophic Theory and Applications; Pons Editions: Brussels, Belgium, 2018. [Google Scholar]
- El-Hefenawy, N.; Metwally, M.A.; Ahmed, Z.M.; El-Henawy, I.M. A review on the applications of neutrosophic sets. J. Comput. Theor. Nanosci. 2016, 13, 936–944. [Google Scholar] [CrossRef]
- Salama, A.A.; Smarandache, F.; Eisa, M. Introduction to image processing via neutrosophic techniques. Neutrosophic Sets Syst. 2014, 5, 59–64. [Google Scholar]
- Talouki, A.G.; Koochari, A.; Edalatpanah, S.A. Image completion based on segmentation using neutrosophic sets. Expert Syst. Appl. 2024, 238, 121769. [Google Scholar] [CrossRef]
- Alsattar, H.A.; Qahtan, S.; Zaidan, A.A.; Deveci, M.; Martinez, L.; Pamucar, D.; Pedrycz, W. Developing deep transfer and machine learning models of chest X-ray for diagnosing COVID-19 cases using probabilistic single-valued neutrosophic hesitant fuzzy. Expert Syst. Appl. 2024, 236, 121300. [Google Scholar] [CrossRef]
- Ojala, T.; Pietikainen, M.; Maenpaa, T. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 2002, 24, 971–987. [Google Scholar] [CrossRef]
- Aswini, K.R.N.; Prakash, S.P.; Ravindran, G.; Jagadesh, T.; Naik, A.V. An Extended Canberra Similarity Measure Method for Content-Based Image Retrieval. In Proceedings of the 2023 International Conference on Evolutionary Algorithms and Soft Computing Techniques (EASCT), Bengaluru, India, 20–21 October 2023; pp. 1–5. [Google Scholar]
- Emphysema-CT Database. Available online: http://image.diku.dk/emphysema_database/ (accessed on 15 December 2023).
- OASIS-MRI Database. Available online: http://www.oasis-brains.org/ (accessed on 15 December 2023).
r | |||
---|---|---|---|
1 | 1 | 8 | 8 |
2 | 2 | 16 | 8 (Pair-wise median filtering) |
3 | 3 | 24 | 8 (Triplet-wise median filtering) |
4 | 4 | 32 | 8 (Quadruplet-wise median filtering) |
5 | 5 | 40 | 8 (Quintuplet-wise median filtering) |
6 | 6 | 48 | 8 (Sextuplet-wise median filtering) |
7 | 7 | 56 | 8 (Septuplet-wise median filtering) |
8 | 8 | 64 | 8 (Octuplet-wise median filtering) |
9 | 9 | 72 | 8 (Nonuplet-wise median filtering) |
S. No. | Abbreviation | Method Name |
---|---|---|
1 | LBP | Local Binary Pattern |
2 | LTP | Local Ternary Pattern |
3 | LQP | Local Quinary Pattern |
4 | LTrP | Local Tetra Pattern |
5 | LTCoP | Local Ternary Co-Occurrence Pattern |
6 | LMeP | Local Mesh Pattern |
7 | LMePVEP | Local Mesh Peak Valley Edge Pattern |
8 | LDEP | Local Diagonal Extrema Pattern |
9 | LWP | Local Wavelet Pattern |
10 | LQEP | Local Quantized Extrema Pattern |
11 | SS-3D-LTP | Spherical Symmetric 3D Local Ternary Pattern |
12 | LBDP | Local Bit-Plane Decoded Pattern |
