[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Local neighborhood difference pattern: A new feature descriptor for natural and texture image retrieval

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

A new image retrieval technique using local neighborhood difference pattern (LNDP) has been proposed for local features. The conventional local binary pattern (LBP) transforms every pixel of image into a binary pattern based on their relationship with neighboring pixels. The proposed feature descriptor differs from local binary pattern as it transforms the mutual relationship of all neighboring pixels in a binary pattern. Both LBP and LNDP are complementary to each other as they extract different information using local pixel intensity. In the proposed work, both LBP and LNDP features are combined to extract the most of the information that can be captured using local intensity differences. To prove the excellence of the proposed method, experiments have been conducted on four different databases of texture images and natural images. The performance has been observed using well-known evaluation measures, precision and recall and compared with some state-of-art local patterns. Comparison shows a significant improvement in the proposed method over existing methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Ahmadian A, Mostafa A (2003) An efficient texture classification algorithm using gabor wavelet. In: Proceedings of 25th annual international conference of engineering in medicine and biology society, vol 1. IEEE, Cancun, Mexico, pp 930–933

    Google Scholar 

  2. Ahonen T, Hadid A, Pietikäinen M (2004) Face recognition with local binary patterns. In: Proceedings of 8th European conference on computer vision. Springer, Prague, Czech Republic, pp 469– 481

    Google Scholar 

  3. Baber J, Satoh S, Afzulpurkar N, Bakhtyar M (2012) Q-CSLBP: compression of CSLBP descriptor. In: Advances in multimedia information processing–PCM. Springer, Singapore, pp 513–521

    Google Scholar 

  4. Bay H, Tuytelaars T, Van Gool L (2006) Surf: Speeded up robust features. In: European conference on computer vision. Springer, pp 404–417

  5. Celik T, Tjahjadi T (2009) Multiscale texture classification using dual-tree complex wavelet transform. Pattern Recogn Lett 30(3):331–339

    Article  Google Scholar 

  6. Corel-5k and Corel-10k database. Available online: http://www.ci.gxnu.edu.cn/cbir/

  7. Dalal N, Triggs B (2005) Histograms of oriented gradients for human detection. In: International conference on computer vision and pattern recognition, vol 1. IEEE, pp 886–893

  8. Dubey SR, Singh SK, Singh RK (2015) Local diagonal extrema pattern: a new and efficient feature descriptor for ct image retrieval. IEEE Signal Process Lett 22 (9):1215–1219

    Article  Google Scholar 

  9. Dubey SR, Singh SK, Singh RK (2015) Local neighbourhood-based robust colour occurrence descriptor for colour image retrieval. IET Image Process 9(7):578–586

    Article  Google Scholar 

  10. Dubey SR, Singh SK, Singh RK (2016) Local bit-plane decoded pattern: A novel feature descriptor for biomedical image retrieval. IEEE J Biomed Health Inform 20(4):1139–1147

    Article  Google Scholar 

  11. Guo Z, Zhang L, Zhang D (2010) A completed modeling of local binary pattern operator for texture classification. IEEE Trans Image Process 19(6):1657–1663

    Article  MathSciNet  MATH  Google Scholar 

  12. Haralick RM, Shanmugam K, Dinstein IH (1973) Textural features for image classification. IEEE Trans Syst Man Cybern 3(6):610–621

    Article  Google Scholar 

  13. He Y, Sang N, Gao C (2013) Multi-structure local binary patterns for texture classification. Pattern Anal Appl 16(4):595–607

    Article  MathSciNet  Google Scholar 

  14. Heikkilä M, Pietikäinen M, Schmid C (2006) Description of interest regions with center-symmetric local binary patterns. In: Computer vision, graphics and image processing. Springer, Madurai, India , pp 58–69

    Chapter  Google Scholar 

  15. Houam L, Hafiane A, Boukrouche A, Lespessailles E, Jennane R (2014) One dimensional local binary pattern for bone texture characterization. Pattern Anal Appl 17(1):179–193

    Article  MathSciNet  Google Scholar 

  16. Jeena Jacob I, Srinivasagan KG, Jayapriya K (2014) Local oppugnant color texture pattern for image retrieval system. Pattern Recogn Lett 42:72–78

    Article  Google Scholar 

  17. Kokare M, Biswas PK, Chatterji BN (2005) Texture image retrieval using new rotated complex wavelet filters. IEEE Trans Syst Man Cybern Part B Cybern 35 (6):1168–1178

    Article  Google Scholar 

  18. Kokare M, Biswas PK, Chatterji BN (2007) Texture image retrieval using rotated wavelet filters. Pattern Recogn Lett 28(10):1240–1249

    Article  Google Scholar 

  19. Kwitt R, Meerwald P (2012) Salzburg texture image database. Avaiable online: http://www.wavelab.at/sources/STex/

  20. Li Z, Liu J, Tang J, Lu H (2015) Robust structured subspace learning for data representation. IEEE Trans Pattern Anal Mach Intell 37(10):2085–2098

