Predictors of Peripheral Retinal Non-Perfusion in Clinically Significant Diabetic Macular Edema
<p>Quantitative macular vascular metrics using optical coherence tomography angiography (OCTA) in eyes with diabetic macula edema. Normal (<b>A</b>) and decreased vessel density (<b>B</b>) (diabetic macular ischemia) are seen with enlargement of the foveal avascular zone area (FAZ) and FAZ perimeter (cyan insets). The magnified image of macular capillaries (green insets) shows a marked decrease in capillary vessel density in (<b>B</b>). OCTA scans are full-retinal-thickness projections captured with Optovue XR Avanti using a 3 × 3 mm scan area centered on the fovea. Images are max intensity projections of 8–10 consecutive OCTA scans from the same eye.</p> "> Figure 2
<p>Capillary tortuosity variance between two eyes with diabetic macular edema. Optical coherence tomography angiography (OCTA) scans using a 3 × 3 mm scan area centered on the fovea are used to generate vessel tortuosity metrics. Examples of capillary tortuosity variability are shown in low-tortuosity (<b>A</b>) and high-tortuosity (<b>B</b>) examples of the central macula; this quantification excludes arterioles and venules. Magnified insets of the temporal terminal capillaries are shown (magenta insets). OCTA scans are full-retinal-thickness projections captured with the Optovue XR Avanti device. Images are max intensity projections of 8–10 consecutive OCTA scans from the same eye.</p> "> Figure 3
<p>Graphical presentation of key observations in eyes with and without peripheral non-perfusion (PNP) in the setting of untreated diabetic macular edema. Categorical observations (<b>a</b>–<b>d</b>) from clinical and imaging data were found to be significantly associated with the presence of peripheral non-perfusion. Insulin use ((<b>a</b>); number of participants; y = yes; n = no; <span class="html-italic">p</span> = 0.013), pan-retinal photocoagulation (PRP) ((<b>b</b>); y = yes; n = no; <span class="html-italic">p</span> = 0.0003), subretinal fluid in the central macula ((<b>c</b>); 1 = present; 2 = absent; <span class="html-italic">p</span> = 0.0058), and fluorescein leakage pattern ((<b>d</b>); 1 = focal, >67% leakage from microaneurysms; 2 = intermediate; 3 = diffuse, <33% leakage from microaneurysms; <span class="html-italic">p</span> = 0.013). Key macula vascular metrics derived from optical coherence tomography angiography of the foveal avascular zone (FAZ) (<b>e</b>–<b>g</b>) ((<b>e</b>), FAZ area; (<b>f</b>) macula vessel density; (<b>g</b>) macula capillary tortuosity), fail to reach statistical significance (all <span class="html-italic">p</span> > 0.05). PNP group, n = 22; no PNP group, n = 26.</p> "> Figure 4
<p>Association between a diffuse macular fluorescein leakage pattern and subretinal fluid with presence of peripheral non-perfusion. Multi-modal imaging of two separate eyes with diabetic macular edema (DME) from different patients. Late-phase fluorescein angiography in 30-degree and ultrawide field fields of view are shown, along with a structural optical coherence tomography (OCT) B-scan through the fovea. Patient 1 ((<b>A</b>); 64 years old) demonstrates a focal leakage pattern primarily from a single microaneurysm (red arrowhead) in the fovea with no peripheral non-perfusion present. Patient 2 ((<b>B</b>); 35 years old) manifests a diffuse fluorescein leakage pattern (<33% leakage from microaneurysms) with the presence of non-perfusion peripherally (red arrowheads). Subretinal fluid is present in the central macula on OCT only in patient 2 (<b>B</b>), in which peripheral non-perfusion is present. Both patients are type 2 diabetic, have a HbA1c of 6.4 and 10.7%, respectively, and only patient 2 (<b>B</b>) was prescribed insulin.</p> "> Figure 5
<p>Central macula vascular metrics are not associated with the presence of peripheral non-perfusion in the setting of diabetic macular edema. Contemporaneous central and peripheral retinal vascular imaging in two eyes with diabetic macular edema from different patients is shown. Patient 1 ((<b>A</b>); 61 years old) and patient 2 ((<b>B</b>); 46 years old) demonstrate similar quantitative metrics of vessel density, foveal avascular zone (FAZ) area, and capillary tortuosity on 3 × 3 mm optical coherence tomography angiography (OCTA) scans. Qualitatively, there is no obvious disruption to the terminal capillary ring or gross perifoveal capillary loss in either OCTA image of the central macula. Despite this, on ultrawide field fluorescein angiography, patient 1 has no evidence of peripheral non-perfusion, whilst patient 2 has significant capillary non-perfusion peripherally (red arrowheads). Both patients are type 2 diabetic with comparable HbA1c values (7.9 and 8.3%, respectively) and normal renal function; only patient 2 was prescribed insulin.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Retinal Imaging
2.3. Quantitative Metrics Derived from OCTA
2.4. Reviewer Grading of Retinal Images
2.5. Statistical Analysis
3. Results
3.1. Subjects and Demographics
3.2. Predictors of Peripheral Non-Perfusion in DME
3.3. Predictors of Peripheral Non-Perfusion in DME—Summarized
- -
- Patient factors of insulin use (p < 0.001) and presence of PRP treatment (p < 0.001) were significantly different between groups (Figure 3). The data show insulin use and presence of PRP treatment to be more common in eyes with PNP.