13 | LBDISP | Local Bit-Plane Dissimilarity Pattern |
14 | DLTerQEP | Directional Local Ternary Quantized Extrema Pattern |
15 | LTDP | Local Tri-Directional Pattern |
16 | LGHP | Local Gradient Hexa Pattern |
17 | LDGP | Local Directional Gradient Pattern |
18 | LQEQP | Local Quantized Extrema Quinary Pattern |
19 | LMeTP | Local Mesh Ternary Patterns |
20 | LNIP | Local Neighborhood Intensity Pattern |
21 | LNDP | Local Neighborhood Difference Pattern |
22 | LDZZP | Local Directional ZigZag Pattern |
23 | LMP | Local Morphological Pattern |
24 | LJP | Local Jet Pattern |
25 | LDRP | Local Directional Relation Pattern |
26 | SPALBP | Scale and Pattern Adaptive Local Binary Pattern |
CT Image Datasets | MR Image Datasets | |||
---|---|---|---|---|
Emphysema CT | NEMA CT | OASIS MRI | NEMA MRI | |
No. of Images | 168 | 600 | 416 | 372 |
Image Size | 61 × 61 | 512 × 512 | 208 × 208 | 256 × 256 |
No. of Classes | 3 | 10 | 4 | 5 |
Images per Class | 59, 50, 59 | 54, 70, 66, 50, 15 | 125, 104, 91, 96 | 72, 100, 76, 59, 65 |
60, 52, 104, 60, 69 |
Performance Measures | Improvement | |||||||
---|---|---|---|---|---|---|---|---|
avgR | avgP | MavgP | (Proposed–Compared) | |||||
Proposed | 82.36 | 46.34 | 59.31 | 63.82 | avgR | avgP | MavgP | |
SPALBP | 80.71 | 45.41 | 58.12 | 62.54 | 1.65 | 0.93 | 1.19 | 1.28 |
LJP | 79.89 | 44.95 | 57.53 | 61.91 | 2.47 | 1.39 | 1.78 | 1.91 |
LDRP | 79.06 | 44.49 | 56.94 | 61.27 | 3.30 | 1.85 | 2.37 | 2.55 |
LBDISP | 77.69 | 43.48 | 55.75 | 62.20 | 4.67 | 2.86 | 3.56 | 1.62 |
LMP | 76.14 | 42.61 | 54.64 | 60.96 | 6.22 | 3.73 | 4.67 | 2.86 |
LZZP | 75.36 | 42.18 | 54.08 | 60.33 | 7.00 | 4.16 | 5.23 | 3.49 |
LWP | 74.46 | 41.35 | 53.17 | 57.08 | 7.90 | 4.99 | 6.14 | 6.74 |
LGHP | 72.97 | 40.52 | 52.11 | 55.94 | 9.39 | 5.82 | 7.20 | 7.88 |
LTCoP | 70.08 | 39.15 | 50.24 | 57.39 | 12.28 | 7.19 | 9.07 | 6.43 |
DLTerQEP | 69.64 | 39.63 | 50.51 | 50.72 | 12.72 | 6.71 | 8.80 | 13.10 |
LBDP | 68.69 | 38.04 | 48.97 | 56.41 | 13.67 | 8.30 | 10.34 | 7.41 |
LQEQP | 68.67 | 38.98 | 49.73 | 51.44 | 13.69 | 7.36 | 9.58 | 12.38 |
LQEP | 68.00 | 38.32 | 49.02 | 48.91 | 14.36 | 8.02 | 10.29 | 14.91 |
LTP | 66.99 | 37.53 | 48.11 | 53.20 | 15.37 | 8.81 | 11.20 | 10.62 |
LBP | 66.98 | 37.53 | 48.11 | 52.41 | 15.38 | 8.81 | 11.20 | 11.41 |
LMeP | 66.68 | 37.27 | 47.81 | 53.72 | 15.68 | 9.07 | 11.50 | 10.10 |
SS-3D-LTP | 66.12 | 36.98 | 47.43 | 55.61 | 16.24 | 9.36 | 11.88 | 8.21 |
LMeTP | 65.82 | 36.83 | 47.23 | 52.41 | 16.54 | 9.51 | 12.08 | 11.41 |
LTrP | 65.61 | 36.86 | 47.20 | 50.95 | 16.75 | 9.48 | 12.11 | 12.87 |
LMePVEP | 65.45 | 36.70 | 47.03 | 50.96 | 16.91 | 9.64 | 12.28 | 12.86 |
