First Clinical Report of the Intraoperative Macro- and Micro-Photodiagnosis and Photodynamic Therapy Using Talaporfin Sodium for a Patient with Disseminated Lumbar Medulloblastoma
<p>Radio-pathological findings of the patient before the lumbar surgery. (<b>A</b>,<b>B</b>): Preoperative gadolinium-enhanced T1-weighted MRI images of the brain displayed a heterogeneously enhanced tumor in the cerebellar vermis accompanied with obstructive hydrocephalus. (<b>C</b>): The histopathological diagnosis of the tumor was a classic type medulloblastoma with abundant typical Homer-wright rosette in the hematoxylin and eosin stain (×100). (<b>D</b>): Postoperative gadolinium-enhance T1-wegihted MRI image of brain displayed subtotal resection of the cerebellar tumor. (<b>E</b>,<b>F</b>): Gadolinium-enhanced T1-weighted image of lumbar spine displayed a nodular enhanced mass ((<b>F</b>): white arrow) with enhancement of meninges of cauda equina ((<b>E</b>): white arrow).</p> "> Figure 2
<p>Intraoperative findings of the lumbar surgery and practice of PD and PDT for the tumor located in the conus medullaris. (<b>A</b>): Intraoperative finding of an intradural lumbar lesion demonstrating a gelatinous pink tumor located in the conus medullaris between the cauda equina (white arrow). (<b>B</b>): Intraoperative PD using a surgical microscope demonstrated weak fluorescencefrom the tumor (white arrow). (<b>C</b>): Piece by piece resection of the tumor. (<b>D</b>,<b>G</b>): Intraoperative fluorescence cytology of sediment from the CSF (<b>D</b>) and resected tumor tissue (<b>G</b>) under white light demonstrated a cluster of tumor cells. (<b>E</b>,<b>H</b>): Intraoperative fluorescence cytology of the sediment from the CSF (<b>E</b>) and resected tumor tissue (<b>H</b>) demonstrated strong fluorescence of talaporfin sodium in the cytoplasm of the cluster of tumor cells with a high N/C ratio. (<b>F</b>): Giemsa stain (×400) of the sediment from the CSF demonstrated a cluster of tumor cells. (<b>I</b>): We performed a single shot of irradiation of PDT to the conus medullaris. The magnification of histological images: (<b>D</b>,<b>E</b>,<b>G</b>): ×200, (<b>F</b>,<b>H</b>): ×400.</p> "> Figure 3
<p>Radio-pathological course of the patient after the lumbar surgery. (<b>A</b>,<b>B</b>) Histopathological findings of the resected tumor in the conus medullaris demonstrated a cluster of small round cell tumor cells with a high N/C ratio (×400). (<b>C</b>): Postoperative gadolinium-enhanced T1-weighted image of the lumbar spine displayed a faint tumor nodule (white arrow) in the conus medullaris without enhancement of the meninges of the cauda equina. (<b>D</b>,<b>E</b>) Gadolinium-enhanced T1-weighted MRI of the lumbar spine (<b>D</b>) and cervical spine (<b>E</b>) taken 2 months after the lumbar surgery. The lumbar lesion displayed faint tumor enhancement ((<b>D</b>): white arrow), and the heterogeneous enhanced intramedullary mass was located between the C3 and C7 levels ((<b>E</b>): white arrow).</p> ">
Abstract
:1. Introduction
2. Clinical Case Presentation
3. Surgery
4. Postoperative Course
