Microstructural Analysis of the Human Scapula: Mandibular Bone Tissue Engineering Perspectives
<p>Lyophilized left scapula (<b>a</b>,<b>b</b>) bioimplant Lyoplast<sup>®</sup> ((<b>a</b>)—posterior view, (<b>b</b>)—lateral view: 1—scapular acromion process (SAP); 2—scapular coracoid process (SCP); 3—scapular lateral border (SLB)) and right hemimandible (<b>c</b>) bioimplant Lyoplast<sup>®</sup>: 1—mandibular condyle (MC); 2—mandibular angle (MA); 3—mental protuberance (MP).</p> "> Figure 2
<p>Anatomical mapping of the human scapula ((<b>a</b>)—posterior view; (<b>b</b>)—anterior view; 1—superior angle, 2—inferior angle, 3—lateral border, 4—coracoid process, 5—acromion, 6—glenoid) and the human mandible (<b>c</b>) with respective color-coded recipient zones: mandibular condyle (MC); mandibular angle (MA); mental protuberance (MP).</p> "> Figure 3
<p>Preparation of the experimental mandibular and scapular bone samples ((<b>a</b>)—mandibular condyle (MC), mandibular angle (MA), mental protuberance (MP); (<b>b</b>)—scapular coracoid process (SCP), scapular acromion process (SAP), scapular lateral border (SLB); (<b>c</b>)—trepan bur and harvested experimental bone sample)).</p> "> Figure 4
<p>Scapular bone samples’ image acquisition, volume rendering, and segmentation ((<b>a</b>,<b>d</b>)—SCP; (<b>b</b>,<b>e</b>)—SAP; (<b>c</b>,<b>f</b>)—SLB)).</p> "> Figure 5
<p>Mandibular bone samples’ image acquisition, volume rendering, and segmentation ((<b>a</b>,<b>d</b>)—SCP; (<b>b</b>,<b>e</b>)—SAP; (<b>c</b>,<b>f</b>)—SLB)).</p> "> Figure 6
<p>Comparative analysis of the trabecular and cortical bone morphometric parameters of the experimental scapular bone samples: (<b>a</b>) trabecular bone volumetric parameters; (<b>b</b>) trabecular bone connectivity parameters; (<b>c</b>) cortical bone parameters.</p> "> Figure 7
<p>Comparative analysis of the trabecular and cortical bone morphometric parameters of the experimental mandibular bone samples: (<b>a</b>) trabecular bone volumetric parameters; (<b>b</b>) trabecular bone connectivity parameters; (<b>c</b>) cortical bone parameters.</p> "> Figure 7 Cont.
<p>Comparative analysis of the trabecular and cortical bone morphometric parameters of the experimental mandibular bone samples: (<b>a</b>) trabecular bone volumetric parameters; (<b>b</b>) trabecular bone connectivity parameters; (<b>c</b>) cortical bone parameters.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Manufacture of the Scapular and Mandibular Bioimplants Lyoplast®
2.2. Anatomical Mapping of the Human Scapula
2.3. Preparation of the Experimental Scapular Bone Samples for mCT Scanning
2.4. Micro-Computed Tomography of the Experimental Bone Samples
2.5. Morphometric Analysis of the Bone Samples
2.6. Statistical Analysis
3. Results
3.1. Results of the Morphometric Microstructural Analysis of the Scapular Bone Samples
3.2. Results of the Comparative Microstructural Analysis of the Scapular and Mandibular Experimental Bone Samples
3.2.1. Comparative Analysis of the Scapular Coracoid Process and Mandibular Condyle Bone Samples
3.2.2. Comparative Analysis of the Scapular Lateral Border and Mandibular Angle Bone Samples
3.2.3. Comparative Analysis of the Scapular Lateral Border and Mandibular Mental Protuberance Bone Samples
3.2.4. Comparative Analysis of the Scapular Acromion and Mandibular Angle Bone Samples
3.2.5. Comparative Analysis of the Scapular Acromion and Mental Protuberance Bone Samples
4. Discussion
- SCP-MC (presented with the high similarity of the trabecular and cortical bone microarchitecture parameters);
- SLB-MA (presented with the high similarity of the trabecular bone microarchitecture parameters; however, the cortical bone microstructure showed a significant difference);
- SAP-MP (presented with the high similarity of the trabecular and cortical bone microarchitecture parameters)
- SLB-MP (most trabecular and cortical bone microarchitecture parameters were significantly different);
- SAP-MA (most trabecular and cortical bone microarchitecture parameters were significantly different).