- -
- -
- -
- Disrupted ellipsoid zone in central macula (p < 0.001).
- -
- Lower eccentricity of the FAZ (p < 0.001).
- -
- Past anti-VEGF therapy (p < 0.001).
- -
- Insulin use (p < 0.001) (Figure 3).
- -
- Absence of ischemic heart disease diagnosis (p < 0.001).
3.4. Macular Vascular Metrics and Peripheral Non-Perfusion in DME
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Teo, Z.L.; Tham, Y.C.; Yu, M.; Chee, M.L.; Rim, T.H.; Cheung, N.; Bikbov, M.M.; Wang, Y.X.; Tang, Y.; Lu, Y.; et al. Global Prevalence of Diabetic Retinopathy and Projection of Burden through 2045: Systematic Review and Meta-analysis. Ophthalmology 2021, 128, 1580–1591. [Google Scholar] [CrossRef] [PubMed]
- Ehrlich, R.; Harris, A.; Ciulla, T.A.; Kheradiya, N.; Winston, D.M.; Wirostko, B. Diabetic macular oedema: Physical, physiological and molecular factors contribute to this pathological process. Acta Ophthalmol. 2010, 88, 279–291. [Google Scholar] [CrossRef] [PubMed]
- Stewart, M.W. Anti-VEGF therapy for diabetic macular edema. Curr. Diabetes Rep. 2014, 14, 510. [Google Scholar] [CrossRef]
- Gonzalez, V.H.; Campbell, J.; Holekamp, N.M.; Kiss, S.; Loewenstein, A.; Augustin, A.J.; Ma, J.; Ho, A.C.; Patel, V.; Whitcup, S.M.; et al. Early and Long-Term Responses to Anti–Vascular Endothelial Growth Factor Therapy in Diabetic Macular Edema: Analysis of Protocol I Data. Am. J. Ophthalmol. 2016, 172, 72–79. [Google Scholar] [CrossRef] [PubMed]
- Hein, M.; Vukmirovic, A.; Constable, I.J.; Raja, V.; Athwal, A.; Freund, K.B.; Balaratnasingam, C. Angiographic biomarkers are significant predictors of treatment response to intravitreal aflibercept in diabetic macular edema. Sci. Rep. 2023, 13, 8128. [Google Scholar] [CrossRef] [PubMed]
- Antropoli, A.; Arrigo, A.; La Franca, L.; Bianco, L.; Barlocci, E.; Fusi, E.; Bandello, F.; Battaglia Parodi, M. Peripheral and central capillary non-perfusion in diabetic retinopathy: An updated overview. Front. Med. 2023, 10, 1125062. [Google Scholar] [CrossRef]
- Zhang, X.; Zeng, H.; Bao, S.; Wang, N.; Gillies, M.C. Diabetic macular edema: New concepts in patho-physiology and treatment. Cell Biosci. 2014, 4, 27. [Google Scholar] [CrossRef]
- Fan, W.; Wang, K.; Ghasemi Falavarjani, K.; Sagong, M.; Uji, A.; Ip, M.; Wykoff, C.C.; Brown, D.M.; van Hemert, J.; Sadda, S.V.R. Distribution of Nonperfusion Area on Ultra-widefield Fluorescein Angiography in Eyes with Diabetic Macular Edema: DAVE Study. Am. J. Ophthalmol. 2017, 180, 110–116. [Google Scholar] [CrossRef]
- Fan, W.; Nittala, M.G.; Velaga, S.B.; Hirano, T.; Wykoff, C.C.; Ip, M.; Lampen, S.I.R.; van Hemert, J.; Fleming, A.; Verhoek, M.; et al. Distribution of Nonperfusion and Neovascularization on Ultrawide-Field Fluorescein Angiography in Proliferative Diabetic Retinopathy (RECOVERY Study): Report 1. Am. J. Ophthalmol. 2019, 206, 154–160. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Qiu, K.; Yi, J.; Lin, H.; Zheng, D.; Huang, D.; Zhang, G.; Chen, H.; Zheng, J.; Wang, Y.; et al. Diabetic retinopathy with extensively large area of capillary non-perfusion: Characteristics and treatment outcomes. BMC Ophthalmol. 2022, 22, 293. [Google Scholar] [CrossRef]
- Kim, Y.J.; Yeo, J.H.; Son, G.; Kang, H.; Sung, Y.S.; Lee, J.Y.; Kim, J.G.; Yoon, Y.H. Efficacy of intravitreal AFlibercept injection For Improvement of retinal Nonperfusion In diabeTic retinopathY (AFFINITY study). BMJ Open Diabetes Res. Care 2020, 8, e001616. [Google Scholar] [CrossRef]
