Preparation and Characterization of Particleboard Made from Industrial-Type Wood Particles and Discarded Duck Feathers
<p>Scanning ELECTRON MICROSCOPY (SEM) images of the cross-section of a feather rachis showing the hollow honeycomb-shaped structures: (<b>a</b>) bar = 20 μm; (<b>b</b>) bar = 1 μm. The SEM analysis used a Gemini SEM 300 FESEM (Zeiss, Oberkochen, Germany). The samples were mounted on specific stubs, platinum-coated using a Q150T sputter coater (Quorum Technologies, Kent, UK), and observed at 2 kV.</p> "> Figure 2
<p>Mass fractions of the wood particles for both face and core layers.</p> "> Figure 3
<p>Set up of the experimental procedure: (<b>a</b>) blending mixer for the face’s fine particles (here in unloading position); (<b>b</b>) drum mixer for the core large particles and feathers; (<b>c</b>) mat after molding, before hot pressing; (<b>d</b>) panels after hot pressing.</p> "> Figure 4
<p>(<b>a</b>–<b>d</b>) Mechanical properties of the different panels, with error bars representing the standard deviation of multiple measurements. Letters (a, b, c, and d) indicate significant statistical differences among groups (<span class="html-italic">p</span> < 0.05).</p> "> Figure 5
<p>Representative forms of damage after the internal bond test: (<b>a</b>) panel 2; (<b>b</b>) panel 4; (<b>c</b>) panel 6.</p> "> Figure 6
<p>Density profiles of the different panels.</p> "> Figure 7
<p>Thickness swelling and water absorption of the different panels, with error bars representing the standard deviation of multiple measurements. Letters (a, b, c, d, and e) indicate significant statistical differences among groups (<span class="html-italic">p</span> < 0.05).</p> "> Figure 8
<p>Sound absorption coefficients (α) of the different panels, with error bars representing the standard deviation of triplicate measurements.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Wood Material Fraction
2.3. Feather Fibers
2.4. Preparation of Panels
2.5. Physical and Mechanical Examination
2.6. Apparent Density Measurement
2.7. Thermal Conductivity Measurement
2.8. Acoustic Analysis
2.9. Statistical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- OECD. Meat Consumption (Indicator). 2024. Available online: https://data.oecd.org/agroutput/meat-consumption.htm (accessed on 3 May 2024).
- OECD; FAO. Agricultural Outlook 2023–2032; OECD Publishing: Paris, France, 2023; ISBN 9789264588707. [Google Scholar]
- European Commission (DG ESTAT, D.A.). Poultry Market Overview; Directorate-General for Agriculture and Rural Development: Bruxelles/Brussel, Belgium, 2022. [Google Scholar]
- Farrelly & Mitchell. EUs Feather-Based Economy: The Challenges Ahead; UNLOCK Project; Farrelly & Mitchell: Dublin, Ireland, 2022. [Google Scholar]
- Qiu, J.; Barrett, K.; Wilkens, C.; Meyer, A.S. Bioinformatics Based Discovery of New Keratinases in Protease Family M36. N. Biotechnol. 2022, 68, 19–27. [Google Scholar] [CrossRef] [PubMed]
- Acda, M.N. Sustainable Use of Waste Chicken Feather for Durable and Low Cost Building Materials for Tropical Climates; Nova Science Publishers: New York, NY, USA, 2010; ISBN 9781608762699. [Google Scholar]
- Bharathi, S.V.; Raj, I.V. Studies on the Physical Properties of Chicken Feathers. Int. J. Curr. Microbiol. Appl. Sci 2021, 10, 309–315. [Google Scholar] [CrossRef]
- Ward, W.H.; Binkley, C.H.; Snell, N.S. Amino Acid Composition of Normal Wools, Wool Fractions, Mohair, Feather, and Feather Fractions. Text. Res. J. 1955, 25, 314–325. [Google Scholar] [CrossRef]