LDEP | 65.34 | 36.56 | 46.89 | 49.61 | 17.02 | 9.78 | 12.42 | 14.21 |
LQP | 65.21 | 36.51 | 46.81 | 51.47 | 17.15 | 9.83 | 12.50 | 12.35 |
LNDP | 65.10 | 36.52 | 46.80 | 48.86 | 17.26 | 9.82 | 12.51 | 14.96 |
LTDP | 64.62 | 36.16 | 46.37 | 48.02 | 17.74 | 10.18 | 12.94 | 15.80 |
LNIP | 64.61 | 36.20 | 46.40 | 47.99 | 17.75 | 10.14 | 12.91 | 15.83 |
LDGP | 63.64 | 35.55 | 45.61 | 47.57 | 18.72 | 10.79 | 13.70 | 16.25 |
Average Improvement | 12.61 | 7.25 | 9.21 | 9.59 |
Performance Measures | Improvement | |||||||
---|---|---|---|---|---|---|---|---|
avgR | avgP | MavgP | (Proposed–Compared) | |||||
Proposed | 98.71 | 69.11 | 81.30 | 99.56 | avgR | avgP | MavgP | |
SPALBP | 97.72 | 66.35 | 79.03 | 99.06 | 0.99 | 2.76 | 2.27 | 0.50 |
DLTerQEP | 96.45 | 64.92 | 77.61 | 99.00 | 2.26 | 4.19 | 3.69 | 0.56 |
LQEP | 96.43 | 64.70 | 77.44 | 98.96 | 2.28 | 4.41 | 3.86 | 0.60 |
LNDP | 96.42 | 64.62 | 77.38 | 98.07 | 2.29 | 4.49 | 3.92 | 1.49 |
LMeTP | 96.36 | 64.98 | 77.62 | 98.55 | 2.35 | 4.13 | 3.68 | 1.01 |
LMP | 96.26 | 64.92 | 77.54 | 98.45 | 2.45 | 4.19 | 3.76 | 1.11 |
LZZP | 96.17 | 64.85 | 77.46 | 98.35 | 2.54 | 4.26 | 3.84 | 1.21 |
LJP | 96.07 | 64.79 | 77.39 | 98.25 | 2.64 | 4.32 | 3.91 | 1.31 |
LMeP | 96.19 | 64.64 | 77.32 | 98.12 | 2.52 | 4.47 | 3.98 | 1.44 |
LTDP | 96.18 | 64.50 | 77.21 | 98.50 | 2.53 | 4.61 | 4.09 | 1.06 |
LTP | 95.99 | 64.52 | 77.17 | 98.83 | 2.72 | 4.59 | 4.13 | 0.73 |
SS-3D-LTP | 95.92 | 64.62 | 77.22 | 98.43 | 2.79 | 4.49 | 4.08 | 1.13 |
LTrP | 95.92 | 64.26 | 76.96 | 97.92 | 2.79 | 4.85 | 4.34 | 1.64 |
LQEQP | 95.83 | 64.65 | 77.21 | 98.56 | 2.88 | 4.46 | 4.09 | 1.00 |
LDRP | 95.71 | 64.11 | 76.78 | 97.46 | 3.00 | 5.00 | 4.51 | 2.10 |
LGHP | 95.62 | 64.04 | 76.71 | 97.37 | 3.09 | 5.07 | 4.59 | 2.19 |
LDGP | 95.52 | 63.98 | 76.63 | 97.27 | 3.19 | 5.13 | 4.67 | 2.29 |
LTCoP | 95.47 | 63.55 | 76.31 | 98.36 | 3.24 | 5.56 | 4.99 | 1.20 |
LNIP | 95.45 | 63.93 | 76.57 | 97.68 | 3.26 | 5.18 | 4.73 | 1.88 |
LQP | 95.27 | 64.00 | 76.56 | 98.48 | 3.44 | 5.11 | 4.74 | 1.08 |
LDEP | 95.02 | 63.72 | 76.28 | 97.23 | 3.69 | 5.39 | 5.02 | 2.33 |
LBP | 94.19 | 62.25 | 74.96 | 97.85 | 4.52 | 6.86 | 6.34 | 1.71 |
LMePVEP | 93.51 | 62.91 | 75.22 | 97.43 | 5.20 | 6.20 | 6.08 | 2.13 |
LWP | 80.37 | 52.76 | 63.70 | 89.89 | 18.34 | 16.35 | 17.60 | 9.67 |
LBDP | 76.91 | 50.06 | 60.64 | 84.45 | 21.80 | 19.05 | 20.66 | 15.11 |
LBDISP | 71.14 | 45.20 | 55.28 | 82.41 | 27.57 | 23.91 | 26.02 | 17.15 |
Average Improvement | 5.17 | 6.50 | 6.29 | 2.83 |
Performance Measures | Improvement | |||||||
---|---|---|---|---|---|---|---|---|
avgR | avgP | MavgP | (Proposed–Compared) | |||||
Proposed | 42.93 | 44.52 | 43.71 | 53.11 | avgR | avgP | MavgP | |