- Campochiaro, P.A.; Wykoff, C.C.; Shapiro, H.; Rubio, R.G.; Ehrlich, J.S. Neutralization of vascular endothelial growth factor slows progression of retinal nonperfusion in patients with diabetic macular edema. Ophthalmology 2014, 121, 1783–1789. [Google Scholar] [CrossRef] [PubMed]
- Wykoff, C.C.; Yu, H.J.; Avery, R.L.; Ehlers, J.P.; Tadayoni, R.; Sadda, S.R. Retinal non-perfusion in diabetic retinopathy. Eye 2022, 36, 249–256. [Google Scholar] [CrossRef]
- Sędziak-Marcinek, B.; Teper, S.; Chełmecka, E.; Wylęgała, A.; Marcinek, M.; Bas, M.; Wylęgała, E. Diabetic Macular Edema Treatment with Bevacizumab Does Not Depend on the Retinal Nonperfusion Presence. J. Diabetes Res. 2021, 2021, 6620122. [Google Scholar] [CrossRef] [PubMed]
- Athwal, A.; Balaratnasingam, C.; Balaratnasingam, C.; Yu, D.-Y.; Yu, D.-Y.; Heisler, M.; Sarunic, M.V.; Ju, M.J.; Ju, M.J.; Ju, M.J. Optimizing 3D retinal vasculature imaging in diabetic retinopathy using registration and averaging of OCT-A. Biomed. Opt. Express 2021, 12, 553–570. [Google Scholar] [CrossRef]
- R-Development-Core-Team. R: A Language and Environment for Statistical Computing. Available online: http://www.R-project.org (accessed on 20 July 2024).
- Schindelin, J.; Arganda-Carreras, I.; Frise, E.; Kaynig, V.; Longair, M.; Pietzsch, T.; Preibisch, S.; Rueden, C.; Saalfeld, S.; Schmid, B.; et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods 2012, 9, 676–682. [Google Scholar] [CrossRef] [PubMed]
- The MathWorks Inc. MATLAB, Version: 9.13.0 (R2022b); The MathWorks Inc.: Natick, MA, USA, 2022.
- Yu, D.-Y.; Mehnert, A.; Balaratnasingam, C.; Yu, P.K.; Hein, M.; An, D.; Cringle, S. An Assessment of Microvascular Hemodynamics in Human Macula. Sci. Rep. 2023, 13, 7550. [Google Scholar] [CrossRef]
- Lo, J.; Heisler, M.; Vanzan, V.; Karst, S.; Matovinović, I.Z.; Lončarić, S.; Navajas, E.V.; Beg, M.F.; Šarunić, M.V. Microvasculature Segmentation and Intercapillary Area Quantification of the Deep Vascular Complex Using Transfer Learning. Transl. Vis. Sci. Technol. 2020, 9, 38. [Google Scholar] [CrossRef]
- Khansari, M.M.; O’Neill, W.; Lim, J.; Shahidi, M. Method for quantitative assessment of retinal vessel tortuosity in optical coherence tomography angiography applied to sickle cell retinopathy. Biomed. Opt. Express 2017, 8, 3796–3806. [Google Scholar] [CrossRef]
- Sampson, D.M.; Gong, P.; An, D.; Menghini, M.; Hansen, A.; Mackey, D.A.; Sampson, D.D.; Chen, F.K. Axial Length Variation Impacts on Superficial Retinal Vessel Density and Foveal Avascular Zone Area Measurements Using Optical Coherence Tomography Angiography. Investig. Ophthalmol. Vis. Sci. 2017, 58, 3065–3072. [Google Scholar] [CrossRef]
- Early Treatment Diabetic Retinopathy Study Group. Focal Photocoagulation Treatment of Diabetic Macular Edema: Relationship of Treatment Effect to Fluorescein Angiographic and Other Retinal Characteristics at Baseline: ETDRS Report No. 19. Arch. Ophthalmol. 1995, 113, 1144–1155. [Google Scholar] [CrossRef]
- Stekhoven, D.J.; Bühlmann, P. MissForest—Non-parametric missing value imputation for mixed-type data. Bioinformatics 2011, 28, 112–118. [Google Scholar] [CrossRef]
- Stekhoven, D.J. missForest: Nonparametric Missing Value Imputation Using Random Forest; R Package Version 1.5; 2022. Available online: https://cran.r-project.org/web/packages/missForest/index.html (accessed on 19 November 2024).
