Pseudomonas aeruginosa Strain 91: A Multifaceted Biocontrol Agent against Banana Fusarium Wilt
<p>Screening and identification of isolate 91 for antifungal activity against <span class="html-italic">Fusarium oxysporum</span> f. sp. <span class="html-italic">cubense</span> (<span class="html-italic">Foc</span>). (<b>A</b>) <span class="html-italic">Foc</span> control plate after 7 days’ incubation; (<b>B</b>) dual-culture plate assay showing inhibition of <span class="html-italic">Foc</span> mycelia by isolate 91 after 7 days’ incubation; (<b>C</b>) cell-free fermentation supernatant displayed growth inhibition zone against <span class="html-italic">Foc</span> compared to control (CK); (<b>D</b>) scanning electron microscopy showing rod-shaped isolate 91; (<b>E</b>) phylogenetic tree showing isolate 91’s position compared to other <span class="html-italic">Pseudomonas</span> strains.</p> "> Figure 2
<p>Isolate 91 secrets bioactive metabolites and cell wall-degrading enzymes for antagonistic activity against <span class="html-italic">Foc</span>. (<b>A</b>) EtOAc extract displayed inhibition activity at 2 mg/disk, 4 mg/disk, and 6 mg/disk, and CK is methanol. (<b>B</b>) n-butanol extract displayed inhibition activity at 2 mg/disk, 4 mg/disk, and 6 mg/disk, and CK is methanol. (<b>C</b>) Fr.1–Fr.5 of EtOAc extract displayed no inhibition activity, and CK is methanol. (<b>D</b>) Inhibition activity of Fr.6–Fr.11 of EtOAc extract. (<b>E</b>) <span class="html-italic">Foc</span> mycelia under SEM, red arrows showing straight, intact hyphae. (<b>F</b>) <span class="html-italic">Foc</span> mycelia under SEM after incubating with isolate 91, red arrows showing distorted, ruptured hyphae.</p> "> Figure 3
<p>Plant growth-promoting traits of isolate 91. (<b>A</b>) Ammonia production on peptone water broth medium; (<b>B</b>) siderophore production on Chrome Azurol S Agar plate medium; (<b>C</b>) phosphate solubilization on Pikovskaya’s Agar plate medium; (<b>D</b>) HCN production in Luria-Bertani broth medium containing glycine.</p> "> Figure 4
<p>Confocal laser scanning microscopy (CLSM) presenting morphology and colonization of <span class="html-italic">P. aeruginosa</span> 91 in banana plants. (<b>A</b>) GFP-tagged 91 strain; (<b>B</b>–<b>D</b>) are tissues of leaf, root, and stem of untreated banana plantlets; (<b>E</b>–<b>G</b>) are tissues of leaf, root, and stem of banana plantlets inoculated with isolate 91. Yellow arrow marks show isolate 91 cells colonized as small green dots in all tissues of a banana plant.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Collection of Soil Samples and Bacteria Isolation
2.2. Antifungal Assay of Isolated Bacterial Strains
2.3. Extraction of Crude Metabolites from Strain 91
2.4. Fractionation of Crude Extracts
2.5. Morphology and Interaction Study of Isolate 91 with Foc
2.6. Enzymatic Assay of Cell Wall-Degrading Enzymes Produced by Isolate 91
2.7. Plant Growth-Promoting Characteristics of Isolate 91
2.8. BIOLOG(R) GENIII Phenotypic Assay
2.9. GFP Tagging of Isolate 91 and Colonization in Banana Plantlets
2.10. Identification of Isolate 91
2.11. Phylogenetic Study
3. Results
3.1. Isolation, Screening, and Identification of Effective Antagonistic Bacteria from Banana Rhizosphere