SPALBP | 40.78 | 42.29 | 41.53 | 50.45 | 2.15 | 2.23 | 2.19 | 2.66 |
LBDISP | 37.89 | 40.35 | 39.08 | 45.81 | 5.04 | 4.17 | 4.63 | 7.30 |
LMP | 36.75 | 39.14 | 37.91 | 44.44 | 6.18 | 5.38 | 5.80 | 8.67 |
LZZP | 35.65 | 37.97 | 36.77 | 43.10 | 7.28 | 6.55 | 6.94 | 10.01 |
LJP | 34.58 | 36.83 | 35.67 | 41.81 | 8.35 | 7.69 | 8.04 | 11.30 |
LTCoP | 33.30 | 35.51 | 34.37 | 40.73 | 9.63 | 9.01 | 9.34 | 12.38 |
LQP | 32.69 | 34.78 | 33.70 | 40.26 | 10.24 | 9.74 | 10.01 | 12.85 |
SS-3D-LTP | 31.84 | 33.84 | 32.81 | 39.58 | 11.09 | 10.68 | 10.90 | 13.53 |
LBDP | 31.18 | 32.87 | 32.01 | 42.40 | 11.75 | 11.65 | 11.70 | 10.71 |
LTDP | 30.99 | 33.12 | 32.02 | 38.17 | 11.94 | 11.40 | 11.69 | 14.94 |
LNIP | 30.88 | 33.00 | 31.90 | 38.29 | 12.05 | 11.52 | 11.81 | 14.82 |
LTP | 30.76 | 32.79 | 31.74 | 38.20 | 12.17 | 11.73 | 11.97 | 14.91 |
LNDP | 30.75 | 32.75 | 31.72 | 38.30 | 12.18 | 11.77 | 11.99 | 14.81 |
LBP | 30.29 | 32.26 | 31.25 | 37.13 | 12.64 | 12.26 | 12.46 | 15.98 |
LMeP | 30.26 | 32.29 | 31.24 | 37.84 | 12.67 | 12.23 | 12.47 | 15.27 |
LQEQP | 29.94 | 31.74 | 30.82 | 36.37 | 12.99 | 12.78 | 12.89 | 16.74 |
LMeTP | 29.46 | 31.37 | 30.39 | 37.32 | 13.47 | 13.15 | 13.32 | 15.79 |
DLTerQEP | 29.43 | 31.15 | 30.27 | 35.87 | 13.50 | 13.37 | 13.44 | 17.24 |
LDRP | 29.13 | 30.93 | 30.00 | 36.77 | 13.80 | 13.59 | 13.71 | 16.34 |
LTrP | 29.04 | 30.84 | 29.92 | 36.66 | 13.89 | 13.68 | 13.79 | 16.45 |
LMePVEP | 28.33 | 30.19 | 29.23 | 35.49 | 14.60 | 14.33 | 14.48 | 17.62 |
LGHP | 28.11 | 29.95 | 29.00 | 34.61 | 14.82 | 14.57 | 14.71 | 18.50 |
LDGP | 28.08 | 29.92 | 28.97 | 33.60 | 14.85 | 14.60 | 14.74 | 19.51 |
LDEP | 27.84 | 29.51 | 28.65 | 33.39 | 15.09 | 15.01 | 15.06 | 19.72 |
LQEP | 27.61 | 29.38 | 28.47 | 33.13 | 15.32 | 15.14 | 15.24 | 19.98 |
LWP | 25.65 | 27.12 | 26.36 | 31.66 | 17.28 | 17.40 | 17.35 | 21.45 |
Average Improvement | 11.73 | 11.37 | 11.56 | 14.60 |
Performance Measures | Improvement | |||||||
---|---|---|---|---|---|---|---|---|
avgR | avgP | MavgP | (Proposed–Compared) | |||||
Proposed | 100.00 | 83.47 | 90.99 | 100.00 | avgR | avgP | MavgP | |
SPALBP | 100.00 | 81.80 | 89.99 | 100.00 | 0.00 | 1.67 | 1.00 | 0.00 |
LJP | 100.00 | 80.98 | 89.49 | 100.00 | 0.00 | 2.49 | 1.50 | 0.00 |
LZZP | 100.00 | 80.17 | 89.00 | 100.00 | 0.00 | 3.30 | 1.99 | 0.00 |
LMP | 100.00 | 79.37 | 88.50 | 100.00 | 0.00 | 4.10 | 2.49 | 0.00 |
LDRP | 100.00 | 78.58 | 88.00 | 100.00 | 0.00 | 4.89 | 2.99 | 0.00 |
LGHP | 100.00 | 77.79 | 87.51 | 100.00 | 0.00 | 5.68 | 3.48 | 0.00 |
LBP | 100.00 | 77.06 | 87.04 | 100.00 | 0.00 | 6.41 | 3.95 | 0.00 |
LTP | 100.00 | 77.06 | 87.04 | 100.00 | 0.00 | 6.41 | 3.95 | 0.00 |