- Or, C.; Das, R.; Despotovic, I.; Alibhai, A.Y.; Moult, E.; Waheed, N.K.; Chakravarthy, U. Combined Multimodal Analysis of Peripheral Retinal and Macular Circulation in Diabetic Retinopathy (COPRA Study). Ophthalmol. Retin. 2019, 3, 580–588. [Google Scholar] [CrossRef]
- Sim, D.A.; Keane, P.A.; Rajendram, R.; Karampelas, M.; Selvam, S.; Powner, M.B.; Fruttiger, M.; Tufail, A.; Egan, C.A. Patterns of peripheral retinal and central macula ischemia in diabetic retinopathy as evaluated by ultra-widefield fluorescein angiography. Am. J. Ophthalmol. 2014, 158, 144–153.e141. [Google Scholar] [CrossRef] [PubMed]
- Rabiolo, A.; Cicinelli, M.V.; Corbelli, E.; Baldin, G.; Carnevali, A.; Lattanzio, R.; Querques, L.; Bandello, F.; Querques, G. Correlation Analysis between Foveal Avascular Zone and Peripheral Ischemic Index in Diabetic Retinopathy: A Pilot Study. Ophthalmol. Retin. 2018, 2, 46–52. [Google Scholar] [CrossRef]
- Decker, N.L.; Duffy, B.V.; Boughanem, G.O.; Fukuyama, H.; Castellanos Canales, D.; Nesper, P.L.; Gill, M.K.; Fawzi, A.A. Macular Perfusion Deficits on OCT Angiography Correlate with Nonperfusion on Ultrawide-field Fluorescein Angiography in Diabetic Retinopathy. Ophthalmol. Retin. 2023, 7, 692–702. [Google Scholar] [CrossRef]
- Hajdu, D.; Sedova, A.; Datlinger, F.; Hafner, J.; Steiner, I.; Kriechbaum, K.; Scholda, C.; Sacu, S.; Schmidt-Erfurth, U.; Pollreisz, A. Association of macular perfusion status with microvascular parameters up to the far periphery in diabetic retinopathy using multimodal imaging. Int. J. Retin. Vitr. 2020, 6, 50. [Google Scholar] [CrossRef]
- Tsai, G.; Banaee, T.; Conti, F.F.; Singh, R.P. Optical Coherence Tomography Angiography in Eyes with Retinal Vein Occlusion. J. Ophthalmic Vis. Res. 2018, 13, 315–332. [Google Scholar] [CrossRef]
- Auvazian, S.L.; Cano, J.; Leahy, S.; Karamian, P.; Kashani, A.; Moshfeghi, A.; Ameri, H.; Blair, N.P.; Shahidi, M. Relating Retinal Vascular Oxygen Saturation and Microvasculature Morphology at Progressive Stages of Diabetic Retinopathy. Transl. Vis. Sci. Technol. 2021, 10, 4. [Google Scholar] [CrossRef]
- Khansari, M.M.; Garvey, S.L.; Farzad, S.; Shi, Y.; Shahidi, M. Relationship between retinal vessel tortuosity and oxygenation in sickle cell retinopathy. Int. J. Retin. Vitr. 2019, 5, 47. [Google Scholar] [CrossRef]
- Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting Linear Mixed-Effects Models Using lme4. arXiv 2014, arXiv:1406.5823. [Google Scholar]
- Rigby, R.A.; Stasinopoulos, D.M. Generalized Additive Models for Location, Scale and Shape. J. R. Stat. Soc. Ser. C Appl. Stat. 2005, 54, 507–554. [Google Scholar] [CrossRef]
- Saccenti, E.; Hoefsloot, H.C.J.; Smilde, A.K.; Westerhuis, J.A.; Hendriks, M.M.W.B. Reflections on univariate and multivariate analysis of metabolomics data. Metabolomics 2014, 10, 361–374. [Google Scholar] [CrossRef]
- Voeten, C.C. Buildmer: Stepwise Elimination and Term Reordering for Mixed-Effects Regression. R Package Version 2.11. 2023. Available online: https://CRAN.R-project.org/package=buildmer (accessed on 20 July 2024).