3.2. Isolate 91 Displays a Multivariate Mode of Antagonism Mechanism
3.3. Isolate 91 Possesses Various Plant Growth-Promoting (PGP) Traits
3.4. Isolate 91 Colonizes in All Tissues of Banana Plants
3.5. Isolate 91 Utilizes Various Carbon Sources
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pegg, K.G.; Coates, L.M.; O’Neill, W.T.; Turner, D.W. The epidemiology of Fusarium wilt of banana. Front. Plant Sci. 2019, 10, 1395. [Google Scholar] [CrossRef] [PubMed]
- Thangavelu, R.; Edwin Raj, E.; Loganathan, M.; Pushpakanth, P.; Uma, S. Draft genome of Fusarium oxysporum f. sp. cubense strain Tropical Race-4 infecting Cavendish (AAA) group of banana in India. Plant Dis. 2020, 105, 481–483. [Google Scholar] [CrossRef]
- Ploetz, R.C. Management of Fusarium wilt of banana: A review with special reference to tropical race 4. Crop Prot. 2015, 73, 7–15. [Google Scholar] [CrossRef]
- Wang, Y.; Xia, Q.; Wang, G.; Zhang, H.; Lu, X.; Sun, J.; Zhang, X. Differential gene expression in banana roots in response to Fusarium wilt. Can. J. Plant Pathol. 2017, 39, 163–175. [Google Scholar] [CrossRef]
- Arinaitwe, I.K.; Teo, C.H.; Kayat, F.; Tumuhimbise, R.; Uwimana, B.; Kubiriba, J.; Swennen, R.; Harikrishna, J.A.; Othman, R.Y. Evaluation of banana germplasm and genetic analysis of an F1 population for resistance to Fusarium oxysporum f. sp. cubense race 1. Euphytica 2019, 215, 175. [Google Scholar] [CrossRef]
- Bubici, G.; Kaushal, M.; Prigigallo, M.I.; Gómez-Lama Cabanás, C.; Mercado-Blanco, J. Biological control agents against Fusarium wilt of banana. Front. Microbiol. 2019, 10, 616. [Google Scholar] [CrossRef]
- Fliessbach, A.; Winkler, M.; Lutz, M.P.; Oberholzer, H.R.; Mäder, P. Soil amendment with Pseudomonas fuorescens CHA0: Lasting effects on soil biological properties in soils low in microbial biomass and activity. Microb. Ecol. 2009, 57, 611–623. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, F.; Ahmad, I.; Khan, M.S. Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiol. Res. 2008, 163, 173–181. [Google Scholar] [CrossRef] [PubMed]
- Dessaux, Y.; Grandclément, C.; Faure, D. Engineering the rhizosphere. Trends Plant Sci. 2016, 21, 266–278. [Google Scholar] [CrossRef] [PubMed]
- Prashar, P.; Kapoor, N.; Sachdeva, S. Rhizosphere: Its structure, bacterial diversity and significance. Rev. Environ. Sci. Biotechnol. 2014, 13, 63–67. [Google Scholar] [CrossRef]
- Estabrook, E.M.; Yoder, J.I. Plant-plant communications: Rhizosphere signaling between parasitic angiosperms and their hosts. Plant Physiol. 1998, 116, 1–7. [Google Scholar] [CrossRef]
- Lugtenberg, B.; Kamilova, F. Plant-growth-promoting rhizobacteria. Annu. Rev. Microbiol. 2009, 63, 541–556. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharyya, P.N.; Jha, D.K. Plant growth-promoting rhizobacteria (PGPR): Emergence in agriculture. World J. Microbiol. Biotechnol. 2012, 28, 1327–1350. [Google Scholar] [CrossRef] [PubMed]