- Harrap, B.S.; Woods, E.F. Soluble Derivatives of Feather Keratin. Biochem. J. 1964, 92, 8–18. [Google Scholar] [CrossRef] [PubMed]
- Makar, I.A.; Havryliak, V.V.; Shkromada, S.H. Genetic and Biochemical Aspects of Keratin Synthesis by Hair Follicles. Cytol. Genet. 2007, 45, 75–79. [Google Scholar] [CrossRef]
- Ahmed, A.; Qayoum, A.; Mir, F.Q. Spectroscopic Studies of Renewable Insulation Materials for Energy Saving in Building Sector. J. Build. Eng. 2021, 44, 103300. [Google Scholar] [CrossRef]
- Kurien, R.A.; Biju, A.; Raj, K.A.; Chacko, A.; Joseph, B.; Koshy, C.P. Chicken Feather Fiber Reinforced Composites for Sustainable Applications. Mater. Today Proc. 2022, 58, 862–866. [Google Scholar] [CrossRef]
- Sienkiewicz, J.J.; Wesołowski, A. Zagospodarowanie ubocznych produktów poubojowych. Zeszyty Naukowe Ostrołęckiego Towarzystwa Naukowego. 2015, 29, 241–249. [Google Scholar]
- Tan, C. Poultry plant to turn feathers, blood into useful materials. Straits Times, 2022; B6. [Google Scholar]
- Team, S. Raw Materials Shortages Explained: The Furniture Industry’s Main Challenge for 2022. Available online: https://www.simexa.com/raw-materials-shortage-explained-the-furniture-industrys-main-challenge-for-2022/ (accessed on 3 May 2024).
- Grzegorzewska, E.; Burawska-Kupniewska, I.; Boruszewski, P. Economic profitability of particleboards production with a diversified raw material structure. Maderas Cienc. Tecnol. 2020, 22, 537–548. [Google Scholar] [CrossRef]
- Fastmarkets. Global Woodchip Market Outlook 2022 and 2023; Fastmarkets: London, UK, 2022. [Google Scholar]
- Wicaksana, A. A New Circular Economy Action Plan For a Cleaner and More Competitive Europe; European Commission: Brussels, Belgium, 2020. [Google Scholar]
- Mucsi, Z.M.; Hasan, K.M.F.; Horváth, P.G.; Bak, M.; Hung Anh, L.D.; Kóczán, Z.; Bejó, L.; Alpár, T. Fabrication and Characterization of Lignocellulosic Coconut and Energy Reed Straw-Reinforced Methylene Diphenyl Diisocyanate-Bonded Sustainable Insulation Panels. Constr. Build. Mater. 2024, 414, 134992. [Google Scholar] [CrossRef]
- Etuk, S.E.; Robert, U.W.; Agbasi, O.E.; Inyang, N.J. Evaluation of Thermophysical and Strength Properties of Composite Panels Produced from Sugarcane Bagasse and Waste Newspapers. Adv. Mater. Sci. 2023, 23, 19–31. [Google Scholar] [CrossRef]
- Silva, S.A.M.; Minillo, L.Q.; Aquino, V.B.D.M.; Lahr, F.A.R.; Christoforo, A.L. Use of Residues From the Cellulose Industry and Sugarcane Bagasse in Particleboards. Eng. Agríc. 2021, 41, 107–111. [Google Scholar] [CrossRef]
- Krus, M.; Werner, T.; Großkinsky, T.; Georgiev, G. A new load-bearing insulation material made of cattail. In Proceedings of the 1st International Conference on Bio-Based Building Materials, International Network on Bio-Based Building Materials (BNBM), AJCE—Special Issue 673, Clermont-Ferrand, France, 22–24 June 2015; pp. 666–673. [Google Scholar]
- Bovo, M.; Giani, N.; Barbaresi, A.; Mazzocchetti, L.; Barbaresi, L.; Giorgini, L.; Torreggiani, D.; Tassinari, P. Contribution to Thermal and Acoustic Characterization of Corn Cob for Bio-Based Building Insulation Applications. Energy Build. 2022, 262, 111994. [Google Scholar] [CrossRef]
- Baladivakar, S.; Starvin, M.S.; Raj, J.B. Performance Evaluation of Natural Composites Made from Banyan and Cotton Fibers for Sustainable Thermal Insulation Applications. J. Nat. Fibers 2023, 20, 2123881. [Google Scholar] [CrossRef]