- Robin, X.; Turck, N.; Hainard, A.; Tiberti, N.; Lisacek, F.; Sanchez, J.C.; Müller, M. pROC: An open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinform. 2011, 12, 77. [Google Scholar] [CrossRef] [PubMed]
- You, Q.S.; Chan, J.C.H.; Ng, A.L.K.; Choy, B.K.N.; Shih, K.C.; Cheung, J.J.C.; Wong, J.K.W.; Shum, J.W.H.; Ni, M.Y.; Lai, J.S.M.; et al. Macular Vessel Density Measured With Optical Coherence Tomography Angiography and Its Associations in a Large Population-Based Study. Investig. Ophthalmol. Vis. Sci. 2019, 60, 4830–4837. [Google Scholar] [CrossRef] [PubMed]
- Munsell, M.K.; Garg, I.; Duich, M.; Zeng, R.; Baldwin, G.; Wescott, H.E.; Koch, T.; Wang, K.L.; Patel, N.A.; Miller, J.B. A normative database of wide-field swept-source optical coherence tomography angiography quantitative metrics in a large cohort of healthy adults. Graefe’s Arch. Clin. Exp. Ophthalmol. 2023, 261, 1835–1859. [Google Scholar] [CrossRef] [PubMed]
- Fujiwara, A.; Morizane, Y.; Hosokawa, M.; Kimura, S.; Shiode, Y.; Hirano, M.; Doi, S.; Toshima, S.; Takahashi, K.; Hosogi, M.; et al. Factors affecting foveal avascular zone in healthy eyes: An examination using swept-source optical coherence tomography angiography. PLoS ONE 2017, 12, e0188572. [Google Scholar] [CrossRef]
- Wessel, M.M.; Nair, N.; Aaker, G.D.; Ehrlich, J.R.; D’Amico, D.J.; Kiss, S. Peripheral retinal ischaemia, as evaluated by ultra-widefield fluorescein angiography, is associated with diabetic macular oedema. Br. J. Ophthalmol. 2012, 96, 694–698. [Google Scholar] [CrossRef] [PubMed]
- Fan, W.; Uji, A.; Nittala, M.; Wykoff, C.C.; Brown, D.; Fleming, A.; Robertson, G.; van Hemert, J.; Sadda, S.; Ip, M.S. Retinal vascular bed area on ultra-wide field fluorescein angiography indicates the severity of diabetic retinopathy. Br. J. Ophthalmol. 2022, 106, 1126–1131. [Google Scholar] [CrossRef]
- Ehlers, J.P.; Jiang, A.C.; Boss, J.D.; Hu, M.; Figueiredo, N.; Babiuch, A.; Talcott, K.; Sharma, S.; Hach, J.; Le, T.; et al. Quantitative Ultra-Widefield Angiography and Diabetic Retinopathy Severity: An Assessment of Panretinal Leakage Index, Ischemic Index and Microaneurysm Count. Ophthalmology 2019, 126, 1527–1532. [Google Scholar] [CrossRef]
- Nicholson, L.; Ramu, J.; Chan, E.W.; Bainbridge, J.W.; Hykin, P.G.; Talks, S.J.; Sivaprasad, S. Retinal Nonperfusion Characteristics on Ultra-Widefield Angiography in Eyes With Severe Nonproliferative Diabetic Retinopathy and Proliferative Diabetic Retinopathy. JAMA Ophthalmol. 2019, 137, 626–631. [Google Scholar] [CrossRef]
- Fan, W.; Uji, A.; Wang, K.; Falavarjani, K.G.; Wykoff, C.C.; Brown, D.M.; van Hemert, J.; Sagong, M.; Sadda, S.R.; Ip, M. Severity of diabetic macular edema correlates with retinal vascular bed area on ultra-wide field fluorescein angiography: Dave study. Retina 2020, 40, 1029–1037. [Google Scholar] [CrossRef] [PubMed]
- Marcus, D.M.; Silva, P.S.; Liu, D.; Aiello, L.P.; Antoszyk, A.; Elman, M.; Friedman, S.; Glassman, A.R.; Googe, J.M.; Jampol, L.M.; et al. Association of Predominantly Peripheral Lesions on Ultra-Widefield Imaging and the Risk of Diabetic Retinopathy Worsening Over Time. JAMA Ophthalmol. 2022, 140, 946–954. [Google Scholar] [CrossRef]
- Or, C.; Sabrosa, A.S.; Sorour, O.; Arya, M.; Waheed, N. Use of OCTA, FA, and Ultra-Widefield Imaging in Quantifying Retinal Ischemia: A Review. Asia-Pac. J. Ophthalmol. 2018, 7, 46–51. [Google Scholar] [CrossRef]
- Orr, S.; Pereira, A.; Choudhry, N. A Review of Ultra-Widefield OCT. Available online: https://www.reviewofophthalmology.com/article/a-review-of-ultrawidefield-oct (accessed on 1 October 2024).