LTrP | 100.00 | 77.06 | 87.04 | 100.00 | 0.00 | 6.41 | 3.95 | 0.00 |
LTCoP | 100.00 | 77.06 | 87.04 | 100.00 | 0.00 | 6.41 | 3.95 | 0.00 |
LMeP | 100.00 | 77.06 | 87.04 | 100.00 | 0.00 | 6.41 | 3.95 | 0.00 |
LMePVEP | 100.00 | 77.06 | 87.04 | 100.00 | 0.00 | 6.41 | 3.95 | 0.00 |
LNIP | 100.00 | 77.06 | 87.04 | 100.00 | 0.00 | 6.41 | 3.95 | 0.00 |
LTDP | 100.00 | 77.06 | 87.04 | 100.00 | 0.00 | 6.41 | 3.95 | 0.00 |
LNDP | 100.00 | 77.06 | 87.04 | 100.00 | 0.00 | 6.41 | 3.95 | 0.00 |
LDGP | 100.00 | 77.06 | 87.04 | 100.00 | 0.00 | 6.41 | 3.95 | 0.00 |
LQEP | 100.00 | 77.06 | 87.04 | 100.00 | 0.00 | 6.41 | 3.95 | 0.00 |
DLTerQEP | 100.00 | 77.06 | 87.04 | 100.00 | 0.00 | 6.41 | 3.95 | 0.00 |
LBDISP | 99.99 | 77.05 | 87.03 | 99.99 | 0.01 | 6.42 | 3.96 | 0.01 |
LQEQP | 98.83 | 76.06 | 85.96 | 99.86 | 1.17 | 7.41 | 5.03 | 0.14 |
LMeTP | 98.80 | 76.06 | 85.95 | 99.77 | 1.20 | 7.41 | 5.04 | 0.23 |
LQP | 98.79 | 75.95 | 85.88 | 99.80 | 1.21 | 7.52 | 5.11 | 0.20 |
LDEP | 97.90 | 74.96 | 84.91 | 99.63 | 2.10 | 8.51 | 6.08 | 0.37 |
SS-3D-LTP | 96.22 | 73.51 | 83.34 | 98.87 | 3.78 | 9.96 | 7.65 | 1.13 |
LBDP | 83.80 | 63.36 | 72.16 | 93.93 | 16.20 | 20.11 | 18.83 | 6.07 |
LWP | 71.51 | 53.04 | 60.91 | 86.68 | 28.49 | 30.43 | 30.08 | 13.32 |
Average Improvement | 2.08 | 7.57 | 5.49 | 0.83 |
Performance Measures | Improvement | |||||||
---|---|---|---|---|---|---|---|---|
avgR | avgP | MavgP | (Proposed–Compared) | |||||
Proposed | 81.28 | 46.95 | 59.52 | 63.72 | avgR | avgP | MavgP | |
LWP | 78.26 | 43.63 | 56.03 | 57.06 | 3.02 | 3.32 | 3.49 | 6.66 |
SPALBP | 76.69 | 42.76 | 54.91 | 55.92 | 4.59 | 4.19 | 4.61 | 7.80 |
LJP | 75.16 | 41.90 | 53.81 | 54.80 | 6.12 | 5.05 | 5.71 | 8.92 |
LBDP | 71.41 | 39.64 | 50.98 | 52.41 | 9.87 | 7.31 | 8.54 | 11.31 |
DLTerQEP | 64.85 | 37.02 | 47.13 | 41.42 | 16.43 | 9.93 | 12.39 | 22.30 |
LBDISP | 64.86 | 36.47 | 46.69 | 40.55 | 16.42 | 10.48 | 12.83 | 23.17 |
LQEQP | 64.08 | 36.05 | 46.14 | 39.71 | 17.20 | 10.90 | 13.38 | 24.01 |
LQEP | 63.15 | 35.64 | 45.56 | 39.32 | 18.13 | 11.31 | 13.95 | 24.40 |
LTCoP | 62.51 | 35.02 | 44.89 | 40.27 | 18.77 | 11.93 | 14.63 | 23.45 |
LDRP | 62.32 | 34.91 | 44.76 | 40.15 | 18.96 | 12.04 | 14.76 | 23.57 |
LZZP | 62.14 | 34.81 | 44.62 | 40.03 | 19.14 | 12.14 | 14.90 | 23.69 |
LDEP | 61.22 | 34.68 | 44.28 | 35.60 | 20.06 | 12.27 | 15.24 | 28.12 |
LBP | 60.51 | 34.08 | 43.60 | 36.55 | 20.77 | 12.87 | 15.92 | 27.17 |
LTP | 60.72 | 34.06 | 43.64 | 37.24 | 20.56 | 12.89 | 15.88 | 26.48 |
LMeP | 60.35 | 33.94 | 43.45 | 37.43 | 20.93 | 13.01 | 16.07 | 26.29 |
LMePVEP | 60.50 | 33.93 | 43.48 | 35.52 | 20.78 | 13.02 | 16.04 | 28.20 |