5. Conclusions
6. Patents
- Patent RF № 2170016 from 17 February 1999 “Method of saturation of bone spongy tissue grafts with medication” Volova L.T., Kirilenko A.G., Uvarovsky B.B.
- Patent RF № 2156139 from 15 March 1999 “Method of sterilization of lyophilized bone transplants” Volova L.T., Kirilenko A.G., Uvarovsky B.B.
- Patent RF № 99108699 from 21 April 1999 “Method of bone marrow removal from cancellous bone grafts” Volova L.T., Kirilenko A.G.
- Patent RF № 2366173 of 15 May 2008. “Method of manufacturing large-block lyophilized bone implants” Volova L.T.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Fu, R.; Liu, C.; Yan, Y.; Li, Q.; Huang, R.L. Bone defect reconstruction via endochondral ossification: A developmental engineering strategy. J. Tissue Eng. 2021, 12, 20417314211004211. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Feng, Y.; Zhu, S.; Mei, D.; Li, J.; Zhang, J.; Yang, S.; Guan, S. Application of 3D Printing Technology in Bone Tissue Engineering: A Review. Curr. Drug Deliv. 2021, 18, 847–861. [Google Scholar] [CrossRef] [PubMed]
- Black, C.R.; Goriainov, V.; Gibbs, D.; Kanczler, J.; Tare, R.S.; Oreffo, R.O. Bone Tissue Engineering. Curr. Mol. Biol. Rep. 2015, 1, 132–140. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jiang, S.; Wang, M.; He, J. A review of biomimetic scaffolds for bone regeneration: Toward a cell-free strategy. Bioeng. Transl. Med. 2020, 6, e10206. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kim, S.L.; Lee, S.S.; Rangasamy, J.; Hwang, N.S. Biomimetic Materials and Fabrication Approaches for Bone Tissue Engineering. Adv. Healthc. Mater. 2017, 6, 1700612. [Google Scholar] [CrossRef] [PubMed]
- Bose, S.; Roy, M.; Bandyopadhyay, A. Recent advances in bone tissue engineering scaffolds. Trends Biotechnol. 2012, 30, 546–554. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Poh, P.S.P.; Valainis, D.; Bhattacharya, K.; van Griensven, M.; Dondl, P. Optimization of Bone Scaffold Porosity Distributions. Sci. Rep. 2019, 9, 9170. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pan, H.; Jiang, H.; Chen, W. The biodegradability of electrospun Dextran/PLGA scaffold in a fibroblast/macrophage co-culture. Biomaterials. 2008, 29, 1583–1592. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Koroleva, A.; Deiwick, A.; Nguyen, A.; Schlie-Wolter, S.; Narayan, R.; Timashev, P.; Popov, V.; Bagratashvili, V.; Chichkov, B. Osteogenic differentiation of human mesenchymal stem cells in 3-D Zr-Si organic-inorganic scaffolds produced by two-photon polymerization technique. PLoS ONE 2015, 10, e0118164. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Han, S.; Currier, T.; Edraki, M.; Liu, B.; Lynch, M.E.; Modarres-Sadeghi, Y. Flow inside a bone scaffold: Visualization using 3D phase contrast MRI and comparison with numerical simulations. J. Biomech. 2021, 126, 110625. [Google Scholar] [CrossRef] [PubMed]