    Article  Google Scholar 

  21. Li Z, Tang J (2015) Unsupervised feature selection via nonnegative spectral analysis and redundancy control. IEEE Trans Image Process 24(12):5343–5355

    Article  MathSciNet  Google Scholar 

  22. Liao S, Law MWK, Chung ACS (2009) Dominant local binary patterns for texture classification. IEEE Trans Image Process 18(5):1107–1118

    Article  MathSciNet  MATH  Google Scholar 

  23. Liu Y, Zhang D, Lu G, Ma WY (2007) A survey of content-based image retrieval with high-level semantics. Pattern Recogn 40(1):262–282

    Article  MATH  Google Scholar 

  24. Loupias E, Sebe N, Bres S, Jolion JM (2000) Wavelet-based salient points for image retrieval. In: Proceedings of international conference on image processing, vol 2. IEEE, BC, Canada, pp 518–521

    Google Scholar 

  25. Lowe DG (1999) Object recognition from local scale-invariant features. In: International conference on computer vision, vol 2. IEEE, pp 1150–1157

  26. Ma WY, Manjunath BS (1996) Texture-based pattern retrieval from image databases. Multimed Tools Appl 2(1):35–51

    Google Scholar 

  27. Mabood L, Ali H, Badshah N, Chen K, Khan GA (2016) Active contours textural and inhomogeneous object extraction. Pattern Recogn 55:87–99

    Article  Google Scholar 

  28. Mikolajczyk K, Schmid C (2005) A performance evaluation of local descriptors. IEEE Trans Pattern Anal Mach Intell 27(10):1615–1630

    Article  Google Scholar 

  29. Mikolajczyk K, Tuytelaars T, Schmid C, Zisserman A, Matas J, Schaffalitzky F, Van Gool L (2005) A comparison of affine region detectors. Int J Comput Vis 65(1-2):43–72

    Article  Google Scholar 

  30. Müller H., Michoux N, Bandon D, Geissbuhler A (2004) A review of content-based image retrieval systems in medical applicationsclinical benefits and future directions. Int J Med Inform 73(1):1–23

    Article  Google Scholar 

  31. Murala S, Maheshwari RP, Balasubramanian R (2012) Directional local extrema patterns: a new descriptor for content based image retrieval. Int J Multimed Inf Retr 1(3):191–203

    Article  MATH  Google Scholar 

  32. Murala S, Maheshwari RP, Balasubramanian R (2012) Local maximum edge binary patterns: a new descriptor for image retrieval and object tracking. Signal Process 92(6):1467–1479

    Article  MATH  Google Scholar 

  33. Murala S, Maheshwari RP, Balasubramanian R (2012) Local tetra patterns: a new feature descriptor for content-based image retrieval. IEEE Trans Image Process 21(5):2874–2886

    Article  MathSciNet  MATH  Google Scholar 

  34. Murala S, Wu QJ (2015) Spherical symmetric 3D local ternary patterns for natural, texture and biomedical image indexing and retrieval. Neurocomputing 149:1502–1514

    Article  Google Scholar 

  35. Nian F, Li T, Wu X, Gao Q, Li F (2015) Efficient near-duplicate image detection with a local-based binary representation. Multimedia Tools and Applications, pp 1–18

  36. Nigam S, Khare A (2014) Multiresolution approach for multiple human detection using moments and local binary patterns. Multimed Tools Appl 74(17):1–26

    Google Scholar 

  37. Ning J, Zhang L, Zhang D, Wu C (2009) Robust object tracking using joint color-texture histogram. Int J Pattern Recogn Artif Intell 23(07):1245–1263

    Article  Google Scholar 

  38. Nosaka R, Ohkawa Y, Fukui K (2012) Feature extraction based on co-occurrence of adjacent local binary patterns. In: Advances in image and video technology. Springer, Gwangju, South Korea, pp 82–91

    Google Scholar 

  39. Nosaka R, Suryanto CH, Fukui K (2013) Rotation invariant co-occurrence among adjacent LBPs. In: Computer Vision-ACCV Workshops. Springer, Daejeon, Korea, pp 15–25

    Google Scholar 

  40. Ojala T, Pietikäinen M, Harwood D (1996) A comparative study of texture measures with classification based on featured distributions. Pattern Recogn 29(1):51–59

    Article  Google Scholar 

  41. Ojala T, Pietikäinen M., Maenpaa T (2002) Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans Pattern Anal Mach Intell 24(7):971–987

    Article  MATH  Google Scholar 

  42. Palm C (2004) Color texture classification by integrative co-occurrence matrices. Pattern Recogn 37(5):965–976

    Article  Google Scholar 

  43. Partio M, Cramariuc B, Gabbouj M, Visa A (2002) Rock texture retrieval using gray level co-occurrence matrix. In: Proceedings of the 5th Nordic signal processing symposium, vol 75. Citeseer,

  44. Reddy PVB, Reddy ARM (2014) Content based image indexing and retrieval using directional local extrema and magnitude patterns. AEU-Int J Electron Commun 68(7):637–643