- Compant, S.; Duffy, B.; Nowak, J.; Clément, C.; Barka, E.A. Use of plant growth-promoting bacteria for biocontrol of plant diseases: Principles, mechanisms of action, and future prospects. Appl. Environ. Microbiol. 2005, 71, 4951–4959. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.K.; Singh, P.; Li, H.; Guo, D.; Song, Q.; Yang, L.; Malviya, M.K.; Song, X.; Li, Y. Plant-PGPR interaction study of plant growth-promoting diazotrophs Kosakonia radicincitans BA1 and Stenotrophomonas maltophilia COA2 to enhance growth and stress-related gene expression in Saccharum spp. J. Plant Interact. 2020, 15, 427–445. [Google Scholar] [CrossRef]
- Singh, R.K.; Singh, P.; Li, H.; Song, Q.; Li, Y. Diversity of nitrogen-fixing rhizobacteria associated with sugarcane, a comprehensive study of plant-microbe interactions for growth enhancement in Saccharum spp. BMC Plant Biol. 2020, 20, 220. [Google Scholar] [CrossRef]
- Yang, W.; Xu, Q.; Liu, H.; Wang, Y.; Wang, Y.; Yang, H.; Guo, J. Evaluation of biological control agents against Ralstonia wilt on ginger. Biol. Control. 2012, 62, 144–151. [Google Scholar] [CrossRef]
- Farina, R.; Beneduzi, A.; Ambrosini, A.; Campos, S.B.; Lisboa, B.B.; Wendisch, V.; Vargas, L.K.; Passaglia, L.M.P. Diversity of plant growth-promoting rhizobacteria communities associated with the stages of canola growth. Appl. Soil Ecol. 2012, 55, 44–52. [Google Scholar] [CrossRef]
- Olanrewaju, O.; Glick, B.R.; Babalola, O.O. Mechanisms of action of plant growth promoting bacteria. World J. Microbiol. Biotechnol. 2017, 33, 197. [Google Scholar] [CrossRef]
- Mia, M.; Zulkifli, S.; Maziah, M. Use of plant growth promoting bacteria in banana: A new insight for sustainable banana production. Int. J. Agric. Biol. 2010, 12, 459–467. [Google Scholar]
- Hesse, C.N.; Schulz, F.; Bull, C.T.; Shaffer, B.T.; Yan, Q.; Shapiro, N.; Hassan, K.A.; Varghese, N.; Elbourne, L.D.H.; Paulsen, I.T.; et al. Genome-based evolutionary history of Pseudomonas spp. Environ. Microbiol. 2018, 20, 2142–2159. [Google Scholar] [CrossRef] [PubMed]
- Mendes, R.; Pizzirani-Kleiner, A.A.; Araujo, W.L.; Raaijmakers, J.M. Diversity of cultivated endophytic bacteria from sugarcane, genetic and biochemical characterization of Burkholderia cepacia complex isolates. Appl. Environ. Microbiol. 2007, 73, 7259–7267. [Google Scholar] [CrossRef]
- Singh, P.; Singh, R.K.; Guo, D.; Sharma, A.; Singh, R.N.; Li, D.; Malviya, M.K.; Song, X.; Lakshmanan, P.; Yang, L.; et al. Whole genome analysis of sugarcane root-associated endophyte Pseudomonas aeruginosa B18-a plant growth-promoting bacterium with antagonistic potential against Sporisorium scitamineum. Front. Microbiol. 2021, 12, 628376. [Google Scholar] [CrossRef] [PubMed]
- Raaijmakers, J.M.; Mazzola, M. Diversity and natural functions of antibiotics produced by beneficial and pathogenic soil bacteria. Annu. Rev. Phytopathol. 2012, 50, 403–424. [Google Scholar] [CrossRef] [PubMed]
- Ma, M.C.; Jiang, X.; Cao, M.F.; Li, J. Risk analysis and management measure on microorganism in microbial organic fertilizers. Qual. Saf. AgroProducts 2019, 6, 57–61. (In Chinese) [Google Scholar]
- Singh, P.; Singh, R.K.; Zhou, Y.; Wang, J.; Jiang, Y.; Shen, N.; Wang, Y.; Yang, L.; Jiang, M. Unlocking the strength of plant growth-promoting Pseudomonas in improving crop productivity in normal and challenging environments: A review. J. Plant Interact. 2022, 17, 220–238. [Google Scholar] [CrossRef]
