Gypsum Composites with Modified Waste Expanded Polystyrene
<p>Particle size distribution of waste and modified EPS aggregates.</p> "> Figure 2
<p>Bulk density effect on the modification time of EPS aggregates.</p> "> Figure 3
<p>Appearance and macrostructure of different-particle-size waste and modified EPS aggregates. (<b>a</b>) Raw waste EPS; (<b>b</b>) modified at 130 °C; (<b>c</b>) modified at 120 °C.</p> "> Figure 4
<p>The batch-type production method of semi-dry gypsum EPS composite with pressure application [<a href="#B23-jcs-07-00203" class="html-bibr">23</a>].</p> "> Figure 5
<p>Thermal conductivity coefficient testing apparatus (<b>a</b>) and sound absorption coefficient testing equipment (<b>b</b>).</p> "> Figure 6
<p>Macroscopic SEM imaging of the study’s composites at a 25-fold magnification.</p> "> Figure 7
<p>SEM imaging of the study’s composites at a 50-fold magnification.</p> "> Figure 8
<p>SEM imaging of the study’s composites at a 100-fold magnification.</p> "> Figure 9
<p>Correlation between compressive strength and material density.</p> "> Figure 10
<p>Correlation between thermal conductivity and material density.</p> "> Figure 11
<p>Sound absorption of EPS10, EPS40 and EPS100 samples.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Mixture Design and Sample Preparation
2.3. Characterization Techniques
2.3.1. Scanning Electron Microscopy (SEM)
2.3.2. Thermal Conductivity
2.3.3. Compressive Strength
2.3.4. Sound Absorption
3. Results and Discussion
3.1. Microscopy of EPS Composites
3.2. Properties of Gypsum and EPS Composites
3.3. Sound Absorption of the Composites
4. Conclusions
- Based on the presented granulometry data, it can be concluded that thermal treatment affects EPS aggregates by reducing volume and thus increasing bulk density;
- EPS aggregates reach a melting point if the thermal treatment temperature is set to 150 °C for longer than 7.5 min;
- A total of 97% of all EPS100 aggregates are under 2 mm, while 26% and 59% of EPS10 and EPS40 are under 2 mm, respectively;
- It has been determined that bulk density can be increased 10-fold by thermal treatment at 120 °C, and by 4-fold at 130 °C treatment;
- After an increase in the gypsum mass, the compressive strength and material density increase as well, with compressive strength ranging from 15 to 136 kPa and the material density ranging from 48 to 194 kg/m3;
- The modification of EPS aggregates does not affect the thermal conductivity of the overall material when comparing the use of EPS10 and EPS100 aggregates;
- The lowest thermal conductivity was found to occur for samples made with 300 g of gypsum, 0.0390 and 0.0396 W/(mK) using EPS10 and EPS40 aggregates, respectively;
- The highest sound absorption was achieved by samples EPS10-600, EPS100-600 and EPS100-1200 reaching 0.88 at 675, 572 and 687 Hz.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tambovceva, T.; Bajare, D.; Tereshina, M.V.; Titko, J.; Shvetsova, I. Awareness and attitude of latvian construction companies towards sustainability and waste recycling. J. Sib. Fed. Univ.—Humanit. Soc. Sci. 2021, 14, 942–955. [Google Scholar] [CrossRef]
- Almost No Plastic Bottles Get Recycled into New Bottles. Available online: https://www.cnbc.com/2017/04/24/almost-no-plastic-bottles-get-recycled-into-new-bottles.html (accessed on 10 May 2023).
- Bajare, D.; Vitola, L.; Dembovska, L.; Bumanis, G. Waste Stream Porous Alkali Activated Materials for High Temperature Application. Front. Mater. 2019, 6, 92. [Google Scholar] [CrossRef]
- EUMEPS EPS FAQ. Available online: https://eumeps.org/faq/ (accessed on 10 May 2023).
- Kan, A.; Demirboǧa, R. A new technique of processing for waste-expanded polystyrene foams as aggregates. J. Mater. Process. Technol. 2009, 209, 2994–3000. [Google Scholar] [CrossRef]
- Lindner, C.; Hein, J.; Fischer, E. Waste Management of HBCD-Containing EPS/XPS Waste in Europe and Forecast model up to 2050. 2020. Available online: https://polystyreneloop.eu/wp-content/uploads/2021/01/Conversio-study.pdf (accessed on 10 May 2023).
