A Cortical-Inspired Contour Completion Model Based on Contour Orientation and Thickness
<p>Finding blood vessels (salient lines) in the fundus photography of the human retina. Specifications: <span class="html-italic">x</span>, <span class="html-italic">y</span> are spatial coordinates, <math display="inline"><semantics> <mi>θ</mi> </semantics></math> is the orientation, and <math display="inline"><semantics> <mrow> <mi>κ</mi> <mo>=</mo> <msup> <mo form="prefix">e</mo> <mi>σ</mi> </msup> </mrow> </semantics></math> is the thickness of lines.</p> "> Figure 2
<p>Restoration of image contours. From left to right: original image; corrupted image (the damaged area is a white disc); recovering contours via the classical model (sub-Riemannian geodesics in SE(2)); restoration via geodesics in SIM(2), taking into account the thickness of contours.</p> "> Figure 3
<p>Modeling of association field by sub-Riemannian geodesics in SIM(2). The spatial projections of the geodesics are depicted for the following initial covectors: <math display="inline"><semantics> <mrow> <msub> <mi>h</mi> <mn>20</mn> </msub> <mo>=</mo> <msub> <mi>h</mi> <mn>40</mn> </msub> <mo>=</mo> <mn>0</mn> <mo>;</mo> <mrow> <mo>(</mo> <msub> <mi>h</mi> <mn>10</mn> </msub> <mo>,</mo> <msub> <mi>h</mi> <mn>30</mn> </msub> <mo>)</mo> </mrow> <mo>∈</mo> <mrow> <mo>{</mo> <mrow> <mo>(</mo> <mo>±</mo> <mn>1</mn> <mo>,</mo> <mn>0</mn> <mo>)</mo> </mrow> <mo>,</mo> <mrow> <mo>(</mo> <mo>±</mo> <mn>0.93</mn> <mo>,</mo> <mo>±</mo> <mn>0.35</mn> <mo>)</mo> </mrow> <mo>,</mo> <mrow> <mo>(</mo> <mo>±</mo> <mn>0.99</mn> <mo>,</mo> <mo>±</mo> <mn>0.11</mn> <mo>)</mo> </mrow> <mo>}</mo> </mrow> </mrow> </semantics></math>.</p> "> Figure 4
<p>Perceptual grouping of the elements in SIM(2) having small SR distance between them. They are plotted over the background consisting of the elements located from each other on a bigger distance.</p> "> Figure A1
<p>Construction of left-invariant vector fields. Here, <math display="inline"><semantics> <mi>γ</mi> </semantics></math> is a smooth curve passing through the unit element Id, <math display="inline"><semantics> <msub> <mi>L</mi> <mi>q</mi> </msub> </semantics></math> is the left translation on element <math display="inline"><semantics> <mrow> <mi>q</mi> <mo>∈</mo> <mo form="prefix">SIM(2)</mo> </mrow> </semantics></math>, and <span class="html-italic">A</span> is the tangent vector of <math display="inline"><semantics> <mi>γ</mi> </semantics></math>.</p> ">
Abstract
:1. Introduction
- A proof of well-posedness of the geodesic problem in M; see Theorem 1.
- An explicit expression of minimal abnormal geodesics; see Theorem 2.
- An explicit expression of a special case of normal geodesics; see Theorem 3.
- Asymptotic behavior of normal geodesics in the general case; see Theorem 4.