- Garot, C.; Bettega, G.; Picart, C. Additive Manufacturing of Material Scaffolds for Bone Regeneration: Toward Application in the Clinics. Adv. Funct. Mater. 2020, 31, 2006967. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Dai, Z.; Ronholm, J.; Tian, Y.; Sethi, B.; Cao, X. Sterilization techniques for biodegradable scaffolds in tissue engineering applications. J. Tissue Eng. 2016, 7, 2041731416648810. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Santos-Rosales, V.; Magariños, B.; Starbird, R.; Suárez-González, J.; Fariña, J.B.; Alvarez-Lorenzo, C.; García-González, C.A. Supercritical CO2 technology for one-pot foaming and sterilization of polymeric scaffolds for bone regeneration. Int. J. Pharm. 2021, 605, 120801. [Google Scholar] [CrossRef] [PubMed]
- Costa, A.; Naranjo, J.D.; Londono, R.; Badylak, S.F. Biologic Scaffolds. Cold Spring Harb. Perspect. Med. 2017, 7, a025676. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Freeman, F.E.; Browe, D.C.; Nulty, J.; Von Euw, S.; Grayson, W.L.; Kelly, D.J. Biofabrication of multiscale bone extracellular matrix scaffolds for bone tissue engineering. Eur. Cell Mater. 2019, 38, 168–187. [Google Scholar] [CrossRef] [PubMed]
- Tao, M.; Ao, T.; Mao, X.; Yan, X.; Javed, R.; Hou, W.; Wang, Y.; Sun, C.; Lin, S.; Yu, T.; et al. Sterilization and disinfection methods for decellularized matrix materials: Review, consideration and proposal. Bioact. Mater. 2021, 6, 2927–2945. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chauvel-Picard, J.; Kreutzer, K.; Heiland, M.; Kreusch, T.; Ebker, T.; Beck-Broichsitter, B. One stage microvascular mandible reconstruction by using scapula chimeric flap combined with computer-aided-design and computer-aided-manufacturing plate including bilateral alloplastic TMJ prosthesis: A case report. Microsurgery 2021, 41, 263–269. [Google Scholar] [CrossRef] [PubMed]
- Voss, P.J.; Steybe, D.; Fuessinger, M.A.; Semper-Hogg, W.; Metzger, M.; Schmelzeisen, R.; Poxleitner, P. Vascularized scapula and latissimus dorsi flap for CAD/CAM assisted reconstruction of mandibular defects including the mandibular condyle: Technical report and clinical results. BMC Surg 2019, 19, 67. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kass, J.I.; Prisman, E.; Miles, B.A. Guide design in virtual planning for scapular tip free flap reconstruction. Laryngoscope Investig. Otolaryngol. 2018, 3, 162–168. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tanaka, S.; Sakamoto, R.; Kanahashi, T.; Yamada, S.; Imai, H.; Yoneyama, A.; Takakuwa, T. Shoulder girdle formation and positioning during embryonic and early fetal human development. PLoS ONE 2020, 15, e0238225. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Barcena, A.J.R.; Ravi, P.; Kundu, S.; Tappa, K. Emerging Biomedical and Clinical Applications of 3D-Printed Poly(Lactic Acid)-Based Devices and Delivery Systems. Bioengineering 2024, 11, 705. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Young, M.; Selleri, L.; Capellini, T.D. Genetics of scapula and pelvis development: An evolutionary perspective. Curr. Top. Dev. Biol. 2019, 132, 311–349. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jun, B.J.; Vasanji, A.; Ricchetti, E.T.; Rodriguez, E.; Subhas, N.; Li, Z.M.; Iannotti, J.P. Quantification of regional variations in glenoid trabecular bone architecture and mineralization using clinical computed tomography images. J. Orthop. Res. 2018, 36, 85–96. [Google Scholar] [CrossRef] [PubMed]
- Knowles, N.K.; GLangohr, G.D.; Faieghi, M.; Nelson, A.; Ferreira, L.M. Development of a validated glenoid trabecular density-modulus relationship. J. Mech. Behav. Biomed. Mater. 2019, 90, 140–145. [Google Scholar] [CrossRef] [PubMed]
- Deng, Z.; Liang, D.; Zhu, W.; Liu, H.; Xu, J.; Peng, L.; Li, X.; Li, Y.; Kotian, R.N.; Lu, W.; et al. A pilot study of blood supply of the coracoid process and the coracoid bone graft after Latarjet osteotomy. Biosci. Rep. 2019, 39, BSR20190929. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Voss, A.; Dyrna, F.; Achtnich, A.; Hoberman, A.; Obopilwe, E.; Imhoff, A.B.; Mazzocca, A.D.; Beitzel, K. Acromion morphology and bone mineral density distribution suggest favorable fixation points for anatomic acromioclavicular reconstruction. Knee Surg. Sports Traumatol. Arthrosc. 2017, 25, 2004–2012. [Google Scholar] [CrossRef] [PubMed]
- Hruschka, V.; Tangl, S.; Ryabenkova, Y.; Heimel, P.; Barnewitz, D.; Möbus, G.; Keibl, C.; Ferguson, J.; Quadros, P.; Miller, C.; et al. Comparison of nanoparticles hydroxyapatite pastes of different particle content and size in a novel scapula defect model. Sci. Rep. 2017, 7, 43425. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rodriguez, S.; Mancini, M.R.; Kakazu, R.; LeVasseur, M.R.; Trudeau, M.T.; Cote, M.P.; Arciero, R.A.; Denard, P.J.; Mazzocca, A.D. Comparison of the Coracoid, Distal Clavicle, and Scapular Spine for Autograft Augmentation of Glenoid Bone Loss: A Radiologic and Cadaveric Assessment. Am. J. Sports Med. 2022, 50, 717–724. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Xu, J.; Fu, S.; Qin, B.; Liu, Y.; Yang, Y.; Wang, M.; Li, D.; Zhong, S.; Huang, W. Distribution and Morphological Measurement of Bony Spurs on the Coracoid Process in a Chinese Population. Med. Sci. Monit. 2019, 25, 2527–2534. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Naidoo, N.; Lazarus, L.; Satyapal, K.S.; De Wilde, L.; Van Tongel, A. The morphometric anatomy of the delto-fulcral triangle: A 3D CT-based reconstruction study. J. Orthop. 2016, 14, 62–67. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Peyrin, F. Evaluation of bone scaffolds by micro-CT. Osteoporos. Int. 2011, 22, 2043–2048. [Google Scholar] [CrossRef] [PubMed]