LTrP | 60.30 | 33.92 | 43.42 | 35.86 | 20.98 | 13.03 | 16.10 | 27.86 |
SS-3D-LTP | 60.90 | 33.90 | 43.56 | 36.48 | 20.38 | 13.05 | 15.96 | 27.24 |
LNIP | 60.42 | 33.84 | 43.38 | 35.22 | 20.86 | 13.11 | 16.14 | 28.50 |
LMeTP | 60.90 | 33.84 | 43.51 | 34.33 | 20.38 | 13.11 | 16.01 | 29.39 |
LMP | 60.60 | 33.67 | 43.29 | 34.16 | 20.68 | 13.28 | 16.23 | 29.56 |
LNDP | 59.96 | 33.61 | 43.07 | 34.95 | 21.32 | 13.34 | 16.44 | 28.77 |
LQP | 60.22 | 33.44 | 43.00 | 34.08 | 21.06 | 13.51 | 16.52 | 29.64 |
LGHP | 59.92 | 33.43 | 42.92 | 33.91 | 21.36 | 13.52 | 16.60 | 29.81 |
LDGP | 59.67 | 33.43 | 42.85 | 34.57 | 21.61 | 13.52 | 16.67 | 29.15 |
LTDP | 59.38 | 33.07 | 42.48 | 34.36 | 21.90 | 13.88 | 17.04 | 29.36 |
Average Improvement | 17.78 | 11.38 | 13.93 | 24.03 |
Performance Measures | Improvement | |||||||
---|---|---|---|---|---|---|---|---|
avgR | avgP | MavgP | (Proposed–Compared) | |||||
Proposed | 64.78 | 44.78 | 52.95 | 49.27 | avgR | avgP | MavgP | |
SPALBP | 58.89 | 40.71 | 48.14 | 44.79 | 5.89 | 4.07 | 4.81 | 4.48 |
LBDP | 47.11 | 32.57 | 38.51 | 35.83 | 17.67 | 12.21 | 14.44 | 13.44 |
LWP | 46.51 | 31.03 | 37.23 | 31.00 | 18.27 | 13.75 | 15.72 | 18.27 |
LJP | 42.86 | 22.75 | 29.72 | 21.85 | 21.91 | 22.04 | 23.23 | 27.42 |
LDRP | 28.58 | 15.17 | 19.81 | 14.57 | 36.20 | 29.62 | 33.14 | 34.70 |
LBDISP | 19.05 | 10.11 | 13.21 | 9.71 | 45.73 | 34.67 | 39.74 | 39.56 |
LQP | 18.45 | 9.73 | 12.74 | 8.83 | 46.33 | 35.05 | 40.21 | 40.44 |
LDEP | 18.39 | 10.27 | 13.18 | 9.48 | 46.39 | 34.51 | 39.77 | 39.79 |
LMP | 17.47 | 9.76 | 12.52 | 9.01 | 47.31 | 35.03 | 40.43 | 40.26 |
LDGP | 17.28 | 9.05 | 11.88 | 8.99 | 47.50 | 35.73 | 41.07 | 40.28 |
LTrP | 17.03 | 9.16 | 11.91 | 9.03 | 47.75 | 35.62 | 41.04 | 40.24 |
LMePVEP | 16.81 | 9.18 | 11.87 | 8.69 | 47.97 | 35.60 | 41.08 | 40.58 |
LTP | 16.80 | 9.18 | 11.87 | 8.87 | 47.98 | 35.60 | 41.08 | 40.40 |
LZZP | 16.80 | 9.18 | 11.87 | 8.87 | 47.98 | 35.60 | 41.08 | 40.40 |
LTCoP | 16.77 | 9.14 | 11.83 | 8.72 | 48.01 | 35.64 | 41.12 | 40.55 |
SS-3D-LTP | 16.75 | 9.24 | 11.91 | 8.77 | 48.03 | 35.54 | 41.04 | 40.50 |
DLTerQEP | 16.68 | 9.10 | 11.77 | 8.66 | 48.10 | 35.68 | 41.18 | 40.61 |
LMeTP | 16.67 | 9.18 | 11.84 | 8.61 | 48.11 | 35.60 | 41.11 | 40.66 |
LQEQP | 16.67 | 9.18 | 11.84 | 8.68 | 48.11 | 35.60 | 41.11 | 40.59 |
LGHP | 16.67 | 9.18 | 11.84 | 8.68 | 48.11 | 35.60 | 41.11 | 40.59 |
LMeP | 16.66 | 8.91 | 11.61 | 7.67 | 48.12 | 35.87 | 41.34 | 41.60 |
LTDP | 16.59 | 8.97 | 11.64 | 8.70 | 48.19 | 35.81 | 41.31 | 40.57 |
LBP | 16.59 | 8.79 | 11.49 | 9.22 | 48.19 | 35.99 | 41.46 | 40.05 |
LQEP | 16.55 | 8.93 | 11.60 | 8.52 | 48.23 | 35.85 | 41.35 | 40.75 |