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Akimoto, J. Photodynamic therapy for malignant brain tumors. Neurol. Med. Chir. 2016, 56, 151–157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akimoto, J.; Haraoka, J.; Aizawa, K. Preliminary clinical report on safety and efficacy of photodynamic therapy using talaporfin sodium for malignant gliomas. Photodiag Photodyn. Ther. 2012, 9, 91–99. [Google Scholar] [CrossRef] [PubMed]
- Muragaki, Y.; Akimoto, J.; Maruyama, T.; Iseki, H.; Ikuta, S.; Nitta, M.; Maebayashi, K.; Saito, T.; Okada, Y.; Kaneko, S.; et al. Phase II clinical study on intraoperative photodynamic therapy with talaporfin sodium and semiconductor laser. J. Neurosurg. 2013, 119, 845–852. [Google Scholar] [CrossRef] [PubMed]
- Nitta, M.; Muragaki, Y.; Maruyama, T.; Iseki, H.; Komori, T.; Ikuta, S.; Saito, T.; Yasuda, T.; Hosono, J.; Okamoto, S.; et al. Role of photodynamic therapy using talaporfin sodium and a semiconductor laser in patients with newly diagnoses glioblastoma. J. Neurosurg. 2018, 12, 1–8. [Google Scholar] [CrossRef]
- Kobayashi, T.; Nitta, M.; Shimizu, K.; Saito, T.; Tsuzuki, S.; Fukui, A.; Koriyama, S.; Kuwano, A.; Komori, T.; Masui, K.; et al. Therapeutic options for recurrent glioblastoma- Efficacy of talaporfin sodium mediated photodynamic therapy. Pharmaceutics 2022, 14, 353. [Google Scholar] [CrossRef]
- Chamberlain, M.C.; Tredway, T.L. Adult primary intradural spinal cord tumors: A review. Curr. Neurol. Neurosci. Rep. 2011, 11, 320–328. [Google Scholar] [CrossRef]
- Akimoto, J.; Fukami, S.; Ichikawa, M.; Mohamed, A.; Kohno, M. Intraoperative photodiagnosis for malignant glioma using photosensitizer talaporfin sodium. Front. Surg. 2019, 6, 12. [Google Scholar] [CrossRef]
- Shimizu, K.; Nitta, M.; Komori, T.; Maruyama, T.; Yasuda, T.; Fujii, Y.; Masamune, K.; Kawamata, T.; Maehara, T.; Muragaki, Y. Intraoperative photodynamic diagnosis using talaporfin sodium simultaneously applied for photodynamic therapy against malignant glioma: A prospective clinical study. Front. Neurol. 2018, 9, 24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akimoto, J.; Fukami, S.; Ichikawa, M.; Nagai, K.; Kohno, M. Preliminary report: Rapid intraoperative detection of residual glioma cell in resection cavity walls using a compact fluorescence microscope. J. Clin. Med. 2021, 10, 5375. [Google Scholar] [CrossRef]
- Perria, C.; Capuzzo, T.; Cavagnaro, G.; Datti, R.; Francaviglia, N.; Rivano, C.; Tercero, V.E. First attempt at the photodynamic treatment of human gliomas. J. Neurosurg. Sci. 1980, 24, 119–129. [Google Scholar]
- Perria, C.; Carai, M.; Faizoi, A.; Orunesu, G.; Rocca, A.; Massarelli, G.; Francaviglia, N.; Jori, G. Photodynamic therapy of malignant brain tumors: Clinical results of difficulties with questions about, and future prospect for the neurosurgical applications. Neurosurgery 1988, 23, 557–563. [Google Scholar] [CrossRef]
- Endo, T.; Inoue, T.; Mizuno, M.; Kurokawa, R.; Ito, K.; Ueda, S.; Takami, T.; Hida, K.; Hoshimaru, M. Current trend in the surgical management of intramedullary tumors: A multicenter sudy of 1033 patients by the Neurospine Society of Japan. Neurospine 2022, 19, 441–452. [Google Scholar] [CrossRef]
- Jecko, V.; Roblot, P.; Mongardi, L.; Ollivier, M.; Piccoli, N.D.; Charleux, T.; Wavasseur, T.; Gimbert, E.; Liguoro, D.; Chorard, G.; et al. Intramedullary spinal cord lesions: A single-center experience. Neurospine 2022, 19, 108–117. [Google Scholar] [CrossRef] [PubMed]