- Oz, U.; Ruellas, A.C.; Westgate, P.M.; Cevidanes, L.H.; Huja, S.S. Novel application and validation of in vivo micro-CT to study bone modeling in 3D. Orthod. Craniofac. Res. 2019, 22 (Suppl. S1), 90–95. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Young, S.; Kretlow, J.D.; Nguyen, C.; Bashoura, A.G.; Baggett, L.S.; Jansen, J.A.; Wong, M.; Mikos, A.G. Microcomputed tomography characterization of neovascularization in bone tissue engineering applications. Tissue Eng. Part B Rev. 2008, 14, 295–306. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ueda, Y.; Nimura, A.; Matsuki, K.; Yamaguchi, K.; Sugaya, H.; Akita, K. Morphology of the Undersurface of the Anterolateral Acromion and Its Relationship to Surrounding Structures. Orthop. J. Sports Med. 2021, 9, 2325967120977485. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bhatia, D.N.; de Beer, J.F.; du Toit, D.F. Coracoid process anatomy: Implications in radiographic imaging and surgery. Clin. Anat. 2007, 20, 774–784. [Google Scholar] [CrossRef] [PubMed]
- Bartoníček, J.; Tuček, M.; Strnad, T.; Naňka, O. Fractures of the coracoid process—Pathoanatomy and classification: Based on thirty nine cases with three dimensional computerised tomography reconstructions. Int. Orthop. 2021, 45, 1009–1015. [Google Scholar] [CrossRef] [PubMed]
- Le, H.M.; Holmes, R.E.; Shors, E.C.; Rosenstein, D.A. Computerized quantitative analysis of the interconnectivity of porous biomaterials. Acta Stereol. 1992, 11, 267–272. [Google Scholar]
- Harrar, K.; Hamami, L. An Interconnectivity Index for Osteoporosis Assessment Using X-Ray Images. J. Med. Biol. Eng. 2013, 33, 569–575. [Google Scholar] [CrossRef]
Trabecular Bone Morphometric Parameters | Abbreviation | Description | Unit |
Total Volume | TV | Total volume of the bone sample | mm3 |
Bone Volume | BV | Volume of bone per sample volume | mm3 |
Bone Volume Fraction | BVF | BVF = BV/TV × 100 | % |
Bone Surface | BS | Bone surface per sample | mm2 |
Trabecular Porosity | Tb.Po | Tb.Po = 1 − BV/TV | % |
Bone Surface Density | BSD | BSD = BS/TV | mm−1 |
Trabecular Bone Surface Area | Tb.BSA | Tb.BSA = BS/BV | mm−1 |
Trabecular Number | Tb.N | The inverse of the mean distance between the midlines of the trabeculae Tb.N = BV:TV/Tb.Th | mm−1 |
Trabecular Thickness | Tb.Th | The mean trabecular bone thickness/Tb.Th = 2/BS:BV | mm |
Trabecular Separation | Tb.Sp | The mean distance between the trabeculae/Tb.Sp = 1/Tb.N − Tb.Th | mm |
Trabecular Nodes | Tb.Nd | The number of trabecular intersections per bone volume/Tb.Nd = Nd/BV | mm−3 |
Trabecular Termini | Tb.Tm | The number of trabecular terminal branches per bone volume/Tb.Tm = Tm/BV | mm−3 |
Node-to-Termini Ratio | NdTm R | NdTm R = Nd/Tm | n |