- Das, A.; McGuire, P.G.; Rangasamy, S. Diabetic Macular Edema: Pathophysiology and Novel Therapeutic Targets. Ophthalmology 2015, 122, 1375–1394. [Google Scholar] [CrossRef] [PubMed]
- Furino, C.; Boscia, F.; Reibaldi, M.; Alessio, G. Intravitreal Therapy for Diabetic Macular Edema: An Update. J. Ophthalmol. 2021, 2021, 6654168. [Google Scholar] [CrossRef] [PubMed]
- Nassar, G.A.; Maqboul, I.M.; El-Nahry, A.G.; Hassan, L.M.; Shalash, A.B. Macular vascular features of different types of diabetic macular edema using ocular coherence tomography angiography—A comparative study. Int. J. Retin. Vitr. 2023, 9, 32. [Google Scholar] [CrossRef] [PubMed]
- Johnson, M.W. Tractional cystoid macular edema: A subtle variant of the vitreomacular traction syndrome. Am. J. Ophthalmol. 2005, 140, 184–192. [Google Scholar] [CrossRef]
- Hein, M.; Qambari, H.; An, D.; Balaratnasingam, C. Current understanding of subclinical diabetic retinopathy informed by histology and high-resolution in vivo imaging. Clin. Exp. Ophthalmol. 2024. [Google Scholar] [CrossRef]
- Yu, P.K.; Yu, D.-Y.; Cringle, S.J.; Su, E.-N. Endothelial F-actin Cytoskeleton in the Retinal Vasculature of Normal and Diabetic Rats. Curr. Eye Res. 2005, 30, 279–290. [Google Scholar] [CrossRef]
- An, D.; Chung-Wah-Cheong, J.; Yu, D.Y.; Balaratnasingam, C. Alpha-Smooth Muscle Actin Expression and Parafoveal Blood Flow Pathways Are Altered in Preclinical Diabetic Retinopathy. Investig. Ophthalmol. Vis. Sci. 2022, 63, 8. [Google Scholar] [CrossRef] [PubMed]
- An, D.; Tan, B.; Yu, D.-Y.; Balaratnasingam, C. Differentiating Microaneurysm Pathophysiology in Diabetic Retinopathy Through Objective Analysis of Capillary Nonperfusion, Inflammation and Pericytes. Diabetes 2022, 71, 733–746. [Google Scholar] [CrossRef]
- Beltramo, E.; Porta, M. Pericyte loss in diabetic retinopathy: Mechanisms and consequences. Curr. Med. Chem. 2013, 20, 3218–3225. [Google Scholar] [CrossRef] [PubMed]
- vom Hagen, F.; Feng, Y.; Hillenbrand, A.; Hoffmann, S.; Shani, M.; Deutsch, U.; Hammes, H.P. Early loss of arteriolar smooth muscle cells: More than just a pericyte loss in diabetic retinopathy. Exp. Clin. Endocrinol. Diabetes 2005, 113, 573–576. [Google Scholar] [CrossRef]
- Petersen, L.; Bek, T. The Oxygen Saturation in Vascular Abnormalities Depends on the Extent of Arteriovenous Shunting in Diabetic Retinopathy. Invest. Ophthalmol. Vis. Sci. 2019, 60, 3762–3767. [Google Scholar] [CrossRef]
- Toussaint, D.; Kuwabara, T.; Cogan, D.G. Retinal Vascular Patters. Part II. Human Retinal Vessels Studied in Three Dimensions. JAMA Ophthalmol. 1961, 65, 575–581. [Google Scholar]
- Kuwabara, T.; Cogan, D.G. Studies of retinal vascular patterns. Part 1. Normal architecture. Arch. Ophthalmol. 1960, 64, 904–911. [Google Scholar] [CrossRef] [PubMed]
- Lai, D.; Wu, Y.; Shao, C.; Qiu, Q. The Role of Müller Cells in Diabetic Macular Edema. Invest. Ophthalmol. Vis. Sci. 2023, 64, 8. [Google Scholar] [CrossRef]
- Gardner, T.W.; Davila, J.R. The neurovascular unit and the pathophysiologic basis of diabetic retinopathy. Graefe’s Arch. Clin. Exp. Ophthalmol. 2017, 255, 1–6. [Google Scholar] [CrossRef]
- Hartnett, M.E.; Lappas, A.; Darland, D.; McColm, J.R.; Lovejoy, S.; D’Amore, P.A. Retinal pigment epithelium and endothelial cell interaction causes retinal pigment epithelial barrier dysfunction via a soluble VEGF-dependent mechanism. Exp. Eye Res. 2003, 77, 593–599. [Google Scholar] [CrossRef]