- Sèmiyou, O.A.; Melon, L.M.; Sibiath, O.O.G.; Claude, V.E.; Clément, A. Cotton Stem Fibers and Natural Binders for the Manufacture of Thermal Insulation Panels: State of the Art of the Last Decade. J. Mater. Sci. Res. Rev. 2021, 4, 651–667. [Google Scholar]
- Mucsi, Z.M.; Hasan, K.M.F.; Horváth, P.G.; Bak, M.; Kóczán, Z.; Alpár, T. Semi-Dry Technology Mediated Lignocellulosic Coconut and Energy Reed Straw Reinforced Cementitious Insulation Panels. J. Build. Eng. 2022, 57, 104825. [Google Scholar] [CrossRef]
- Ali, M.; Alabdulkarem, A.; Nuhait, A.; Al-Salem, K.; Iannace, G.; Almuzaiqer, R. Characteristics of Agro Waste Fibers as New Thermal Insulation and Sound Absorbing Materials: Hybrid of Date Palm Tree Leaves and Wheat Straw Fibers. J. Nat. Fibers 2021, 19, 6576–6594. [Google Scholar] [CrossRef]
- Kowaluk, G. Properties of Lignocellulosic Composites Containing Regenerated Cellulose Fibers. BioResources 2014, 9, 5339–5348. [Google Scholar] [CrossRef]
- Rammou, E.; Mitani, A.; Ntalos, G.; Koutsianitis, D.; Taghiyari, H.R.; Papadopoulos, A.N. The Potential Use of Seaweed (Posidonia oceanica) as an Alternative Lignocellulosic Raw Material for Wood Composites Manufacture. Coatings 2021, 11, 69. [Google Scholar] [CrossRef]
- Erkmen, J.; Yakut, R.; Hamamcı, B.; Aytuğ Özer, R. Production of Insulation Material Using Styrene Acrylic Resin from Animal and Agricultural Waste Part 1: Thermal Insulation and Water Absorption. Energy Build. 2024, 303, 113817. [Google Scholar] [CrossRef]
- Taghiyari, H.R.; Majidi, R.; Esmailpour, A.; Samadi, Y.S.; Jahangiri, A.; Papadopoulos, A.N. Engineering Composites Made from Wood and Chicken Feather Bonded with UF Resin Fortified with Wollastonite: A Novel Approach. Polymers 2020, 12, 857. [Google Scholar] [CrossRef]
- Kibar, H.; Öztürk, T. Physical and Mechanical Properties of Soybean. Int. Agrophysics 2008, 22, 239–244. [Google Scholar]
- Tesfaye, T.; Sithole, B.; Ramjugernath, D. Valorisation of Chicken Feathers: A Review on Recycling and Recovery Route—Current Status and Future Prospects. Clean Technol. Environ. Policy 2017, 19, 2363–2378. [Google Scholar] [CrossRef]
- European Commission. In Focus: Energy Efficiency in Buildings; European Commission: Brussels, Belgium, 2020. [Google Scholar]
- Gao, J.; Yu, W.; Pan, N. Structures and Properties of the Goose Down as a Material for Thermal Insulation. Text. Res. J. 2007, 77, 617–626. [Google Scholar] [CrossRef]
- Saravanan, K.; Prakash, C. Study of Acoustic Properties of Chicken Feather Fibre (CFF) and Its Hybrid Composites. J. Nat. Fibers 2021, 18, 502–509. [Google Scholar] [CrossRef]
- European Committee for Standardization EN 326-2:2010+A1; Wood-Based Panels: Sampling, Cutting and Inspection. Initial Type Testing and Factory Production Control. European Committee for Standardization: Brussels, Belgium, 2014.
- European Committee for Standardization EN 326-1:1994; Wood-Based Panels. Sampling, Cutting and Inspection. Sampling and Cutting of Test Pieces and Expression of Test Results. European Committee for Standardization: Brussels, Belgium, 1993.
- European Committee for Standardization EN 310; Wood-Based Panels: Determination of Modulus of Elasticity in Bending and of Bending Strength. European Committee for Standardization: Brussels, Belgium, 1993.
- European Committee for Standardization EN 319; Particleboards and Fibreboards—Determination of Tensile Strength Perpendicular to the Plane of the Board. European Committee for Standardization: Brussels, Belgium, 1993.
