ApWD40a, a Member of the WD40-Repeat Protein Family, Is Crucial for Fungal Development, Toxin Synthesis, and Pathogenicity in the Ginseng Alternaria Leaf Blight Fungus Alternaria panax
<p>Structure analysis of ApWD40a in <span class="html-italic">A. panax</span>. (<b>A</b>) Primary structure of ApWD40a predicted by SMART. The WD40 repeat domains are indicated in blue. (<b>B</b>) Phylogenetic tree analysis of ApWD40a proteins. The following WD40a proteins were utilized for the construction of the phylogenetic tree: <span class="html-italic">Magnaporthe oryzae</span> XP_003709713.1; <span class="html-italic">Neurospora crassa</span> XP_963156.3; <span class="html-italic">Fusarium oxysporum</span> EGU75440.1; <span class="html-italic">Trichoderma gamsii</span> XP_018663274.1; <span class="html-italic">Colletotrichum gloeosporioides</span> EQB52344.1; <span class="html-italic">Sclerotinia sclerotiorum</span> XP_001597417.1; <span class="html-italic">Aspergillus nidulans</span> XP_658660.1; <span class="html-italic">Pyrenophora teres</span> EFQ89095.1; <span class="html-italic">Alternaria panax</span> JY15; <span class="html-italic">Alternaria alternata</span> KAH6846796.1; <span class="html-italic">Alternaria tenuissima</span> RYN38094.1; <span class="html-italic">Saccharomyces cerevisiae</span> NP_012218.1; <span class="html-italic">Candida albicans</span> XP_717966.1.</p> "> Figure 2
<p>Effects of the <span class="html-italic">ApWD40a</span> gene on the mycelial growth and conidial production of <span class="html-italic">A. panax</span>. (<b>A</b>) Colony characteristics of the wild-type JY15, Δ<span class="html-italic">Apwd40a</span>, and Δ<span class="html-italic">Apwd40a-C</span> on PDA, V8, CM, MM, or OA media after 8 d of cultivation at 25 °C. (<b>B</b>) Colony diameter of the wild-type JY15, Δ<span class="html-italic">Apwd40a</span>, and Δ<span class="html-italic">Apwd40a-C</span> on different media after 8 d of cultivation at 25 °C. (<b>C</b>) Conidial production of the wild-type JY15, Δ<span class="html-italic">Apwd40a</span>, and Δ<span class="html-italic">Apwd40a-C</span> on V8 after 15 d of cultivation at 25 °C. Each experiment was performed for three independent replicates. The error bars represent the standard deviations. Distinct lowercase letters denote statistically significant differences at the <span class="html-italic">p</span> < 0.05 threshold, as determined by Tukey’s honestly significant difference test. Bar: 1 cm.</p> "> Figure 3
<p>Carbon source utilization of the wild-type JY15, Δ<span class="html-italic">Apwd40a</span>, and Δ<span class="html-italic">Apwd40a-C</span> strains. (<b>A</b>) Colony characteristics of different strains on MM supplemented with 2% glucose, 2% sucrose, 2% glycerol, 2% starch, and 2% xylose after 8 d of cultivation at 25 °C. (<b>B</b>) Colony diameter of the wild-type JY15 and its derivative strains on MM with assorted carbon substrates. Each experiment was performed for three independent replicates. The error bars represent the standard deviations. Distinct lowercase letters denote statistically significant differences at the <span class="html-italic">p</span> < 0.05 threshold, as determined by Tukey’s honestly significant difference test. Bar: 1 cm.</p> "> Figure 4