- Chung, Y.R.; Kim, Y.H.; Ha, S.J.; Byeon, H.E.; Cho, C.H.; Kim, J.H.; Lee, K. Role of Inflammation in Classification of Diabetic Macular Edema by Optical Coherence Tomography. J. Diabetes Res. 2019, 2019, 8164250. [Google Scholar] [CrossRef] [PubMed]
- Miyamoto, K.; Khosrof, S.; Bursell, S.-E.; Rohan, R.; Murata, T.; Clermont, A.C.; Aiello, L.P.; Ogura, Y.; Adamis, A.P. Prevention of leukostasis and vascular leakage in streptozotocin-induced diabetic retinopathy via intercellular adhesion molecule-1 inhibition. Proc. Natl. Acad. Sci. USA 1999, 96, 10836–10841. [Google Scholar] [CrossRef]
- Zhao, C.; Wang, W.; Xu, D.; Li, H.; Li, M.; Wang, F. Insulin and risk of diabetic retinopathy in patients with type 2 diabetes mellitus: Data from a meta-analysis of seven cohort studies. Diagn. Pathol. 2014, 9, 130. [Google Scholar] [CrossRef]
- Zhang, J.; Ma, J.; Zhou, N.; Zhang, B.; An, J. Insulin use and risk of diabetic macular edema in diabetes mellitus: A systemic review and meta-analysis of observational studies. Med. Sci. Monit. 2015, 21, 929–936. [Google Scholar] [CrossRef] [PubMed]
- Kowara, M.; Cudnoch-Jedrzejewska, A. Pathophysiology of Atherosclerotic Plaque Development-Contemporary Experience and New Directions in Research. Int. J. Mol. Sci. 2021, 22, 3513. [Google Scholar] [CrossRef] [PubMed]
- Hofman, P.; van Blijswijk, B.C.; Gaillard, P.J.; Vrensen, G.F.J.M.; Schlingemann, R.O. Endothelial Cell Hypertrophy Induced by Vascular Endothelial Growth Factor in the Retina: New Insights Into the Pathogenesis of Capillary Nonperfusion. Arch. Ophthalmol. 2001, 119, 861–866. [Google Scholar] [CrossRef] [PubMed]
Variable | PNP Present | PNP Absent | p-Value |
---|---|---|---|
Demographic and Clinical Details | |||
Sample size | 22 | 26 | - |
Age (years) | 52 ± 15 | 59 ± 12 | 0.075 * (0.145) |
Sex (# male) | 12 (50%) | 20 (80%) | 0.232 |
Visual acuity (ETDRS letters) | 69.1 ± 16.1 | 76.5 ± 11.3 | 0.11 |
DM type (# type 2) | 14 (63.6%) | 22 (84.6%) | 0.36 |
Duration of DM (years) | 22 ± 7.5 | 18.8 ± 9.4 | 0.20 |
HbA1c (%) | 9.3 ± 2.2 | 8.2 ± 2.0 | 0.13 |
Insulin use | 18 (81.8%) | 14 (53.8%) | 0.013 ** (0.0001 **) |
Smoking | 6 (27.2%) | 6 (23.1%) | 0.73 |
eGFR (mL/min/1.73 m2) | 78.5 ± 21.2 | 67.7 ± 22.9 | 0.12 |
Creatinine (µmol/L) | 83.2 ± 42.3 | 117.3 ± 110.5 | 0.16 |
LDL (mmol/L) | 2.8 ± 0.8 | 2.6 ± 1.2 | 0.58 |
HDL (mmol/L) | 1.3 ± 0.4 | 1.2 ± 0.4 | 0.5 |
Lipid-lowering therapy use | 9 (40.9%) | 18 (69.2%) | 0.24 |
Hypertension diagnosis | 15 (70%) | 20 (80%) | 1 |
Ischemic heart disease | 2 (9.1%) | 7 (26.9%) | 0.26 |
Stroke | 0 (0%) | 3 (11.5%) | 0.49 |
PRP (pan-retinal photocoagulation) | 20 (90%) | 10 (40%) | <0.0001 (0.0003 **) |
Pseudophakic | 5 (22.7%) | 7 (26.9%) | 1 |
Past intravitreal anti-VEGF | 10 (45.4%) | 9 (34.6%) | 0.37 |
Past intravitreal steroids | 1 (4.5%) | 1 (3.8%) | 1 |
Previous vitrectomy | 1 (4.5%) | 0 (0%) | 0.46 |
Variable | PNP Present | PNP Absent | p-Value |
---|---|---|---|
Imaging Features Graded by Reviewers | |||
Presence of hard exudates in macula | 11 (50%) | 14 (53.8%) | 0.78 |
Microaneurysms | 0 (0%) none | 0 (0%) none | 0.007 ** (singular model) |
12 (54.5%) <10 | 5 (19.2%) <10 | ||
10 (45.5%) 10 or greater | 23 (88.5%) 10 or greater | ||
Fluorescein leakage pattern in the macula | 3 (13.6%) focal | 12 (46.2%) focal | 0.067 * (0.013 **) |