- Tiuc, A.E.; Lonescu, S.E.; Cretu, M.; Toma, A. Acoustical Materials—Sound Absorbing Materials Made of Pine Sawdust Acoustical Materials—Sound Absorbing Materials Made of Pine Sawdust. 2018. Available online: https://www.researchgate.net/publication/268369088_Acoustical_Materials_-_Sound_Absorbing_Materials_Made_of_Pine_Sawdust (accessed on 10 May 2023).
- Walker, J. Can You Use Polystyrene for Soundproofing? Available online: https://soundproofexpert.com/polystyrene/ (accessed on 10 May 2023).
- Kozub, B.; Bazan, P.; Gailitis, R.; Korniejenko, K.; Mierzwiński, D. Foamed geopolymer composites with the addition of glass wool waste. Materials 2021, 14, 4978. [Google Scholar] [CrossRef] [PubMed]
- Miskinis, K.; Dikavicius, V.; Buska, A.; Banionis, K. Influence of EPS, mineral wool and plaster layers on sound and thermal insulation of a wall: A case study. Appl. Acoust. 2018, 137, 62–68. [Google Scholar] [CrossRef]
- Lu, J.; Wang, D.; Jiang, P.; Zhang, S.; Chen, Z.; Bourbigot, S.; Fontaine, G.; Wei, M. Design of fire resistant, sound-absorbing and thermal-insulated expandable polystyrene based lightweight particleboard composites. Constr. Build. Mater. 2021, 305, 124773. [Google Scholar] [CrossRef]
- Parati, L.; Farbood, B.P.; Borghi, M. May retrofit also include acoustics aspects? Energy Procedia 2015, 78, 158–163. [Google Scholar] [CrossRef]
- de Oliveira, K.A.; Barbosa, J.C.; Christoforo, A.L.; Molina, J.C.; Oliveira, C.A.B.; Bertolini, M.S.; Gava, M.; Ventorim, G. Sound absorption of recycled gypsum matrix composites with residual cellulosic pulp and expanded polystyrene. BioResources 2019, 14, 4806–4813. [Google Scholar] [CrossRef]
- Santos, A.G. Escayola reforzada con fibras de polipropileno y aligerada con perlas de poliestireno expandido. Mater. Constr. 2009, 59, 105–124. [Google Scholar] [CrossRef]
- Romero-Gómez, M.I.; Pedreño-Rojas, M.A.; Pérez-Gálvez, F.; Rubio-de-Hita, P. Characterization of gypsum composites with polypropylene fibers from non-degradable wet wipes. J. Build. Eng. 2021, 34, 101874. [Google Scholar] [CrossRef]
- Bocullo, V.; Vitola, L.; Vaiciukyniene, D.; Kantautas, A.; Bajare, D. The influence of the SiO2/Na2O ratio on the low calcium alkali activated binder based on fly ash. Mater. Chem. Phys. 2021, 258, 123846. [Google Scholar] [CrossRef]
- Boccarusso, L.; Mocerino, D.; Durante, M.; Iucolano, F.; Minutolo, F.M.C.; Langella, A. Recyclability Process of Gypsum Reinforced with Hemp Fabrics: Impact and Flexural Behaviour. In Proceedings of the ESAFORM 2021 24th International Conference on Material Forming, Liege, Belgium, 14–16 April 2021. [Google Scholar] [CrossRef]
- de Oliveira, K.A.; Oliveira, C.A.B.; Molina, J.C. Lightweight recycled gypsum with residues of expanded polystyrene and cellulose fiber to improve thermal properties of gypsum. Mater. Constr. 2021, 71, e242. [Google Scholar] [CrossRef]
- Erbs, A.; Nagalli, A.; de Carvalho, K.Q.; Mazer, W.; de Moraes Erbs, M.; Paz, D.H.F.; Lafayette, K.P.V. Development of plasterboard sheets exclusively from waste. J. Build. Eng. 2021, 44, 102524. [Google Scholar] [CrossRef]
- Pereira, V.M.; Geraldo, R.H.; Cruz, T.A.M.; Camarini, G. Valorization of industrial by-product: Phosphogypsum recycling as green binding material. Clean. Eng. Technol. 2021, 5, 100310. [Google Scholar] [CrossRef]
- Gonçalves, R.M.; Martinho, A.; Oliveira, J.P. Evaluating the potential use of recycled glass fibers for the development of gypsum-based composites. Constr. Build. Mater. 2022, 321, 126320. [Google Scholar] [CrossRef]
- del Río, M.; Santos, R.; González, M.; Santa Cruz, J.; García, J.; Villoria Sáez, P. Preliminary Study of the Mechanical Behavior of Gypsum Plastering Mortars with Ceramic Waste Additions. J. Mater. Civ. Eng. 2022, 34, 04021487. [Google Scholar] [CrossRef]
- Bumanis, G.; Argalis, P.P.; Sahmenko, G.; Mironovs, D.; Rucevskis, S.; Korjakins, A.; Bajare, D. Thermal and Sound Insulation Properties of Recycled Expanded Polystyrene Granule and Gypsum Composites. Recycling 2023, 8, 19. [Google Scholar] [CrossRef]
- ISO 10534–2:1998; Acoustics–Determination of Sound Absorption Coefficient and Impedance in Impedance Tubes–Part 2: Transfer-Function Method. ISO: Geneva, Switzerland, 1998.