- Funayama, T.; Sakane, M.; Abe, T.; Ochiai, N. Photodynamic therapy with indocyanine green injection and near-infrared light irradiation has phototoxic effects and delays paralysis in spinal metastasis. Photomed. Laser Surg. 2012, 30, 47–53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yassine, A.A.; Lo, W.C.Y.; Saeidi, T.; Ferguson, D.; Whyne, C.M.; Akens, M.K.; Betz, V.; Lilge, L. Photodynamic therapy outcome modeling for patients with spinal metastases: A simulation-based study. Sci. Rep. 2011, 11, 17871. [Google Scholar] [CrossRef] [PubMed]
- Fan, H.T.; Wang, L.; Zhang, P.; Liu, S.B. Photodynamic therapy in spinal metastases: A qualitative analysis of published results. Int. Surg. 2015, 100, 712–719. [Google Scholar] [CrossRef] [Green Version]
- Saravana-Bawan, S.; David, E.; Sahgal, A.; Chow, E. Palliation of bone metastases-exploring options beyond radiotherapy. Ann. Palliat. Med. 2019, 8, 168–177. [Google Scholar] [CrossRef]
- Wainwright, J.V.; Endo, T.; Cooper, J.B.; Tominaga, T. Schmidt MH. The role of 5-aminolevuliniv acid in spinal tumor surgery: A review. J. Neuro. Oncol. 2019, 141, 575–584. [Google Scholar] [CrossRef] [Green Version]
- Inoue, T.; Endo, T.; Nagamatsu, K.; Watanabe, M.; Tominaga, T. 5-aminolevulinic acid fluorescence-guided resection of intramedullary ependymoma: Report of 9 cases. Neurosurgery 2013, 72, ons 15 9-168. [Google Scholar] [CrossRef] [Green Version]
- Eicker, S.O.; Floeth, F.W.; Kamp, M.; Steiger, H.J.; Hanggi, D. The impact of fluorescence guidance on spinal intradural tumour surgery. Eur. Spine J. 2013, 22, 1394–1401. [Google Scholar] [CrossRef] [Green Version]
- Millesi, M.; Kiesel, B.; Woehrer, A.; Hainfellner, J.A.; Novak, K.; Martinez-Moreno, M.; Wolfsberger, S.; Knosp, E.; Widhalm, G. Analysis of 5-aminolevulinic acid-induced fluorescence in 55 different spinal tumors. Neurosurg. Focus 2014, 36, E11. [Google Scholar] [CrossRef] [PubMed]
- Muroi, C.; Fandino, J.; Coluccia, D.; Berkmann, S.; Fathi, A.-R.; Landolt, H. 5-Aminolevulinic acid fluorescence-guided surgery for spinal meningioma. World Neurosurg. 2013, 80, 223.e1–223.e3. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, S.; Utsuki, S.; Sato, K.; Oka, H.; Fujii, K.; Mii, K. Photodynamic diagnosis in surgery for spinal ependymoma. Case illustration. J. Neurosurg. Spine 2006, 5, 38. [Google Scholar] [CrossRef]
- Krause Molle, Z.; Gierga, K.; Turowski, B.; Steiger, H.J.; Cornelius, J.F.; Rapp, M.; Sabel, M.; Kamp, M.A. 5-ALA-induced fluorescence in leptomeningeal dissemination of spinal malignant glioma. World Neurosurg. 2018, 110, 345–348. [Google Scholar] [CrossRef]
- Ruschel, L.G.; Ramina, R.; da Silva, E.B., Jr.; Cavalcanti, M.S.; Durante, J.F.S. 5-Aminolevulinic acid fluorescence-guided surgery for spinal cord melanoma metastasis: A technical note. Acta Neurochir. 2018, 60, 1905–1908. [Google Scholar] [CrossRef]
- Olguner, S.K.; Arsian, A.; Acik, V.; Istemen, I.; Can, M.; Gezercan, Y.; Okten, A.I. Sodium fluorescein for spinal intradural tumors. Front. Oncol. 2020, 10, 618579. [Google Scholar] [CrossRef]