Node-to-Node Branches | NdNdB | The number of branches between trabecular intersections per bone volume/NdNdB = NdNd/BV | mm−3 |
Node-to-Termini Branches | NdTmB | The number of branches between trabecular intersections and terminal branches per bone volume/NdTmB = NdTm/BV | mm−3 |
Cortical Bone Morphometric Parameters | Abbreviation | Description | Unit |
Total Cross-sectional Area | Tt.Ar. | Total cross-sectional surface of the cortical bone | mm2 |
Cortical Bone Area | Ct.Ar. | Cortical bone surface | mm2 |
Cortical Area Fraction | Ct.A.F | Ct.A.F = Ct.Ar/Tt.Ar × 100 | % |
Average Cortical Thickness | Ct.Th | The mean of cortical bone thickness | mm |
Cortical Porosity | Ct.Po | Ct.Po = 1 − Ct.Ar/Tt.Ar × 100 | % |
Trabecular Bone Morphometric Parameters | SCP (n = 6) Mean ± SD | SAP (n = 6) Mean ± SD | SLB (n = 6) Mean ± SD | One-Way ANOVA p-Value |
Tb.BSA (mm−1) | 23.17 ± 1.78 | 12.13 ± 2.12 | 19.2 ± 1.94 | 0.0006 *** |
BVF (%) | 11.95 ± 0.18 | 22.01± 4.88 | 11.2 ± 1.53 | 0.0002 *** |
Tb.Po (%) | 89.25 ± 0.59 | 79.41 ± 2.51 | 88.53 ± 1.05 | 0.0006 *** |
Tb.Th (mm) | 0.12 ± 0.01 | 0.16 ± 0.02 | 0.14 ± 0.02 | 0.003 ** |
Tb.N (mm−1) | 1.11 ± 0.04 | 0.9 ± 0.04 | 1.11 ± 0.07 | 0.0001 *** |
Tb.Sp (mm) | 0.70 ± 0.02 | 0.84 ± 0.06 | 0.77 ± 0.06 | 0.0001 *** |
Tb.Nd (mm−3) | 0.20 ± 0.04 | 0.12 ± 0.01 | 0.26 ± 0.05 | 0.0001 *** |
Tb.Tm (mm−3) | 0.12 ± 0.02 | 0.13 ± 0.03 | 0.19 ± 0.08 | 0.23 |
NdNdB (mm−3) | 0.14 ± 0.04 | 0.11 ± 0.02 | 0.17 ± 0.04 | 0.023 * |
NdTmB (mm−3) | 0.16 ± 0.05 | 0.14 ± 0.03 | 0.13 ± 0.03 | 0.51 |
Cortical Bone Morphometric Parameters | SCP (n = 6) Mean ± SD | SAP (n = 6) Mean ± SD | SLB (n = 6) Mean ± SD | One-Way ANOVA p-value |
Ct.A.F (%) | 51.8 ± 1.73 | 86.4 ± 11.3 | 93.1 ± 3.9 | 0.003 ** |
Ct.Th (mm) | 0.98 ± 0.18 | 1.61± 0.15 | 1.36 ± 0.18 | 0.0001 *** |
Ct.Po (%) | 48.2 ± 1.73 | 13.6 ± 11.1 | 6.9 ± 3.9 | 0.0001 *** |
Trabecular Bone Morphometric Parameters | MC (n = 6) Mean ± SD | MA (n = 6) Mean ± SD | MP (n = 6) Mean ± SD | One-Way ANOVA p-Value |
Tb.BSA (mm−1) | 22.26 ± 1.66 | 19.35 ± 1.93 | 12.22 ± 2.04 | 0.0002 *** |
BVF (%) | 12.08 ± 1.09 | 11.53 ± 1.41 | 23.6 ± 5.32 | 0.003 *** |
Tb.Po (%) | 87.9 ± 1.13 | 88.63 ± 1.47 | 77.85 ± 4.02 | 0.0001 *** |
Tb.Th (mm) | 0.12 ± 0.01 | 0.14 ± 0.01 | 0.16 ± 0.02 | 0.0001 ** |
Tb.N (mm−1) | 1.11 ± 0.06 | 1.1 ± 0.04 | 0.86 ± 0.06 | 0.0001 *** |
Tb.Sp (mm) | 0.72 ± 0.04 | 0.76 ± 0.07 | 0.81 ± 0.05 | 0.038 * |
Tb.Nd (mm−3) | 0.22 ± 0.04 | 0.24 ± 0.04 | 0.23 ± 0.03 | 0.98 * |
Tb.Tm (mm−3) | 0.15 ± 0.04 | 0.16 ± 0.04 | 0.12 ± 0.02 | 0.06 |
NdNdB (mm−3) | 0.17 ± 0.03 | 0.18 ± 0.04 | 0.12 ± 0.02 | 0.003 ** |
NdTmB (mm−3) | 0.15 ± 0.04 | 0.16 ± 0.04 | 0.13 ± 0.01 | 0.43 |
Cortical Bone Morphometric Parameters | MC (n = 6) Mean ± SD | MA (n = 6) Mean ± SD | MP (n = 6) Mean ± SD | One-way ANOVA p-value |
Ct.A.F (%) | 69.7 ± 7.73 | 89.7 ± 2.76 | 89.5 ± 2.05 | 0.003 ** |