4 (18.2%) intermediate | 7 (26.9%) intermediate | ||
15 (68.2%) diffuse | 9 (34.6%) diffuse | ||
Subretinal fluid presence | 10 (45.5%) | 2 (7.7%) | 0.0058 ** (0.618) |
Cystoid changes in inner nuclear layer | 14 (63.6%) | 19 (73.1%) | 0.54 |
Cystoid changes in outer nuclear layer | 19 (86.4%) | 26 (100%) | 0.089 * |
Intact ellipsoid zone | 19 (86.4%) | 26 (100%) | 0.649 |
Presence of DRiL | 5 (22.7%) | 9 (34.6%) | 0.52 |
Hyper-reflective foci count | 6 (27.2%) 0 | 3 (11.5%) 0 | 0.86 |
6 (27.2%) <10 | 11 (42.3%) <10 | ||
4 (18.2%) 10–20 | 5 (19.2%) 10–20 | ||
6 (27.3%) >20 | 7 (26.9%) >20 | ||
Intact terminal foveal capillary ring | 4 (18.2%) | 10 (38.5%) | 0.52 |
Perifoveal capillary loss | 19 (86.4%) | 25 (96.2%) | 0.39 |
Variable | PNP Present | PNP Absent | p-Value |
---|---|---|---|
Quantitative Imaging Features | |||
Axial length (mm) | 23.4 ± 1.02 | 23.7 ± 0.94 | 0.39 |
Central retinal thickness (µm) | 403.1 ± 129.8 (1 mm) | 375.4 ± 120.4 (1 mm) | 0.55 |
383.5 ± 144 (3 mm) | 388.2 ± 88.7 (3 mm) | 0.29 | |
358.2 ± 230(6 mm) | 366.4 ± 126 (6 mm) | 0.28 | |
Vessel tortuosity method 1 | 1.66 ± 0.11 (arterioles) | 1.67 ± 0.06 (arterioles) | 0.62 |
1.66 ± 0.11 (venules) | 1.67 ± 0.06 (venules) | 0.58 | |
1.67 ± 0.07 (capillaries) | 1.68 ± 0.05 (capillaries) | 0.54 (0.55) | |
Vessel tortuosity method 2 | 1.06 ± 0.12 (arterioles) | 1.06 ± 0.11 (arterioles) | 0.84 |
1.05 ± 0.14 (venules) | 1.06 ± 0.12 (venules) | 0.95 | |
1.04 ± 0.15 (capillaries) | 1.025 ± 0.07 (capillaries) | 0.62 (singular model) | |
Macular perfusion density | 0.41 ± 0.05 | 0.45 ± 0.06 | 0.053 * (0.145) |
Macular vessel density | 0.097 ± 0.014 | 0.106 ± 0.014 | 0.077 * (0.152) |
Average macular vessel diameter (mm) | 0.024 ± 0.002 | 0.023 ± 0.002 | 0.95 |
Macular fractal dimension | 1.88 ± 0.01 | 1.89 ± 0.01 | 0.2 |
Minimum FAZ distance (mm) | 0.49 ± 0.14 | 0.45 ± 0.13 | 0.19 |
Maximum FAZ distance (mm) | 0.82 ± 0.21 | 0.81 ± 0.22 | 0.54 |
FAZ area (mm2) | 0.36 ± 0.15 | 0.35 ± 0.16 | 0.65 (0.57) |
FAZ eccentricity | 0.65 ± 0.14 | 0.67 ± 0.12 | 0.3 |
FAZ axis ratio | 1.73 ± 0.32 | 1.86 ± 0.42 | 0.23 |
FAZ perimeter (mm) | 3.37 ± 1.17 | 3.43 ± 1.39 | 0.75 |
FAZ acircularity index | 1.61 ± 0.29 | 1.67 ± 0.45 | 0.33 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hein, M.; Mehnert, A.; Josephine, F.; Athwal, A.; Yu, D.-Y.; Balaratnasingam, C. Predictors of Peripheral Retinal Non-Perfusion in Clinically Significant Diabetic Macular Edema. J. Clin. Med. 2025, 14, 52. https://doi.org/10.3390/jcm14010052
Hein M, Mehnert A, Josephine F, Athwal A, Yu D-Y, Balaratnasingam C. Predictors of Peripheral Retinal Non-Perfusion in Clinically Significant Diabetic Macular Edema. Journal of Clinical Medicine. 2025; 14(1):52. https://doi.org/10.3390/jcm14010052
Chicago/Turabian StyleHein, Martin, Andrew Mehnert, Fiona Josephine, Arman Athwal, Dao-Yi Yu, and Chandrakumar Balaratnasingam. 2025. "Predictors of Peripheral Retinal Non-Perfusion in Clinically Significant Diabetic Macular Edema" Journal of Clinical Medicine 14, no. 1: 52. https://doi.org/10.3390/jcm14010052
APA StyleHein, M., Mehnert, A., Josephine, F., Athwal, A., Yu, D. -Y., & Balaratnasingam, C. (2025). Predictors of Peripheral Retinal Non-Perfusion in Clinically Significant Diabetic Macular Edema. Journal of Clinical Medicine, 14(1), 52. https://doi.org/10.3390/jcm14010052