2. Problem Formulation
3. Existence of Solutions
4. Pontryagin Maximum Principle
- The Hamiltonian system
- The maximum condition
4.1. Abnormal Case
4.2. Normal Case
5. Approach to the Boundary Value Problem
6. Modeling of Association Field
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
Set of real numbers. | |
Set of integer numbers. | |
One dimensional sphere (a circle): . | |
SO(2) | Lie group of rotations of the plane . This group is parameterized by angle . |
SE(2) | Lie group of proper motions of the plane . This group is topologically equivalent to the manifold and parameterized by a vector of parallel translation and an angle . |
SIM(2) | Lie group of orientation-preserving similarity transformations of the plane . Its matrix representation is given by (1). |
M | Short notation for the Lie group SIM(2). |
Differential one form in SE(2) in the classic Petitot–Citti–Sarti model. | |
Ker | Kernel of a differential form. It is a linear space spanned by the vectors vanishing the form. |
Distribution in in the classic Petitot–Citti–Sarti model. | |
Metric in SE(2) in the classic Petitot–Citti–Sarti model. | |
q | Element of SIM(2). |
The parameters of SIM(2): is a vector of parallel translation. In our model, are coordinates in image plane. | |
The parameter of SIM(2): is an angle of rotation. In our model, is the orientation angle between the abscissa and the tangent vector to the contour. | |
The parameter of SIM(2): is a scaling parameter. In our model, is the thickness of the contour. | |
Id | Unit element of the group SIM(2). It is given unit matrix and corresponds to the parameters values . |
G | The Gabor function, see (3). |
I | Image on the retinal plane. |
O | Lifted image in the extended space SIM(2), see (5). |
Left translation on element , see (A3). | |
Left-invariant vector field on SIM(2), see (9)–(12). | |
Differential one form in SIM(2), see (7). | |
Distribution in , see (8) | |
Horizontal curve in SIM(2), see (13). | |
Sub-Riemannian length of a horizontal curve , see (14). | |
T | Terminal time in the optimal control problem. |
u | The control vector. |
i-th component of the control vector u. | |
U | Set of admissible controls, see (28). |
Commutator (also known as Lie bracket). Commutator of two matrices and is defined by . Commutator of two vector fields at a point is defined by , where denotes a flow generated by the vector field X, see [47]. | |
sim(2) | Lie algebra of the Lie group SIM(2). This is a vector space spanned by the basis vectors , see (A4) for their matrix representation. |
Lie | Lie algebra generated by the given vector fields and all their commutators, see (18). |
p | Adjoint covector in the Darboux coordinates. |
i-th component of the covector p. | |
h | Adjoint covector in the left-invariant coordinates. |
Left-invariant Hamiltonian corresponding to the basis vector field , see (19). is the i-th component of the covector h. | |
Initial (for ) value of . | |
Terminal (for ) value of . | |
Pontryagin function, see (19). | |
Right-invariant vector field. | |
Right-invariant Hamiltonian, see (34). | |
P | Poisson bivector. |
Poison bracket. | |
Scalar product of a covector and a vector, . |
Abbreviations
LGN | lateral geniculate nucleus |
RF | receptive fields |
V1 | primary visual cortex |
PMP | Pontryagin maximum principle |
SR | sub-Riemannian |
Appendix A. Construction of the Left-Invariant Distribution
References
- Hubel, D. Eye, Brain, and Vision; Scientific American Library: New York, NY, USA, 1988. [Google Scholar]