    Article  Google Scholar 

  45. Safia A, He D (2013) New brodatz-based image databases for grayscale color and multiband texture analysis. ISRN Machine Vision, pp 1–14. doi:10.1155/2013/876386. Available online: http://multibandtexture.recherche.usherbrooke.ca/

  46. Saipullah KM (2011) The pruning of combined neighborhood differences texture descriptor for multispectral image segmentation. Int J Comput Technol Electron Eng 1(3):1–6

    Google Scholar 

  47. Smeulders AW, Worring M, Santini S, Gupta A, Jain R (2000) Content-based image retrieval at the end of the early years. IEEE Trans Pattern Anal Mach Intell 22(12):1349–1380

    Article  Google Scholar 

  48. Tan X, Triggs B (2007) Enhanced local texture feature sets for face recognition under difficult lighting conditions. In: Analysis and modeling of faces and gestures. Springer, Rio de Janeiro, Brazil, pp 168– 182

    Chapter  Google Scholar 

  49. Tao D, Guo Y, Song M, Li Y, Yu Z, Tang YY (2016) Person re-identification by dual-regularized kiss metric learning. IEEE Trans Image Process 25 (6):2726–2738

    Article  MathSciNet  Google Scholar 

  50. Tao D, Jin L, Wang Y, Yuan Y, Li X (2013) Person re-identification by regularized smoothing kiss metric learning. IEEE Trans Circ Syst Video Technol 23 (10):1675–1685

    Article  Google Scholar 

  51. Tao D, Lin X, Jin L, Li X (2016) Principal component 2-d long short-term memory for font recognition on single chinese characters. IEEE Trans Cybern 46(3):756–765

    Article  Google Scholar 

  52. Urban and natural scene categories, computational visual cognition laboratory, massachusetts institute of technology. Available online: http://cvcl.mit.edu/database.htm

  53. Verma M, Raman B (2015) Center symmetric local binary co-occurrence pattern for texture, face and bio-medical image retrieval. J Vis Commun Image Represent 32:224–236

    Article  Google Scholar 

  54. Verma M, Raman B (2016) Local tri-directional patterns: A new texture feature descriptor for image retrieval. Digit Signal Process 51:62–72

    Article  MathSciNet  Google Scholar 

  55. Verma M, Raman B, Murala S (2015) Local extrema co-occurrence pattern for color and texture image retrieval. Neurocomputing 165:255–269

    Article  Google Scholar 

  56. Wang X, Gong H, Zhang H, Li B, Zhuang Z (2006) Palmprint identification using boosting local binary pattern. In: Proceedings of 18th international conference on pattern recognition, (ICPR), vol 3. IEEE, Hong Kong, China, pp 503–506

    Chapter  Google Scholar 

  57. Xia Y, Wan S, Yue L (2014) Local spatial binary pattern: A new feature descriptor for content-based image retrieval. In: Proceedings of 5th international conference on graphic and image processing, vol 9069, 90691K. International Society for Optics and Photonics, Hong Kong, China

  58. Xia Y, Wan S, Yue L (2014) A new texture direction feature descriptor and its application in content-based image retrieval. In: Proceedings of the 3rd international conference on multimedia technology, (ICMT). Springer, Guangzhou, China, pp 143–151

    Chapter  Google Scholar 

  59. Yao CH, Chen SY (2003) Retrieval of translated, rotated and scaled color textures. Pattern Recogn 36(4):913–929

    Article  Google Scholar 

  60. Zhang B, Gao Y, Zhao S, Liu J (2010) Local derivative pattern versus local binary pattern: face recognition with high-order local pattern descriptor. IEEE Trans Image Process 19(2):533–544

    Article  MathSciNet  MATH  Google Scholar 

  61. Zhang J, Li GL, He SW (2008) Texture-based image retrieval by edge detection matching GLCM. In: Proceedings of 10th international conference on high performance computing and communications, (HPCC). IEEE, Dalian, China, pp 782–786

    Google Scholar 

  62. Zhang W, Shan S, Gao W, Chen X, Zhang H (2005) Local gabor binary pattern histogram sequence (LGBPHS): A novel non-statistical model for face representation and recognition. In: Proceedings of 10th international conference on computer vision, (ICCV), vol 1. IEEE, Beijing, China, pp 786–791

    Google Scholar 

  63. Zhao G, Pietikäinen M (2007) Dynamic texture recognition using local binary patterns with an application to facial expressions. IEEE Trans Pattern Anal Mach Intell 29(6):915–928

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Ministry of Human Resource and Development (MHRD) grant, India under grant MHRD-02-23-200-304. The authors would like to thank the editor and anonymous reviewers for thoughtful comments and valuable suggestions to improve the quality, which have been incorporated in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manisha Verma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verma, M., Raman, B. Local neighborhood difference pattern: A new feature descriptor for natural and texture image retrieval. Multimed Tools Appl 77, 11843–11866 (2018). https://doi.org/10.1007/s11042-017-4834-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-017-4834-3

Keywords

Navigation