LNDP | 16.42 | 10.09 | 12.50 | 7.88 | 48.36 | 34.69 | 40.45 | 41.39 |
LNIP | 16.24 | 8.67 | 11.31 | 8.01 | 48.54 | 36.11 | 41.64 | 41.26 |
Average Improvement | 42.42 | 31.81 | 36.58 | 36.51 |
Performance Measures | Improvement | |||||||
---|---|---|---|---|---|---|---|---|
avgR | avgP | MavgP | (Proposed–Compared) | |||||
Proposed | 38.56 | 37.50 | 38.02 | 38.44 | avgR | avgP | MavgP | |
SPALBP | 35.06 | 34.09 | 34.56 | 34.94 | 3.51 | 3.41 | 3.46 | 3.49 |
LJT | 33.39 | 32.46 | 32.92 | 33.28 | 5.17 | 5.03 | 5.10 | 5.16 |
LMP | 31.80 | 30.92 | 31.35 | 31.69 | 6.76 | 6.58 | 6.67 | 6.74 |
LZZP | 30.28 | 29.45 | 29.86 | 30.19 | 8.28 | 8.05 | 8.16 | 8.25 |
LDRP | 28.84 | 28.04 | 28.44 | 28.75 | 9.72 | 9.45 | 9.58 | 9.69 |
LGHP | 27.47 | 26.71 | 27.08 | 27.38 | 11.09 | 10.79 | 10.94 | 11.06 |
LBDP | 24.97 | 24.28 | 24.62 | 24.89 | 13.59 | 13.22 | 13.40 | 13.55 |
LWP | 24.47 | 25.56 | 25.00 | 25.76 | 14.09 | 11.94 | 13.02 | 12.68 |
LBDISP | 24.31 | 24.72 | 24.51 | 24.75 | 14.25 | 12.78 | 13.51 | 13.69 |
SS-3D-LTP | 24.17 | 25.54 | 24.84 | 25.55 | 14.39 | 11.96 | 13.18 | 12.89 |
LTP | 24.15 | 25.60 | 24.85 | 25.40 | 14.41 | 11.90 | 13.17 | 13.04 |
LDGP | 24.11 | 26.60 | 25.30 | 26.35 | 14.45 | 10.90 | 12.72 | 12.09 |
LMePVEP | 24.07 | 25.55 | 24.79 | 25.70 | 14.49 | 11.95 | 13.23 | 12.74 |
LTDP | 24.06 | 26.06 | 25.02 | 26.08 | 14.50 | 11.44 | 13.00 | 12.36 |
LQEP | 24.05 | 25.55 | 24.78 | 25.43 | 14.51 | 11.95 | 13.24 | 13.01 |
LTrP | 24.04 | 25.84 | 24.91 | 25.91 | 14.52 | 11.66 | 13.11 | 12.53 |
LDEP | 24.03 | 23.89 | 23.96 | 24.02 | 14.53 | 13.61 | 14.06 | 14.42 |
LQP | 24.02 | 24.67 | 24.34 | 24.80 | 14.54 | 12.83 | 13.68 | 13.64 |
LNIP | 24.01 | 26.55 | 25.21 | 26.47 | 14.55 | 10.95 | 12.81 | 11.97 |
LBP | 24.01 | 25.59 | 24.78 | 25.49 | 14.55 | 11.91 | 13.24 | 12.95 |
LMeTP | 24.00 | 25.77 | 24.85 | 25.81 | 14.56 | 11.73 | 13.17 | 12.63 |
LMeP | 23.95 | 25.70 | 24.80 | 25.62 | 14.61 | 11.80 | 13.22 | 12.82 |
DLTerQEP | 23.95 | 25.50 | 24.70 | 25.41 | 14.61 | 12.00 | 13.32 | 13.03 |
LQEQP | 23.95 | 25.32 | 24.62 | 25.24 | 14.61 | 12.18 | 13.40 | 13.20 |
LTCoP | 23.90 | 25.27 | 24.57 | 25.37 | 14.66 | 12.23 | 13.45 | 13.07 |
LNDP | 23.78 | 24.99 | 24.37 | 25.07 | 14.78 | 12.51 | 13.65 | 13.37 |
Average Improvement | 12.84 | 10.95 | 11.90 | 11.69 |
Performance Measures | Improvement | |||||||
---|---|---|---|---|---|---|---|---|
avgR | avgP | MavgP | (Proposed–Compared) | |||||
Proposed | 69.92 | 53.36 | 60.53 | 57.95 | avgR | avgP | MavgP | |
SPALBP | 63.57 | 48.51 | 55.03 | 52.68 | 6.36 | 4.85 | 5.50 | 5.27 |
LBDP | 60.54 | 46.20 | 52.40 | 50.17 | 9.38 | 7.16 | 8.13 | 7.78 |