<p>Roles of the <span class="html-italic">ApWD40a</span> gene in different stress responses of <span class="html-italic">A. panax</span> strains. (<b>A</b>) Colony characteristics of the wild-type JY15, Δ<span class="html-italic">Apwd40a</span>, and Δ<span class="html-italic">Apwd40a-C</span> on MM supplemented with sorbitol (1 M), NaCl (0.7 M), KCl (0.6 M), H<sub>2</sub>O<sub>2</sub> (10 mM), paraquat (3 mM), Congo red (0.2 mg/mL), or SDS (0.01%) after 8 d of cultivation at 25 °C. (<b>B</b>) Growth inhibition rates of the wild-type JY15, Δ<span class="html-italic">Apwd40a</span>, and Δ<span class="html-italic">Apwd40a-C</span> on MM with various stress-inducing agents. Each experiment was performed for three independent replicates. The error bars represent the standard deviations. Distinct lowercase letters denote statistically significant differences at the <span class="html-italic">p</span> < 0.05 threshold, as determined by Tukey’s honestly significant difference test. Bar: 1 cm.</p> "> Figure 5
<p>Pathogenicity assays of <span class="html-italic">A. panax</span> strains. (<b>A</b>) Virulence assays on detached ginseng leaves. Agar plugs of the wild-type JY15, Δ<span class="html-italic">Apwd40a</span>, and Δ<span class="html-italic">Apwd40a-C</span> strains with grown mycelia were inoculated on ginseng leaves and cultured in a moist chamber for 7 d. PDA agar plugs were used as the control. (<b>B</b>) Virulence assays on ginseng roots. Agar plugs of the wild-type Y15, Δ<span class="html-italic">Apwd40a</span>, and Δ<span class="html-italic">Apwd40a-C</span> strains with grown mycelia were inoculated on ginseng roots and cultured in a moist chamber for 7 d at 25 °C. The ginseng roots were cut along their length and recorded. PDA plugs were used as the control. Each experiment was performed for three independent replicates. (<b>C</b>) Penetration ability of <span class="html-italic">A. panax</span> strains against a cellophane membrane. Fungal discs of the strains were inoculated on MM plates covered with cellophane membranes and cultivated at 25 °C for 4 d. Following the removal of the membranes and the mycelial inoculants, the plates were incubated at 25 °C for an additional 3 d to assess the colonization of the mycelium that had penetrated the media. (<b>D</b>) Hydrophobicity test of <span class="html-italic">A. panax</span> strains. The hydrophobicity of the wild-type JY15, Δ<span class="html-italic">Apwd40a</span>, and Δ<span class="html-italic">Apwd40a-C</span> strains was assessed by placing 20 μL of a solution containing 0.02% SDS and 0.5 mM EDTA on the colony surface. Photographs were recorded after 12 h of incubation. Each experiment was performed for three independent replicates. Bar: 1 cm.</p> "> Figure 6
<p>Melanin accumulation and toxin determination of <span class="html-italic">A. panax</span> strains. (<b>A</b>) Melanin accumulation in <span class="html-italic">A. panax</span> strains grown in PDB. (<b>B</b>) Melanin content in the mycelia of the wild-type JY15, Δ<span class="html-italic">Apwd40a</span>, and Δ<span class="html-italic">Apwd40a-C</span> strains. (<b>C</b>) HPLC analysis of the <span class="html-italic">A. panax</span> toxin tyrosol. Arrows indicate the tyrosol peaks for the wild-type JY15 (red) and the Δ<span class="html-italic">Apwd40a</span> mutant (blue). Each experiment was performed for three independent replicates. The error bars represent the standard deviations. Distinct lowercase letters denote statistically significant differences at the <span class="html-italic">p</span> < 0.05 threshold, as determined by Tukey’s honestly significant difference test.</p> "> Figure 7