- Singh, R.K.; Kumar, D.P.; Singh, P.; Solanki, M.K.; Srivastava, S.; Kashyap, P.L.; Kumar, S.; Srivastava, A.K.; Singhal, P.K.; Arora, D.K. Multifarious plant growth promoting characteristics of chickpea rhizosphere associated Bacilli help to suppress soil-borne pathogens. Plant Growth Regul. 2013, 73, 91–101. [Google Scholar] [CrossRef]
- Espinel-Ingroff, A.; Pfaller, M.; Messer, S.A.; Knapp, C.C.; Killian, S.; Norris, H.A.; Ghannoum, M.A. Multicenter comparison of the sensititre Yeast One Colorimetric Antifungal Panel with the National Committee for Clinical Laboratory standards M27-A reference method for testing clinical isolates of common and emerging Candida spp., Cryptococcus spp., and other yeasts and yeast-like organisms. J. Clin. Microbiol. 1999, 37, 591–595. [Google Scholar]
- Schwyn, B.; Neilands, J.B. Universal chemical assay for the detection and determination of siderophores. Anal. Biochem. 1987, 160, 47–56. [Google Scholar] [CrossRef]
- Hu, Q.P.; Xu, J.G. A simple double-layered chrome azurol S agar (SDCASA) plate assay to optimize the production of siderophores by a potential biocontrol agent Bacillus. Afr. J. Microbiol. Res. 2011, 5, 4321–4327. [Google Scholar]
- Dey, R.; Pal, K.K.; Bhatt, D.M.; Chauhan, S.M. Growth promotion and yield enhancement of peanut (Arachis hypogaea L.) by application of plant growth promoting rhizobacteria. Microbiol. Res. 2004, 159, 391–394. [Google Scholar] [CrossRef] [PubMed]
- Goswami, D.; Dhandhukia, P.; Patel, P.; Thakker, J.N. Screening of PGPR from saline desert of Kutch: Growth promotion in Arachis hypogea by Bacillus licheniformis A2. Microbiol. Res. 2014, 169, 66–75. [Google Scholar] [CrossRef] [PubMed]
- Pikovskaya, R.I. Mobilization of phosphorus in soil in connection with the vital activity of some of the microbial species. Microbiology 1948, 17, 362–370. [Google Scholar]
- Mehta, S.; Nautiyal, C.S. An efficient method for qualitative screening of phosphate-solubilizing bacteria. Curr. Microbiol. 2001, 43, 51–56. [Google Scholar] [CrossRef] [PubMed]
- Lorck, H. Production of hydrocyanic acid by bacteria. Physiol. Plant. 1948, 1, 142–146. [Google Scholar] [CrossRef]
- Glickmann, E.; Dessaux, Y.A. Critical examination of the specificity of the salkowski reagent for indolic compounds produced by phytopathogenic bacteria. Appl. Environ. Microbiol. 1995, 61, 793–796. [Google Scholar] [CrossRef] [PubMed]
- Honma, M.; Shimomura, T. Metabolism of 1-aminocyclopropane-1-carboxylic acid. Agric. Biol. Chem. 1978, 42, 1825–1831. [Google Scholar]
- Jacobson, C.B.; Pasternak, J.J.; Glick, B.R. Partial purification and characterization of 1-aminocyclopropane-1-carboxylate deaminase from the plant growth promoting rhizobacterium Pseudomonas putida GR12-2. Can. J. Microbiol. 1994, 40, 1019–1025. [Google Scholar] [CrossRef]
- Li, H.; Singh, R.K.; Singh, P.; Song, Q.; Xing, Y.; Yang, L.; Li, Y. Genetic diversity of nitrogen-fixing and plant growth promoting Pseudomonas species isolated from sugarcane rhizosphere. Front. Microbiol. 2017, 8, 1268. [Google Scholar] [CrossRef]
- Singh, P.; Singh, R.K.; Li, H.; Guo, D.; Sharma, A.; Lakshmanan, P.; Malviya, M.K.; Song, X.; Solanki, M.K.; Verma, K.K.; et al. Diazotrophic bacteria Pantoea dispersa and Enterobacter asburiae promote sugarcane growth by inducing nitrogen uptake and defense-related gene expression. Front. Microbiol. 2021, 11, 600417. [Google Scholar] [CrossRef]