- European Committee for Standardization EN 320; Particleboards and Fibreboards—Determination of Resistance to Axial Withdrawal of Screws. European Committee for Standardization: Brussels, Belgium, 2011.
- European Committee for Standardization EN 317; Particleboards and Fibreboards. Determination of Swelling in Thickness After Immersion in Water. European Committee for Standardization: Brussels, Belgium, 1993.
- European Committee for Standardization EN 312; Particleboards—Specifications. European Committee for Standardization: Brussels, Belgium, 2010.
- European Committee for Standardization EN 323; Wood-Based Panels—Determination of Density. European Committee for Standardization: Brussels, Belgium, 1993.
- El Hajj, N.; Dheilly, R.-M.; Aboura, Z.; Benzeggagh, M.; Queneudec, M. Procédé de Fabrication des Composites 100% Végétaux: Effet de la Granulométrie des Étoupes de Lin et de l’Ajout des Bios Liants. In JNC 16; HAL: Toulouse, France, 2009; 10p. [Google Scholar]
- AFNOR NF EN ISO 10534-1; Acoustics—Determination of Sound Absorption Coefficient and Impedance in Impedance Tubes—Part 1: Method Using Standing Wave Ratio. AFNOR: La Plaine Saint-Denis, France, 2003.
- Iždinský, J.; Reinprecht, L.; Sedliačik, J.; Kúdela, J.; Kučerová, V. Bonding of Selected Hardwoods with PVAC Adhesive. Appl. Sci. 2021, 11, 67. [Google Scholar] [CrossRef]
- Emrani, J.; Benrashid, R.; Mohtarami, S.; Fini, E.; Abu-Lebdeh, T. Synthesis and Characterization of Bio-based Polyurethane Polymers. Am. J. Eng. Appl. Sci. 2018, 11, 1298–1309. [Google Scholar] [CrossRef]
- Lu, L.; Wang, Y.; Li, T.; Wang, S.; Yang, S.; Qing, Y.; Li, X.; Wu, Y.; Liu, M. Calcium Carbonate Modified Urea-Formaldehyde Resin Adhesive for Strength Enhanced Medium Density Fiberboard Production. RSC Adv. 2021, 11, 25010–25017. [Google Scholar] [CrossRef] [PubMed]
- Sydor, M.; Potok, Z.; Pędzik, M.; Hitka, M.; Rogoziński, T. The Influence of Feed Rate During Pilot Hole Drilling on Screw Withdrawal Resistance in Particleboard. Eur. J. Wood Wood Prod. 2023, 82, 5–13. [Google Scholar] [CrossRef]
- Kawalerczyk, J.; Dukarska, D.; Barczewski, M.; Dziurka, D.; Mirski, R. Optimization of Isocyanate Content in PF/pMDI Adhesive for the Production of High-Performing Particleboards. Polymers 2023, 15, 4645. [Google Scholar] [CrossRef]
- Nuutinen, E.M.; Virtanen, T.; Lantto, R.; Vähä-Nissi, M.; Jääskeläinen, A.S. Ductile Keratin Films from Deep Eutectic Solvent-Fractionated Feathers. RSC Adv. 2021, 11, 27512–27522. [Google Scholar] [CrossRef] [PubMed]
- Ferdosian, F.; Pan, Z.; Gao, G.; Zhao, B. Bio-Based Adhesives and Evaluation for Wood Composites Application. Polymers 2017, 9, 70. [Google Scholar] [CrossRef] [PubMed]
- Bekhta, P.; Noshchenko, G.; Réh, R.; Kristak, L.; Sedliačik, J.; Antov, P.; Mirski, R.; Savov, V. Properties of Eco-Friendly Particleboards Bonded with Lignosulfonate-Urea-Formaldehyde Adhesives and PMDI as a Crosslinker. Materials 2021, 14, 4875. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Cao, M.; Li, T.; Yang, L.; Duan, Z.; Zhou, X.; Du, G. Characterization of the Low Molar Ratio Urea-Formaldehyde Resin with 13C NMR and ESI-MS: Negative Effects of the Post-Added Urea on the Urea-Formaldehyde Polymers. Polymers 2018, 10, 602. [Google Scholar] [CrossRef] [PubMed]