- Ter Haar Romeny, B.M. Front-End Vision and Multi-Scale Image Analysis. In Multi-Scale Computer Vision Theory and Applications, Written in Mathematica; Computational Imaging and Vision; Springer: Dordrecht, The Netherlands, 2003; Volume 27. [Google Scholar]
- Tootell, R.B.H.; Switkes, E.; Silverman, M.S.; Hamilton, S.J. Functional anatomy of macaque striate cortex. II. Retinotopic organization. J. Neurosci. 1988, 8, 1531–1568. [Google Scholar] [CrossRef]
- Marr, D. Vision: A Computational Investigation into the Human Representation and Processing of Visual Information; W.H. Freeman: San Francisco, CA, USA, 1982. [Google Scholar]
- Hubel, D.H.; Wiesel, T.N. Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J. Physiol. 1962, 160, 106–154. [Google Scholar] [CrossRef]
- Hoffman, W.C. The visual cortex is a contact bundle. Appl. Math. Comput. 1989, 32, 137–167. [Google Scholar] [CrossRef]
- Petitot, J.; Tondut, Y. Vers une neurogeometrie. Fibrations corticales, structures de contact et contours subjectifs modaux. Math. Inform. Sci. Hum. 1999, 145, 5–102. (In French) [Google Scholar] [CrossRef]
- Petitot, J. The neurogeometry of pinwheels as a sub-Riemannian contact structure. J. Physiol. 2003, 97, 265–309. [Google Scholar] [CrossRef]
- Citti, G.; Sarti, A. Cortical based model of perceptual completion in the roto-translation space. J. Math. Imaging Vis. 2006, 24, 307–326. [Google Scholar] [CrossRef]
- Boscain, U.; Gauthier, J.-P.; Chertovskih, R.; Remizov, A. Hypoelliptic diffusion and human vision: A semidiscrete new twist. Siam J. Imaging Sci. 2014, 7, 669–695. [Google Scholar] [CrossRef]
- Boscain, U.V.; Chertovskih, R.; Gauthier, J.-P.; Prandi, D.; Remizov, A. Highly corrupted image inpainting through hypoelliptic diffusion. J. Math. Imaging Vis. 2018, 60, 1231–1245. [Google Scholar] [CrossRef]
- Duits, R.; Franken, E. Left-invariant parabolic evolutions on SE(2) and contour enhancement via invertible orientation scores Part I: Linear left-invariant diffusion equations on SE(2). Q. Appl. Math. 2010, 68, 255–292. [Google Scholar] [CrossRef]
- Sachkov, Y.L. Cut locus and optimal synthesis in the sub-Riemannian problem on the group of motions of a plane. ESAIM Control Optim. Calc. Var. 2010, 17, 293–321. [Google Scholar] [CrossRef]
- Mashtakov, A.P.; Ardentov, A.A.; Sachkov, Y.L. Parallel Algorithm and Software for Image Inpainting via Sub-Riemannian Minimizers on the Group of Rototranslations. Numer. Math. Theory Methods Appl. 2013, 6, 95–115. [Google Scholar] [CrossRef]
- Franceschiello, B.; Mashtakov, A.; Citti, G.; Sarti, A. Geometrical optical illusion via sub-Riemannian geodesics in the roto-translation group. Differ. Geom. Appl. 2019, 65, 55–77. [Google Scholar] [CrossRef]
- Baspinar, E.; Calatroni, L.; Franceschi, V.; Prandi, D. A Cortical-Inspired Sub-Riemannian Model for Poggendorff-Type Visual Illusions. J. Imaging 2021, 7, 41. [Google Scholar] [CrossRef]
- Duits, R.; Felsberg, M.; Granlund, G. Romeny, B. Image Analysis and Reconstruction using a Wavelet Transform Constructed from a Reducible Representation of the Euclidean Motion Group. Int. J. Comput. Vis. 2007, 72, 79–102. [Google Scholar] [CrossRef]
- Duits, R.; Smets, B.M.N.; Wemmenhove, A.J.; Portegies, J.W.; Bekkers, E.J. Recent Geometric Flows in Multi-orientation Image Processing via a Cartan Connection. In Handbook of Mathematical Models and Algorithms in Computer Vision and Imaging; Chen, K., Schnlieb, C.B., Tai, X.C., Younces, L., Eds.; Springer: Cham, Switzerland, 2021. [Google Scholar]