<p>Differential transcriptome analysis between the wild-type JY15 and the Δ<span class="html-italic">Apwd40a</span> mutant. (<b>A</b>) A graphical representation of gene expression disparities, highlighting the contrast between the wild-type JY15 and the Δ<span class="html-italic">Apwd40a</span> mutant, is depicted in a volcano plot. In this plot, the horizontal axis corresponds to the log<sub>2</sub>FoldChange of the gene expression, while the vertical axis corresponds to the −log<sub>10</sub>(<span class="html-italic">p</span>-value), signifying statistical significance. Genes that exhibited significant upregulation [log<sub>2</sub>FoldChange > 0 and <span class="html-italic">p</span>-value < 0.05] or downregulation [log<sub>2</sub>FoldChange < 0 and <span class="html-italic">p</span>-value < 0.05] in the Δ<span class="html-italic">Apwd40a</span> mutant are marked with red and green dots, respectively. Genes that remained unchanged are depicted as light blue dots. (<b>B</b>) qRT-PCR was conducted to affirm the expression patterns of 15 DEGs randomly selected from the Δ<span class="html-italic">Apwd40a</span> mutant strain. (<b>C</b>) Results of the GO and KEGG enrichment analyses of DEGs between the wild-type JY15 and the Δ<span class="html-italic">Apwd40a</span> mutant. The number of DEGs is shown next to the columns, with the <span class="html-italic">p</span>-values indicated in parentheses. Each qRT-PCR experiment was performed for three independent replicates. The error bars represent the standard deviations.</p> "> Figure 8
<p>The differential expression patterns of gene clusters related to secondary metabolite biosynthesis in the Δ<span class="html-italic">Apwd40a</span> mutant. Each box represents an individual gene. Genes that exhibited a significant increase in expression, characterized by log<sub>2</sub>FoldChange > 1 and <span class="html-italic">p-</span>value < 0.05, are denoted by red dots; conversely, those that showed a significant decrease in expression, with a log<sub>2</sub>FoldChange < −1 and <span class="html-italic">p-</span>value < 0.05, are indicated by green dots. Genes with moderate upregulation [log<sub>2</sub>FoldChange > 0 and <span class="html-italic">p-</span>value < 0.05] and downregulation [log<sub>2</sub>FoldChange < 0 and <span class="html-italic">p-</span>value < 0.05] are represented by pink and light green dots, respectively.</p> "> Figure 9
<p>Different effects of <span class="html-italic">ApSulP2</span> on mycelia growth and sulfate utilization of <span class="html-italic">A. panax</span>. (<b>A</b>) Colony characteristics of the wild-type JY15 and Δ<span class="html-italic">Apsulp2</span> on PDA and regular MM after an 8 d cultivation. (<b>B</b>) Colony diameter of the wild-type JY15 and Δ<span class="html-italic">Apsulp2</span> on PDA and regular MM. (<b>C</b>) Colony characteristics of the wild-type JY15 and Δ<span class="html-italic">Apsulp2</span> on sulfate-free MM (MM-S) plates and MM-S with low (0.1 mM Na<sub>2</sub>SO<sub>4</sub>) and high (2 mM Na<sub>2</sub>SO<sub>4</sub>) doses of sulfate. (<b>D</b>) Colony diameter of the wild-type JY15 and Δ<span class="html-italic">Apsulp2</span> on MM-S plates and MM-S with low (0.1 mM Na<sub>2</sub>SO<sub>4</sub>) and high (2 mM Na<sub>2</sub>SO<sub>4</sub>) doses of sulfate. (<b>E</b>) Biomass of the wild-type JY15 and Δ<span class="html-italic">Apsulp2</span> on liquid MM-S and MM-S with low (0.1 mM Na<sub>2</sub>SO<sub>4</sub>) and high (2 mM Na<sub>2</sub>SO<sub>4</sub>) doses of sulfate. The biomasses of different strains were determined by the TCA method and in terms of the DNA content. Each experiment (<b>B</b>,<b>D</b>,<b>E</b>) was performed for three independent replicates. The error bars represent the standard deviations. Distinct lowercase letters denote statistically significant differences at the <span class="html-italic">p</span> < 0.05 threshold, as determined by Tukey’s honestly significant difference test. Bar: 1 cm.</p> "> Figure 10