- Acerbi, F.; Cavallo, C.; Schebesch, K.M.; Akcakaya, M.O.; de Laurentis, C.; Hamamcioglu, M.K.; Broggi, M.; Brawanski, A.; Falco, J.; Cordella, R.; et al. Fluorescein-guided resection of intramedullary spinal cord tumors: Results from a preliminary, multicentric, retrospective study. World Neurosurg. 2017, 108, 603–609. [Google Scholar] [CrossRef]
- NCCN Clinical Practice Guidelines in Oncology (NCCN Guideline®). Central Nervous System Cancers; Version 1; BRAIN-D, 5; NCCN Guideline: Plymouth Meeting, PA, USA, 2022. [Google Scholar]
- Greenberg, H.S.; Chamberlain, M.C.; Glantz, M.J.; Wang, S. Adult medulloblastoma: Multiagent chemotherapy. Neuro. Oncol. 2020, 3, 29–34. [Google Scholar] [CrossRef]
- Hongeng, S.; Visudtibhan, A.; Dhanachai, M.; Laothamatus, J.; Chiamchyanya, S. Treatment of leptomeningeal relapse of medulloblastoma with temozolomide. J. Pediatr. Hematol. Oncol. 2002, 24, 591–593. [Google Scholar] [CrossRef]
- Durando, X.; Tivat, E.; Gilliot, O.; Irthum, B.; Verrelle, P.; Vincent, C.; Bay, J.O. Temozolomide treatment of an adult with a relapsing medulloblastoma. Cancer Investig. 2007, 25, 470–475. [Google Scholar] [CrossRef]
- Poelen, J.; Bernsen, H.J.; Prick, M.J. Metastatic medulloblastoma in an adult; treatment with temozolomide. Acta Neurol. Belg. 2007, 107, 51–55. [Google Scholar] [PubMed]
- Sawamura, Y.; Ikeda, J.; Ishii, N.; Kato, T.; Tada, M.; Abe, H.; Shirato, H. Combined irradiation and chemotherapy using Ifosfamide, Cisplatin, and Etoposide for children with medulloblastoma/P posterior fossa primitive neuroectodermal tumor —Results of a pilot study. Neurol. Med. Chir. 1996, 36, 632–638. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saito, R.; Kumabe, T.; Sonoda, Y.; Kanamori, M.; Yamashita, T.; Watanabe, M.; Tominaga, T. Combination chemotherapy with ifosphamide, cisplatin, and etoposide for medulloblastoma: Single-institute experience and difference in efficacy for subgroups of medulloblastoma. Child Nerv. Syst. 2011, 27, 1399–1406. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akimoto, J.; Fukami, S.; Nagai, K.; Kohno, M. First Clinical Report of the Intraoperative Macro- and Micro-Photodiagnosis and Photodynamic Therapy Using Talaporfin Sodium for a Patient with Disseminated Lumbar Medulloblastoma. J. Clin. Med. 2023, 12, 432. https://doi.org/10.3390/jcm12020432
Akimoto J, Fukami S, Nagai K, Kohno M. First Clinical Report of the Intraoperative Macro- and Micro-Photodiagnosis and Photodynamic Therapy Using Talaporfin Sodium for a Patient with Disseminated Lumbar Medulloblastoma. Journal of Clinical Medicine. 2023; 12(2):432. https://doi.org/10.3390/jcm12020432
Chicago/Turabian StyleAkimoto, Jiro, Shinjiro Fukami, Kenta Nagai, and Michihiro Kohno. 2023. "First Clinical Report of the Intraoperative Macro- and Micro-Photodiagnosis and Photodynamic Therapy Using Talaporfin Sodium for a Patient with Disseminated Lumbar Medulloblastoma" Journal of Clinical Medicine 12, no. 2: 432. https://doi.org/10.3390/jcm12020432
APA StyleAkimoto, J., Fukami, S., Nagai, K., & Kohno, M. (2023). First Clinical Report of the Intraoperative Macro- and Micro-Photodiagnosis and Photodynamic Therapy Using Talaporfin Sodium for a Patient with Disseminated Lumbar Medulloblastoma. Journal of Clinical Medicine, 12(2), 432. https://doi.org/10.3390/jcm12020432