- Edwards, U.; Rogall, T.H.; Blocker, H.; Emde, M.; Bottger, E.C. Isolation and direct complete nucleotide determination of entire genes. Characterization of a gene coding for 16S ribosomal RNA. Nucleic Acids Res. 1989, 17, 7843–7853. [Google Scholar] [CrossRef]
- Saitou, N.; Nei, M. The neighbor-joining method, a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 1987, 4, 406–425. [Google Scholar]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7, molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef]
- Husson, E.; Hadad, C.; Huet, G.; Laclef, S.; Lesur, D.; Lambertyn, V.; Jamali, A.; Gottis, S.; Sarazin, C.; Nguyen, V.N.A. The effect of room temperature ionic liquids on the selective biocatalytic hydrolysis of chitin via sequential or simultaneous strategies. Green. Chem. 2017, 19, 4122–4131. [Google Scholar] [CrossRef]
- Orozco-Mosqueda, M.; del Carmen, R.G.M.; Glick, B.R.; Santoyo, G. Microbiome engineering to improve biocontrol and plant growth-promoting mechanisms. Microbiol. Res. 2018, 208, 25–31. [Google Scholar] [CrossRef] [PubMed]
- Wielbo, J.; Marek-Kozaczuk, M.; Kubik-Komar, A.; Skorupska, A. Increased metabolic potential of Rhizobium spp. is associated with bacterial competitiveness. Can. J. Microbiol. 2007, 53, 957–967. [Google Scholar] [CrossRef]
- Weller, D.M. Biological control of soilborne plant pathogens in the rhizosphere with bacteria. Annu. Rev. Phytopathol. 1988, 26, 379–407. [Google Scholar] [CrossRef]
- Lucy, M.; Reed, E.; Glick, B.R. Applications of free living plant growth-promoting rhizobacteria. Antonie Van Leeuwenhoek 2004, 86, 1–25. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Munder, A.; Aravind, R.; Eapen, S.J.; Tümmler, B.; Raaijmakers, J.M. Friend or foe: Genetic and functional characterization of plant endophytic Pseudomonas aeruginosa. Environ. Microbiol. 2013, 15, 764–779. [Google Scholar] [CrossRef]
- Costa, P.B.D.; Granada, C.E.; Ambrosini, A.; Moreira, F.; de Souza, R.; dos Passos, J.F.M.; Arruda, L.; Passaglia, L.M.P. A model to explain plant growth promotion traits: A multivariate analysis of 2211 bacterial isolates. PLoS ONE 2014, 9, e116020. [Google Scholar] [CrossRef]
- Zhang, L.; Chen, W.; Jiang, Q.; Fei, Z.; Xiao, M. Genome analysis of plant growth-promoting rhizobacterium Pseudomonas chlororaphis subsp. aurantiaca JD37 and insights from comparison of genomics with three Pseudomonas strains. Microbiol. Res. 2020, 237, 126483. [Google Scholar] [CrossRef] [PubMed]
- Joe, M.M.; Devaraj, S.; Benson, A.; Sa, T. Isolation of phosphate solubilizing endophytic bacteria from Phyllanthus mares Schum & Thonn: Evaluation of plant growth promotion and antioxidant activity under salt stress. J. Appl. Res. Med. Aromat. Plants 2016, 3, 71–77. [Google Scholar]
- Chandra, H.; Kumari, P.; Bisht, R.; Prasad, R.; Yadav, S. Plant growth promoting Pseudomonas aeruginosa from Valeriana wallichii displays antagonistic potential against three phytopathogenic fungi. Mol. Biol. Rep. 2020, 47, 6015–6026. [Google Scholar] [CrossRef]