<p>Pathogenicity assays of <span class="html-italic">A. panax</span> strains. (<b>A</b>,<b>B</b>) Pathogenicity analysis of the wild-type JY15 and Δ<span class="html-italic">Apsulp2</span> on ginseng leaves and roots. Agar plugs of the wild-type JY15 and Δ<span class="html-italic">Apsulp2</span> with grown mycelia were inoculated on detached ginseng leaves or roots and cultured in a moist chamber for 7 d. The ginseng roots were cut along their length and observed. PDA plugs were used as the control. (<b>C</b>) Penetration ability of the wild-type JY15 and Δ<span class="html-italic">Apsulp2</span> against a cellophane membrane. Three replicates were set up for each strain. Bar: 1 cm.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fungal Strains, Growth Conditions, and Media
2.2. Disruption and Complementation of the ApWD40a Gene
2.3. Genetic Manipulation
2.4. Real-Time Quantitative PCR
2.5. Assays for Vegetative Growth and Utilization of Different Carbon Sources
2.6. Growth Under Different Stress Conditions
2.7. Penetration Ability and Surface Hydrophobicity Assays
2.8. Determination of Melanin Content
2.9. Determination of Mycotoxin Tyrosol
2.10. Pathogenicity Analysis
2.11. Transcriptome Sequencing
2.12. DEG Analysis
2.13. GO and KEGG Enrichment Analysis of DEGs
2.14. Determination of Biomass
2.15. Statistical Analysis
3. Results
3.1. Identification of ApWD40a and Targeted Gene Disruption of ApWD40a in A. panax
3.2. Deletion of ApWD40a Resulted in Defective Vegetative Growth of A. panax
3.3. ApWD40a Was Involved in Carbon Source Utilization of A. panax
3.4. ApWD40a Played Various Roles in Stress Responses of A. panax
3.5. ApWD40a Was Important for the Pathogenicity of A. panax
3.6. ApWD40a Did Not Affect Penetration Ability or Hydrophobicity of A. panax
3.7. Melanin Synthesis Was Impaired in A. panax
3.8. ApWD40a Was Crucial for Toxin Synthesis of A. panax
3.9. Comparative Transcriptome Analysis Revealed the Comprehensive Regulatory Functions That Defined the Global Regulatory Role of ApWD40a in A. panax
3.10. ApSulP2 Participated in Sulfate Transport but Did Not Influence Pathogenicity of A. panax
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Potenza, M.A.; Montagnani, M.; Santacroce, L.; Charitos, I.A.; Bottalico, L. Ancient herbal therapy: A brief history of Panax ginseng. J. Ginseng. Res. 2023, 47, 359–365. [Google Scholar] [CrossRef] [PubMed]
- Lu, B.H.; Wang, X.H.; Wang, R.; Wang, X.; Yang, L.N.; Liu, L.P.; Yang, C.; Gao, J.; Liu, X.N. First report of Botrytis pelargonii causing postharvest gray mold on fresh ginseng roots in China. Plant Dis. 2019, 103, 149. [Google Scholar] [CrossRef]
- Putnam, M.; du Toit, L. First report of alternaria blight caused by Alternaria panax on ginseng (Panax quinquefolius) in Oregon and Washington, USA. Plant Pathol. 2003, 52, 406. [Google Scholar] [CrossRef]
- Gao, J.; Wang, Y.; Guan, Y.M.; Chen, C.Q. Fusarim cerealis, a new pathogen causing ginseng (Panax ginseng) root rot in China. Plant Dis. 2014, 98, 1433. [Google Scholar] [CrossRef]
- Gao, J.; Yang, M.J.; Xie, Z.; Lu, B.H.; Hsiang, T.; Liu, L.P. Morphological and molecular identification and pathogenicity of Alternaria spp. associated with ginseng in Jilin province, China. Can. J. Plant Pathol. 2021, 43, 537–550. [Google Scholar] [CrossRef]
- Deng, J.X.; Paul, N.C.; Park, M.S.; Yu, S.H. Molecular characterization, morphology, and pathogenicity of Alternaria panax from araliaceous plants in Korea. Mycol. Prog. 2013, 12, 383–396. [Google Scholar] [CrossRef]
- Wang, R.; Long, Z.; Liang, X.; Guo, S.; Ning, N.; Yang, L.; Wang, X.; Lu, B.; Gao, J. The role of a β-1, 3-1, 4-glucanase derived from Bacillus amyloliquefaciens FS6 in the protection of ginseng against Botrytis cinerea and Alternaria panax. Biol. Control 2021, 164, 104765. [Google Scholar] [CrossRef]