- Gadhave, R.V.I.; Dhawale, P.V. State of Research and Trends in the Development of Polyvinyl Acetate-Based Wood Adhesive. Open J. Polym. Chem. 2022, 12, 13–42. [Google Scholar] [CrossRef]
- Kawasaki, T.; Kawai, S. Thermal Insulation Properties of Wood-Based Sandwich Panel for Use as Structural Insulated Walls and Floors. J. Wood Sci. 2006, 52, 75–83. [Google Scholar] [CrossRef]
- Kowaluk, G.; Boruszewski, P.; Borysiuk, P.; Zbieć, M. Thermal Characteristic of the Particleboards Produced from Fibrous Chips. Ann. Warsaw Univ. Life Sci.-SGGW For. Wood Technol. 2010, 71, 367–370. [Google Scholar]
- Šafarič, R.; Zemljič, L.F.; Novak, M.; Dugonik, B.; Bratina, B.; Gubeljak, N.; Bolka, S.; Strnad, S. Preparation and Characterisation of Waste Poultry Feathers Composite Fibreboards. Materials 2020, 13, 4964. [Google Scholar] [CrossRef] [PubMed]
- Dieckmann, E.; Onsiong, R.; Nagy, B.; Sheldrick, L.; Cheeseman, C. Valorization of Waste Feathers in the Production of New Thermal Insulation Materials. Waste Biomass Valorization 2021, 12, 1119–1131. [Google Scholar] [CrossRef]
- Nandanwar, A.; Kiran, M.C. Influence of Density on Sound Absorption Coefficient of Fibre Board. Open J. Acoust. 2017, 7, 1–9. [Google Scholar] [CrossRef]
- Smardzewski, J.; Kamisi, T.; Dziurka, D.; Majewski, A. Sound Absorption of Wood-Based Materials. Holzforschung 2015, 69, 431–439. [Google Scholar] [CrossRef]
- ISO 11654:1997; Acoustics: Sound Absorbers for Use in Buildings: Rating of Sound Absorption. International Organization for Standardization: Geneva, Switzerland, 1997; p. 7.
Sample | Binder | Feather Share in Core Layers [% by Weight] | Nominal Average Density [kg·m−3] |
---|---|---|---|
1 | UF | 0 | 665 ± 4 |
2 | UF | 5 | 664 ± 4 |
3 | pMDI | 0 | 663 ± 4 |
4 | pMDI | 5 | 663 ± 4 |
5 | PVAc | 0 | 664 ± 5 |
6 | PVAc | 5 | 664 ± 6 |
Sample | 1 | 2 | 3 | 4 | 5 | 6 |
---|---|---|---|---|---|---|
λ (W·mK−1) | 0.10 | 0.09 | 0.11 | 0.10 | 0.11 | 0.11 |
σ (W·mK−1) | 0.004 | 0.005 | 0.005 | 0.007 | 0.005 | 0.005 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Raydan, N.D.V.; Charrier, B.; Kowaluk, G.; Robles, E. Preparation and Characterization of Particleboard Made from Industrial-Type Wood Particles and Discarded Duck Feathers. J. Compos. Sci. 2024, 8, 241. https://doi.org/10.3390/jcs8070241
Raydan NDV, Charrier B, Kowaluk G, Robles E. Preparation and Characterization of Particleboard Made from Industrial-Type Wood Particles and Discarded Duck Feathers. Journal of Composites Science. 2024; 8(7):241. https://doi.org/10.3390/jcs8070241
Chicago/Turabian StyleRaydan, Nidal Del Valle, Bertrand Charrier, Grzegorz Kowaluk, and Eduardo Robles. 2024. "Preparation and Characterization of Particleboard Made from Industrial-Type Wood Particles and Discarded Duck Feathers" Journal of Composites Science 8, no. 7: 241. https://doi.org/10.3390/jcs8070241
APA StyleRaydan, N. D. V., Charrier, B., Kowaluk, G., & Robles, E. (2024). Preparation and Characterization of Particleboard Made from Industrial-Type Wood Particles and Discarded Duck Feathers. Journal of Composites Science, 8(7), 241. https://doi.org/10.3390/jcs8070241