Ct.Th (mm) | 0.85 ± 0.18 | 0.98 ± 0.17 | 1.96 ± 0.15 | 0.002 ** |
Ct.Po (%) | 30.3 ± 7.73 | 10.23 ± 2.75 | 9.6 ± 2.5 | 0.003 ** |
Trabecular Bone Morphometric Parameters | SCP (n = 6) Mean ± SD | MC (n = 6) Mean ± SD | Two-Sample t-Test p-Value |
Tb.BSA (mm−1) | 23.17 ± 1.78 | 22.26 ± 1.66 | 0.26 |
BVF (%) | 11.95 ± 0.18 | 12.08 ± 1.09 | 0.86 |
Tb.Po (%) | 89.25 ± 0.59 | 87.9 ± 1.13 | 0.032 * |
Tb.Th (mm) | 0.12 ± 0.01 | 0.12 ± 0.01 | 0.80 |
Tb.N (mm−1) | 1.11 ± 0.04 | 1.11 ± 0.06 | 0.96 |
Tb.Sp (mm) | 0.70 ± 0.02 | 0.72 ± 0.04 | 0.55 |
Tb.Nd (mm−3) | 0.20 ± 0.04 | 0.22 ± 0.04 | 0.84 |
Tb.Tm (mm−3) | 0.12 ± 0.02 | 0.15 ± 0.04 | 0.29 |
NdNdB (mm−3) | 0.14 ± 0.04 | 0.17 ± 0.03 | 0.55 |
NdTmB (mm−3) | 0.16 ± 0.05 | 0.15 ± 0.04 | 0.46 |
Cortical Bone Morphometric Parameters | SCP (n = 6) Mean ± SD | MC (n = 6) Mean ± SD | Two-Sample t-test p-value |
Ct.A.F (%) | 51.8 ± 1.73 | 69.7 ± 7.73 | 0.054 |
Ct.Th (mm) | 0.98 ± 0.18 | 0.85 ± 0.18 | 0.14 |
Ct.Po (%) | 48.2 ± 1.73 | 30.3 ± 7.73 | 0.054 |
Trabecular Bone Morphometric Parameters | SLB (n = 6) Mean ± SD | MA (n = 6) Mean ± SD | Two-Sample t-Test p-Value |
Tb.BSA (mm−1) | 19.2 ± 1.94 | 19.35 ± 1.93 | 0.88 |
BVF (%) | 11.2 ± 1.53 | 11.53 ± 1.41 | 0.70 |
Tb.Po (%) | 88.53 ± 1.05 | 88.63 ± 1.47 | 0.89 |
Tb.Th (mm) | 0.14 ± 0.02 | 0.14 ± 0.01 | 0.86 |
Tb.N (mm−1) | 1.11 ± 0.07 | 1.1 ± 0.04 | 0.96 |
Tb.Sp (mm) | 0.77 ± 0.06 | 0.76 ± 0.07 | 0.67 |
Tb.Nd (mm−3) | 0.26 ± 0.05 | 0.24 ± 0.04 | 0.4 |
Tb.Tm (mm−3) | 0.19 ± 0.08 | 0.16 ± 0.04 | 0.25 |
NdNdB (mm−3) | 0.17 ± 0.04 | 0.18 ± 0.04 | 0.62 |
NdTmB (mm−3) | 0.13 ± 0.03 | 0.16 ± 0.04 | 0.37 |
Cortical Bone Morphometric Parameters | SLB (n = 6) Mean ± SD | MA (n = 6) Mean ± SD | Two-sample t-test p-value |
Ct.A.F (%) | 93.1 ± 3.9 | 89.7 ± 2.76 | 0.0002 *** |
Ct.Th (mm) | 1.36 ± 0.18 | 0.98 ± 0.17 | 0.0004 *** |
Ct.Po (%) | 6.9 ± 3.9 | 10.23 ± 2.75 | 0.0002 *** |
Trabecular Bone Morphometric Parameters | SLB (n = 6) Mean ± SD | MP (n = 6) Mean ± SD | Two-Sample t-Test p-Value |
Tb.BSA (mm−1) | 19.2 ± 1.94 | 12.22 ± 2.04 | 0.0002 *** |
BVF (%) | 11.2 ± 1.53 | 23.6 ± 5.32 | 0.0017 ** |
Tb.Po (%) | 88.53 ± 1.05 | 77.85 ± 4.02 | 0.001 ** |
Tb.Th (mm) | 0.14 ± 0.02 | 0.16 ± 0.02 | 0.09 |
Tb.N (mm−1) | 1.11 ± 0.07 | 0.86 ± 0.06 | 0.0001 *** |
Tb.Sp (mm) | 0.77 ± 0.06 | 0.81 ± 0.05 | 0.24 |
Tb.Nd (mm−3) | 0.26 ± 0.05 | 0.23 ± 0.03 | 0.0007 *** |
Tb.Tm (mm−3) | 0.19 ± 0.08 | 0.12 ± 0.02 | 0.09 |
NdNdB (mm−3) | 0.17 ± 0.04 | 0.12 ± 0.02 | 0.024 * |
NdTmB (mm−3) | 0.13 ± 0.03 | 0.13 ± 0.01 | 0.75 |
Cortical Bone Morphometric Parameters | SLB (n = 6) Mean ± SD | MA (n = 6) Mean ± SD | Two-sample t-test p-value |
Ct.A.F (%) | 93.1 ± 3.9 | 89.5 ± 2.05 | 0.08 |
Ct.Th (mm) | 1.36 ± 0.18 | 1.96 ± 0.15 | 0.0001 *** |
Ct.Po (%) | 6.9 ± 3.9 | 9.6 ± 2.5 | 0.08 |
Trabecular Bone Morphometric Parameters | SAP (n = 6) Mean ± SD | MA (n = 6) Mean ± SD | Two-Sample t-Test p-Value |