- Bekkers, E.J.; Duits, R.; Mashtakov, A.; Sanguinetti, G.R. A PDE Approach to Data-driven Sub-Riemannian Geodesics in SE(2). Siam J. Imaging Sci. 2015, 8, 2740–2770. [Google Scholar] [CrossRef]
- Mashtakov, A.; Duits, R.; Sachkov, Y.; Bekkers, E.J.; Beschastnyi, I. Tracking of Lines in Spherical Images via Sub-Riemannian Geodesics in SO(3). J. Math. Imaging Vis. 2017, 58, 239–264. [Google Scholar] [CrossRef]
- Duits, R.; Ghosh, A.; Dela Haije, T.; Mashtakov, A. On sub-Riemannian geodesics in SE(3) whose spatial projections do not have cusps. J. Dyn. Control Syst. 2016, 22, 771–805. [Google Scholar] [CrossRef]
- Duits, R.; Meesters, S.P.L.; Mirebeau, J.-M.; Portegies, J.M. Optimal Paths for Variants of the 2D and 3D Reeds-Shepp Car with Applications in Image Analysis. J. Math. Imaging Vis. 2018, 60, 816–848. [Google Scholar] [CrossRef]
- Mashtakov, A.P. Time minimization problem on the group of motions of a plane with admissible control in a half-disc. Sb. Math. 2022, 213, 534–555. [Google Scholar] [CrossRef]
- Mashtakov, A.; Sachkov, Y. Time-Optimal Problem in the Roto-Translation Group with Admissible Control in a Circular Sector. Mathematics 2023, 11, 3931. [Google Scholar] [CrossRef]
- Petitot, J. Neurogeometrie de la vision. In Modeles Mathematiques et Physiques des Architectures Fonctionnelles; Editions Ecole Polytechnique: Palaiseau, France, 2008; 419p. (In French) [Google Scholar]
- Citti, G.; Sarti, A. (Eds.) Neuromathematics of Vision; Lecture Notes in Morphogenesis; Springer: Berlin/Heidelberg, Germany, 2014; 367p. [Google Scholar]
- Sanguinetti, G.; Citti, G.; Sarti, A. A model of natural image edge cooccurrence in the rototranslation group. J. Vis. 2010, 10, 37. [Google Scholar] [CrossRef]
- Duits, R.; Boscain, U.; Rossi, F.; Sachkov, Y. Association Fields via Cuspless Sub-Riemannian Geodesics in SE(2). J. Math. Imaging Vis. 2014, 49, 384–417. [Google Scholar] [CrossRef] [PubMed]
- Boscain, U.; Rossi, F. Projective Reeds-Shepp car on S2 with quadratic cost. ESAIM Control Optim. Calc. Var. 2010, 16, 275–297. [Google Scholar] [CrossRef]
- Mashtakov, A.; Duits, R. A cortical based model for contour completion on the retinal sphere. Program Syst. Theory Appl. 2016, 7, 231–247. [Google Scholar] [CrossRef]
- Bressloff, P.C.; Cowan, J.D. A spherical model for orientation as spatial-frequency tuning in a cortical hypercolumn. Philos. Trans. R. Soc. Lond. 2002, 358, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Alekseevsky, D. Conformal Model of Hypercolumns in V1 Cortex and the Mobius Group. Application to the Visual Stability Problem. In Geometric Science of Information—GSI 2021; Lecture Notes in Computer Science; Springer: Cham, Switzerland, 2021; Volume 12829, pp. 65–72. [Google Scholar]
- Galyaev, I.; Mashtakov, A. Liouville Integrability in a Four-Dimensional Model of the Visual Cortex. J. Imaging 2021, 7, 277. [Google Scholar] [CrossRef] [PubMed]
- Prandi, D.; Gauthier, J.P. A Semidiscrete Version of the Citti-Petitot-Sarti Model as a Plausible Model for Anthropomorphic Image Reconstruction and Pattern Recognition; Springer: Cham, Switzerland, 2018; 113p. [Google Scholar]
- Sarti, A.; Citti, G.; Petitot, J. The symplectic structure of the primary visual cortex. Biol. Cybern. 2008, 98, 33–48. [Google Scholar] [CrossRef] [PubMed]
- Citti, G.; Sarti, A. Cortical Functional Architectures as Contact and Sub-riemannian Geometry. In Morphology, Neurogeometry, Semiotics; Lecture Notes in Morphogenesis; Sarti, A., Ed.; Springer: Cham, Swizterland, 2024. [Google Scholar]