- Chenniappan, C.; Narayanasamy, M.; Daniel, G.M.; Ramaraj, G.B.; Ponnusamy, P.; Sekar, J.; Vaiyapuri, R.P. Biocontrol efficiency of native plant growth promoting rhizobacteria against rhizome rot disease of turmeric. Biol. Control. 2019, 129, 55–64. [Google Scholar] [CrossRef]
- Durairaj, K.; Velmurugan, P.; Park, J.H.; Chang, W.S.; Park, Y.J.; Senthilkumar, P.; Choi, K.M.; Lee, J.H.; Oh, B.T. Potential for plant biocontrol activity of isolated Pseudomonas aeruginosa and Bacillus stratosphericus strains against bacterial pathogens acting through both induced plant resistance and direct antagonism. FEMS Microbiol. Lett. 2017, 364, fnx225. [Google Scholar] [CrossRef] [PubMed]
- Nelkner, J.; Tejerizo, G.T.; Hassa, J.; Lin, T.W.; Witte, J.; Verwaaijen, B.; Winkler, A.; Bunk, B.; Spröer, C.; Overmann, J.; et al. Genetic potential of the biocontrol agent Pseudomonas brassicacearum (Formerly P. trivialis) 3Re2-7 unraveled by genome sequencing and mining, comparative genomics and transcriptomics. Genes 2019, 10, 601. [Google Scholar] [CrossRef]
- Guo, D.; Singh, R.K.; Singh, P.; Li, D.; Sharma, A.; Xing, Y.; Song, X.; Yang, L.; Li, Y. Complete genome sequence of Enterobacter roggenkampii ED5, a nitrogen fixing plant growth promoting endophytic bacterium with biocontrol and stress tolerance properties, isolated from sugarcane root. Front. Microbiol. 2020, 11, 580081. [Google Scholar] [CrossRef]
- Singh, P.; Xie, J.; Qi, Y.; Qin, Q.; Jin, C.; Wang, B.; Fang, W. A thermotolerant marine Bacillus amyloliquefaciens S185 producing iturin A5 for antifungal activity against Fusarium oxysporum f. sp. cubense. Mar. Drugs 2021, 19, 516. [Google Scholar] [CrossRef]
- Rijavec, T.; Lapanje, A. Hydrogen cyanide in the rhizosphere: Not suppressing plant pathogens, but rather regulating availability of phosphate. Front. Microbiol. 2016, 7, 1785. [Google Scholar] [CrossRef]
- Hayat, R.; Ahmed, I.; Sheirdil, R.A. An overview of plant growth promoting rhizobacteria (PGPR) for sustainable agriculture. Crop Prod. Agric. Improv. 2012, 27, 557–579. [Google Scholar]
- Goswami, D.; Patel, K.; Parmar, S.; Vaghela, H.; Muley, N.; Dhandhukia, P.; Thakker, J.N. Elucidating multifaceted urease producing marine Pseudomonas aeruginosa BG as a cogent PGPR and bio-control agent. Plant Growth Regul. 2015, 75, 253–263. [Google Scholar] [CrossRef]
- Sekhar, A.C.; Pious, T. Isolation and identification of shoot-tip associated endophytic bacteria from banana cv. Grand Naine and testing for antagonistic activity against Fusarium oxysporum f. sp. cubense. Am. J. Plant Sci. 2015, 6, 943–954. [Google Scholar] [CrossRef]
- Yu, C.; Xiao, R.; Liu, B.; Lin, N.; Chen, L. Endophytic colonization of biocontrol bacterium FJAT-346-PA and its efficiency against banana Fusarium wilt. Acta Phytophylacica Sin. 2010, 37, 493–498. [Google Scholar]
- Sowanpreecha, R.; Rerngsamran, P. Biocontrol of Orchid-pathogenic Mold, Phytophthora palmivora, by Antifungal Proteins from Pseudomonas aeruginosa RS1. Mycobiology 2018, 46, 129–137. [Google Scholar] [CrossRef] [PubMed]
- Illakkiam, D.; Ponraj, P.; Shankar, M.; Muthusubramanian, S.; Rajendhran, J.; Gunasekaran, P. Identification and structure elucidation of a novel antifungal compound produced by Pseudomonas aeruginosa PGPR2 against Macrophomina phaseolina. Appl. Biochem. Biotechnol. 2013, 171, 2176–2185. [Google Scholar] [CrossRef]