LJP | 55.61 | 44.80 | 49.62 | 50.45 | 14.32 | 8.57 | 10.91 | 7.50 |
LWP | 46.34 | 37.33 | 41.35 | 42.04 | 23.58 | 16.03 | 19.18 | 15.91 |
LBDISP | 34.91 | 29.98 | 32.26 | 30.05 | 35.01 | 23.38 | 28.27 | 27.90 |
LMP | 33.73 | 32.59 | 33.15 | 33.24 | 36.19 | 20.78 | 27.38 | 24.71 |
LDRP | 30.66 | 29.62 | 30.13 | 30.22 | 39.26 | 23.74 | 30.40 | 27.73 |
LTCoP | 30.36 | 29.33 | 29.84 | 29.92 | 39.56 | 24.03 | 30.69 | 28.03 |
LZZP | 30.49 | 29.26 | 29.87 | 27.45 | 39.43 | 24.10 | 30.66 | 30.50 |
LGHP | 30.19 | 28.97 | 29.57 | 27.18 | 39.73 | 24.39 | 30.96 | 30.77 |
LQEQP | 30.04 | 28.83 | 29.42 | 27.04 | 39.88 | 24.53 | 31.11 | 30.91 |
LNDP | 29.90 | 27.92 | 28.88 | 28.14 | 40.02 | 25.44 | 31.65 | 29.81 |
LDEP | 29.84 | 28.96 | 29.39 | 27.08 | 40.08 | 24.40 | 31.14 | 30.87 |
SS-3D-LTP | 29.56 | 28.28 | 28.91 | 28.06 | 40.36 | 25.08 | 31.62 | 29.89 |
LMeTP | 29.45 | 28.69 | 29.06 | 26.90 | 40.47 | 24.67 | 31.47 | 31.05 |
LQP | 28.36 | 27.05 | 27.69 | 26.63 | 41.56 | 26.31 | 32.84 | 31.32 |
LMeP | 27.37 | 27.20 | 27.29 | 26.92 | 42.55 | 26.16 | 33.24 | 31.03 |
DLTerQEP | 27.33 | 27.20 | 27.26 | 26.92 | 42.59 | 26.16 | 33.27 | 31.03 |
LBP | 27.28 | 27.14 | 27.21 | 27.14 | 42.64 | 26.22 | 33.32 | 30.81 |
LDGP | 26.96 | 26.94 | 26.95 | 26.95 | 42.96 | 26.42 | 33.58 | 31.00 |
LMePVEP | 26.90 | 26.89 | 26.90 | 26.88 | 43.02 | 26.47 | 33.63 | 31.07 |
LTP | 26.89 | 26.89 | 26.89 | 26.88 | 43.03 | 26.47 | 33.64 | 31.07 |
LNIP | 26.89 | 26.88 | 26.88 | 26.88 | 43.03 | 26.48 | 33.65 | 31.07 |
LTDP | 26.89 | 26.88 | 26.89 | 26.88 | 43.03 | 26.48 | 33.64 | 31.07 |
LTrP | 26.88 | 26.88 | 26.88 | 26.88 | 43.04 | 26.48 | 33.65 | 31.07 |
LQEP | 26.88 | 26.88 | 26.88 | 26.88 | 43.04 | 26.48 | 33.65 | 31.07 |
Average Improvement | 36.70 | 22.74 | 28.74 | 26.93 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sharma, S.; Aggarwal, A. A New Approach for Effective Retrieval of Medical Images: A Step towards Computer-Assisted Diagnosis. J. Imaging 2024, 10, 210. https://doi.org/10.3390/jimaging10090210
Sharma S, Aggarwal A. A New Approach for Effective Retrieval of Medical Images: A Step towards Computer-Assisted Diagnosis. Journal of Imaging. 2024; 10(9):210. https://doi.org/10.3390/jimaging10090210
Chicago/Turabian StyleSharma, Suchita, and Ashutosh Aggarwal. 2024. "A New Approach for Effective Retrieval of Medical Images: A Step towards Computer-Assisted Diagnosis" Journal of Imaging 10, no. 9: 210. https://doi.org/10.3390/jimaging10090210
APA StyleSharma, S., & Aggarwal, A. (2024). A New Approach for Effective Retrieval of Medical Images: A Step towards Computer-Assisted Diagnosis. Journal of Imaging, 10(9), 210. https://doi.org/10.3390/jimaging10090210