- Bertalmio, M.; Calatroni, L.; Franceschi, V.; Franceschiello, B.; Prandi, D. Cortical-Inspired Wilson–Cowan-Type Equations for Orientation-Dependent Contrast Perception Modelling. J. Math. Imaging Vis. 2021, 63, 263–281. [Google Scholar] [CrossRef]
- Barbieri, D.; Citti, G.; Cocci, G.; Sarti, A. A Cortical-Inspired Geometry for Contour Perception and Motion Integration. J. Math. Imaging Vis. 2013, 49, 511–529. [Google Scholar] [CrossRef]
- Baspinar, E.; Sarti, A.; Citti, G. A sub-Riemannian model of the visual cortex with frequency and phase. J. Math. Neurosci. 2020, 10, 11. [Google Scholar] [CrossRef]
- Baspinar, E. Multi-Frequency Image Completion via a Biologically-Inspired Sub-Riemannian Model with Frequency and Phase. J. Imaging 2021, 7, 271. [Google Scholar] [CrossRef] [PubMed]
- Shatz, C.J.; Stryker, M.P. Ocular dominance in layer iv of the cat’s visual cortex and the effects of monocular deprivation. J. Physiol. 1987, 281, 267–283. [Google Scholar] [CrossRef]
- Yue, X.; Robert, S.; Ungerleider, L.G. Curvature processing in human visual cortical areas. NeuroImage 2020, 222, 117295. [Google Scholar] [CrossRef] [PubMed]
- Zucker, S.W. The computational connection in vision: Early orientation selection. Behav. Res. Methods Instrum. Comput. 1986, 18, 608–617. [Google Scholar] [CrossRef]
- Blakemore, C.T.; Campbell, F. On the existence of neurones in the human visual system selectively sensitive to the orientation and size of retinal images. J. Physiol. 1969, 203, 237–260. [Google Scholar] [CrossRef] [PubMed]
- Sachkov, Y.L. Left-invariant optimal control problems on Lie groups: Classification and problems integrable by elementary functions. Russ. Math. Surv. 2022, 77, 99–163. [Google Scholar] [CrossRef]
- Sharma, U.; Duits, R. Left-invariant evolutions of wavelet transforms on the similitude group. Appl. Comput. Harmon. Anal. 2015, 39, 110–137. [Google Scholar] [CrossRef]
- Agrachev, A.; Barilari, D.; Boscain, U. A Comprehensive Introduction to Sub-Riemannian Geometry; Cambridge University Press: Cambridge, UK, 2019; 745p. [Google Scholar]
- Agrachev, A.A.; Sachkov, Y.L. Control Theory from the Geometric Viewpoint; Springer: Berlin/Heidelberg, Germany, 2004. [Google Scholar]
- Zelikin, M.I. Optimal Control and Variational Calculus; Editorial URSS: Moscow, Russia, 2004. (In Russian) [Google Scholar]
- Kirillov, A.A. Lectures on the Orbit Method; AMS: Providence, RI, USA, 2004; 408p. [Google Scholar]
- Field, D.J.; Hayes, A.; Hess, R. Contour integration by the human visual system: Evidence for a local “association field”. Vis. Res. 1993, 33, 173–193. [Google Scholar] [CrossRef]
- Dakin, S.C.; Hess, R.F. Contour integration and scale combination processes in visual edge detection. Spat. Vis. 1999, 12, 309–327. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Galyaev, I.; Mashtakov, A. A Cortical-Inspired Contour Completion Model Based on Contour Orientation and Thickness. J. Imaging 2024, 10, 185. https://doi.org/10.3390/jimaging10080185
Galyaev I, Mashtakov A. A Cortical-Inspired Contour Completion Model Based on Contour Orientation and Thickness. Journal of Imaging. 2024; 10(8):185. https://doi.org/10.3390/jimaging10080185
Chicago/Turabian StyleGalyaev, Ivan, and Alexey Mashtakov. 2024. "A Cortical-Inspired Contour Completion Model Based on Contour Orientation and Thickness" Journal of Imaging 10, no. 8: 185. https://doi.org/10.3390/jimaging10080185
APA StyleGalyaev, I., & Mashtakov, A. (2024). A Cortical-Inspired Contour Completion Model Based on Contour Orientation and Thickness. Journal of Imaging, 10(8), 185. https://doi.org/10.3390/jimaging10080185