Category | Description | Purpose | Representative Uses |
---|---|---|---|
Absorptive materials | Relatively lightweight; porous, with interconnecting passages; poor barrier | Dissipation of acoustic energy through conversion to minute amounts of heat | Reduction in reverberant sound energy; dissipation of acoustic energy in silencers |
Silencers | Series or parallel combination of reactive elements | Dissipation of acoustic energy in the presence of a steady flow | Duct silencers in inlet and exhaust silencers for engines, fans, turbines |
Barrier materials | Relatively dense, nonporous | Attenuation of acoustic energy | Containment of sound |
Damping treatments | Viscoelastic materials with relatively internal losses | Dissipation of vibratory energy | Reduction in acoustic energy |
Vibration isolators | Resilient pads; metallic springs | Reduction in transmitted forces | Mounts for fans, engines, machinery |
Raw EPS | Value |
---|---|
Thermal conductivity, W/(mK) | 0.0410 |
Bulk density, kg/m3 | 10.56 |
Aggregate density, kg/m3 | |
2–4 mm | 21.4 |
4–5.6 mm | 26.9 |
5.6–8 mm | 11.6 |
8–11.2 mm | 16.3 |
Temperature of Modification, °C | Modification Time, Minutes | Bulk Density, kg/m3 |
---|---|---|
110 | 7.5 | 9.6 |
15 | 10.6 | |
120 | 7.5 | 11.0 |
15 | 21.0 | |
130 | 7.5 | 9.0 |
15 | 24.6 | |
140 | 7.5 | 10.1 |
15 | 62.2 | |
150 | 7.5 | 25.4 |
Series | EPS, g | Gypsum, g | H2O, g | W/B Ratio |
---|---|---|---|---|
EPS10 | 120 | 300 | 300 | 1 |
600 | 450 | 0.75 | ||
1200 | 500 | 0.42 | ||
EPS40 | 450 | 300 | 300 | 1 |
600 | 450 | 0.75 | ||
1200 | 500 | 0.42 | ||
EPS100 | 1100 | 300 | 300 | 1 |
600 | 450 | 0.75 | ||
1200 | 500 | 0.42 |
Composition | Material Density, kg/m3 | Thermal Conductivity, W/(mK) | Compressive Strength, kPa | |
---|---|---|---|---|
EPS10 | 300 | 48 ± 1 | 0.0390 | 21 ± 1 |
EPS40 | 73 ± 3 | 0.0396 | 18 ± 6 | |
EPS100 | 122 ± 10 | 0.0426 | 15 ± 8 | |
EPS10 | 600 | 74 ± 1 | 0.0458 | 29 ± 4 |
EPS40 | 93 ± 2 | 0.0445 | 61 ± 5 | |
EPS100 | 136 ± 3 | 0.0462 | 46 ± 7 | |
EPS10 | 1200 | 154 ± 2 | 0.0565 | 50 ± 7 |
EPS40 | 177 ± 6 | 0.0604 | 136 ± 12 | |
EPS100 | 194 ± 5 | 0.0558 | 115 ± 26 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Argalis, P.P.; Bumanis, G.; Bajare, D. Gypsum Composites with Modified Waste Expanded Polystyrene. J. Compos. Sci. 2023, 7, 203. https://doi.org/10.3390/jcs7050203
Argalis PP, Bumanis G, Bajare D. Gypsum Composites with Modified Waste Expanded Polystyrene. Journal of Composites Science. 2023; 7(5):203. https://doi.org/10.3390/jcs7050203
Chicago/Turabian StyleArgalis, Pauls P., Girts Bumanis, and Diana Bajare. 2023. "Gypsum Composites with Modified Waste Expanded Polystyrene" Journal of Composites Science 7, no. 5: 203. https://doi.org/10.3390/jcs7050203
APA StyleArgalis, P. P., Bumanis, G., & Bajare, D. (2023). Gypsum Composites with Modified Waste Expanded Polystyrene. Journal of Composites Science, 7(5), 203. https://doi.org/10.3390/jcs7050203