- Jayaseelan, S.; Ramaswamy, D.; Dharmaraj, S. Pyocyanin: Production, applications, challenges and new insights. World J. Microbiol. Biotechnol. 2014, 30, 1159–1168. [Google Scholar] [CrossRef] [PubMed]
- Rekadwad, B.; Maske, V.; Khobragade, C.N.; Kasbe, P.S. Production and evaluation of mono- and di-rhamnolipids produced by Pseudomonas aeruginosa VM011. Data Brief 2019, 3, 24. [Google Scholar] [CrossRef]
- Simionato, A.S.; Navarro, M.O.P.; Jesus, M.L.A.; Barazetti, A.R.; Silva, C.S.; Simões, G.C.; Balbi-Peña, M.I.; Mello, J.C.P.; Panagio, L.A.; Almeida, R.S.C.; et al. The Effect of Phenazine-1-Carboxylic Acid on Mycelial Growth of Botrytis cinerea Produced by Pseudomonas aeruginosa LV Strain. Front. Microbiol. 2017, 14, 8. [Google Scholar] [CrossRef]
- Shanmugaiah, V.; Mathivanan, N.; Varghese, B. Purification, crystal structure and antimicrobial activity of phenazine-1-carboxamide produced by a growth-promoting biocontrol bacterium, Pseudomonas aeruginosa MML2212. J. Appl. Microbiol. 2010, 108, 703–711. [Google Scholar] [CrossRef]
- Mazur, A.; Stasiak, G.; Wielbo, J.; Koper, P.; Kubik-Komar, A.; Skorupska, A. Phenotype profiling of Rhizobium leguminosarum bv. trifolii clover nodule isolates reveal their both versatile and specialized metabolic capabilities. Arch. Microbiol. 2013, 195, 255–267. [Google Scholar] [CrossRef]
- Timmusk, S.; Grantcharova, N.; Wagner, G.H. Paenibacillus polymyxa invades plant roots and forms biofilms. Appl. Environ. Microbiol. 2005, 71, 7292–7300. [Google Scholar] [CrossRef] [PubMed]
Parameters | P. aeruginosa 91 |
---|---|
Plant Growth-Promoting Traits | |
Siderophore production | 85.21 ± 0.06 PSU |
Phosphate solubilization | 1.38 ± 0.03 PSI |
Ammonia production | 5.53 ± 0.07 µmoL mL−1 |
HCN production | + |
1-Aminocyclopropane-1-carboxylic deaminase activity | 519.28 ± 6.58 nmoL α-ketobutyrate mg−1 h−1 |
Indole Acetic Acid (µg mL−1) | |
Absence of Tryptophan | 49.53 ± 1.48 |
Presence of Tryptophan (0.5 %) | 175.96 ± 1.63 |
Hydrolytic Enzyme Production (IU mL−1) | |
Cellulase | 451.23 ± 5.37 |
Protease | 143.56 ± 1.82 |
Chitinase | 495.43 ± 5.32 |
Glucanase | 665.76 ± 10.84 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, J.; Singh, P.; Qi, Y.; Singh, R.K.; Qin, Q.; Jin, C.; Wang, B.; Fang, W. Pseudomonas aeruginosa Strain 91: A Multifaceted Biocontrol Agent against Banana Fusarium Wilt. J. Fungi 2023, 9, 1047. https://doi.org/10.3390/jof9111047
Xie J, Singh P, Qi Y, Singh RK, Qin Q, Jin C, Wang B, Fang W. Pseudomonas aeruginosa Strain 91: A Multifaceted Biocontrol Agent against Banana Fusarium Wilt. Journal of Fungi. 2023; 9(11):1047. https://doi.org/10.3390/jof9111047
Chicago/Turabian StyleXie, Jin, Pratiksha Singh, Yanhua Qi, Rajesh Kumar Singh, Qijian Qin, Cheng Jin, Bin Wang, and Wenxia Fang. 2023. "Pseudomonas aeruginosa Strain 91: A Multifaceted Biocontrol Agent against Banana Fusarium Wilt" Journal of Fungi 9, no. 11: 1047. https://doi.org/10.3390/jof9111047
APA StyleXie, J., Singh, P., Qi, Y., Singh, R. K., Qin, Q., Jin, C., Wang, B., & Fang, W. (2023). Pseudomonas aeruginosa Strain 91: A Multifaceted Biocontrol Agent against Banana Fusarium Wilt. Journal of Fungi, 9(11), 1047. https://doi.org/10.3390/jof9111047