Tb.BSA (mm−1) | 12.13 ± 2.12 | 19.35 ± 1.93 | 0.0001 *** |
BVF (%) | 22.01± 4.88 | 11.53 ± 1.41 | 0.002 ** |
Tb.Po (%) | 79.41 ± 2.51 | 88.63 ± 1.47 | 0.0001 *** |
Tb.Th (mm) | 0.16 ± 0.02 | 0.14 ± 0.01 | 0.034 * |
Tb.N (mm−1) | 0.9 ± 0.04 | 1.1 ± 0.04 | 0.0001 *** |
Tb.Sp (mm) | 0.84 ± 0.06 | 0.76 ± 0.07 | 0.06 |
Tb.Nd (mm−3) | 0.12 ± 0.01 | 0.24 ± 0.04 | 0.0003 *** |
Tb.Tm (mm−3) | 0.13 ± 0.03 | 0.16 ± 0.04 | 0.42 |
NdNdB (mm−3) | 0.11 ± 0.02 | 0.18 ± 0.04 | 0.009 ** |
NdTmB (mm−3) | 0.14 ± 0.03 | 0.16 ± 0.04 | 0.40 |
Cortical Bone Morphometric Parameters | SLB (n = 6) Mean ± SD | MA (n = 6) Mean ± SD | Two-sample t-test p-value |
Ct.A.F (%) | 86.4 ± 1.3 | 89.7 ± 2.76 | 0.08 |
Ct.Th (mm) | 1.61± 0.15 | 0.98 ± 0.17 | 0.0001 *** |
Ct.Po (%) | 13.6 ± 1.1 | 10.23 ± 2.75 | 0.08 |
Trabecular Bone Morphometric Parameters | SAP (n = 6) Mean ± SD | MP (n = 6) Mean ± SD | Two-Sample t-Test p-Value |
Tb.BSA (mm−1) | 12.13 ± 2.12 | 12.22 ± 2.04 | 0.94 |
BVF (%) | 22.01± 4.88 | 23.6 ± 5.32 | 0.6 |
Tb.Po (%) | 79.41 ± 2.51 | 77.85 ± 4.02 | 0.44 |
Tb.Th (mm) | 0.16 ± 0.02 | 0.16 ± 0.02 | 0.91 |
Tb.N (mm−1) | 0.9 ± 0.04 | 0.86 ± 0.06 | 0.30 |
Tb.Sp (mm) | 0.84 ± 0.06 | 0.81 ± 0.05 | 0.51 |
Tb.Nd (mm−3) | 0.12 ± 0.01 | 0.23 ± 0.03 | 0.92 |
Tb.Tm (mm−3) | 0.13 ± 0.03 | 0.12 ± 0.02 | 0.83 |
NdNdB (mm−3) | 0.11 ± 0.02 | 0.12 ± 0.02 | 0.29 |
NdTmB (mm−3) | 0.14 ± 0.03 | 0.13 ± 0.01 | 0.66 |
Cortical Bone Morphometric Parameters | SLB (n = 6) Mean ± SD | MA (n = 6) Mean ± SD | Two-Sample t-test p-value |
Ct.A.F (%) | 86.4 ± 1.3 | 89.5 ± 2.05 | 0.52 |
Ct.Th (mm) | 1.61± 0.15 | 1.96 ± 0.15 | 0.002 ** |
Ct.Po (%) | 13.6 ± 1.1 | 9.6 ± 2.5 | 0.42 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsiklin, I.L.; Bezdenezhnych, D.S.; Mantsagov, A.S.; Kolsanov, A.V.; Volova, L.T. Microstructural Analysis of the Human Scapula: Mandibular Bone Tissue Engineering Perspectives. J. Funct. Biomater. 2024, 15, 386. https://doi.org/10.3390/jfb15120386
Tsiklin IL, Bezdenezhnych DS, Mantsagov AS, Kolsanov AV, Volova LT. Microstructural Analysis of the Human Scapula: Mandibular Bone Tissue Engineering Perspectives. Journal of Functional Biomaterials. 2024; 15(12):386. https://doi.org/10.3390/jfb15120386
Chicago/Turabian StyleTsiklin, Ilya L., Denis S. Bezdenezhnych, Aleksei S. Mantsagov, Alexandr V. Kolsanov, and Larisa T. Volova. 2024. "Microstructural Analysis of the Human Scapula: Mandibular Bone Tissue Engineering Perspectives" Journal of Functional Biomaterials 15, no. 12: 386. https://doi.org/10.3390/jfb15120386
APA StyleTsiklin, I. L., Bezdenezhnych, D. S., Mantsagov, A. S., Kolsanov, A. V., & Volova, L. T. (2024). Microstructural Analysis of the Human Scapula: Mandibular Bone Tissue Engineering Perspectives. Journal of Functional Biomaterials, 15(12), 386. https://doi.org/10.3390/jfb15120386