- Sun, Z.; Yang, L.; Zhang, L.; Han, M. An investigation of Panax ginseng Meyer growth promotion and the biocontrol potential of antagonistic bacteria against ginseng black spot. J. Ginseng. Res. 2018, 42, 304–311. [Google Scholar] [CrossRef]
- Chen, H.; Liu, J.; Hu, L.; Yang, J.; Wang, Y.; Sun, W.; Wang, R.; Ding, G.; Li, Y. Mycotoxins from Alternaria panax, the specific plant pathogen of Panax ginseng. Mycology 2024, 14, 381–392. [Google Scholar] [CrossRef]
- Yang, C.; Sun, J.; Wu, Z.; Jiang, M.; Li, D.; Wang, X.; Zhou, C.; Liu, X.; Ren, Z.; Wang, J.; et al. FoRSR1 is important for conidiation, fusaric acid production, and pathogenicity in Fusarium oxysporum f. sp. ginseng. Phytopathology 2023, 113, 1244–1253. [Google Scholar] [CrossRef]
- Zhang, S.; Han, J.; Liu, N.; Sun, J.; Chen, H.; Xia, J.; Ju, H.; Liu, S. Botrytis cinerea hypovirulent strain ΔBcSpd1 induced Panax ginseng defense. J. Ginseng. Res. 2023, 47, 773–783. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Min, J. Structure and function of WD40 domain proteins. Protein Cell 2011, 2, 202–214. [Google Scholar] [CrossRef] [PubMed]
- Murzin, A.G. Structural principles for the propeller assembly of beta-sheets: The preference for seven-fold symmetry. Proteins 1992, 14, 191–201. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.J.; Li, T.; Wang, Y.; Xiong, Y.; Wu, X.H.; Zhang, D.L.; Ye, Z.Q.; Wu, Y.D. Prokaryotic and highly-repetitive WD40 proteins: A systematic study. Sci. Rep. 2017, 7, 10585. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Bruinstroop, E.; Hollenberg, A.N.; Fliers, E.; Boelen, A. The role of WD40 repeat-containing proteins in endocrine (dys) function. J. Mol. Endocrinol. 2023, 71, e220217. [Google Scholar] [CrossRef]
- Liang, C.; Cai, Q.; Wang, F.; Li, S.; You, C.; Xu, C.; Gao, L.; Cao, D.; Lan, T.; Zhang, B.; et al. Arabidopsis RBV is a conserved WD40 repeat protein that promotes microRNA biogenesis and ARGONAUTE1 loading. Nat. Commun. 2022, 13, 1217. [Google Scholar] [CrossRef]
- Meng, L.; Su, H.; Qu, Z.; Lu, P.; Tao, J.; Li, H.; Zhang, J.; Zhang, W.; Liu, N.; Cao, P.; et al. Genome-wide identification and analysis of WD40 proteins reveal that NtTTG1 enhances drought tolerance in tobacco (Nicotiana tabacum). BMC Genomics 2024, 25, 133. [Google Scholar] [CrossRef]
- Huang, J.; Wang, M.M.; Bao, Y.M.; Sun, S.J.; Pan, L.J.; Zhang, H.S. SRWD: A novel WD40 protein subfamily regulated by salt stress in rice (Oryzasativa L.). Gene 2008, 424, 71–79. [Google Scholar] [CrossRef]
- Kong, D.; Li, M.; Dong, Z.; Ji, H.; Li, X. Identification of TaWD40D, a wheat WD40 repeat-containing protein that is associated with plant tolerance to abiotic stresses. Plant Cell Rep. 2015, 34, 395–410. [Google Scholar] [CrossRef]
- Chen, C.; Yang, Y.; Pan, L.; Xia, W.; Xu, L.; Hua, B.; Zhang, Z.; Miao, M. Genome-wide identification of WD40 proteins in Cucurbita maxima reveals its potential functions in fruit development. Genes 2023, 14, 220. [Google Scholar] [CrossRef]
- Gong, X.; Li, J.; Shao, W.; Wu, J.; Qian, H.; Ren, R.; Espenshade, P.; Yan, N. Structure of the WD40 domain of SCAP from fission yeast reveals the molecular basis for SREBP recognition. Cell Res. 2015, 25, 401–411. [Google Scholar] [CrossRef] [PubMed]
- Natorff, R.; Piotrowska, M.; Paszewski, A. The Aspergillus nidulans sulphur regulatory gene sconB encodes a protein with WD40 repeats and an F-box. Mol. Gen. Genet. 1998, 257, 255–263. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Paietta, J.V. The sulfur controller-2 negative regulatory gene of Neurospora crassa encodes a protein with beta-transducin repeats. Proc. Natl. Acad. Sci. USA 1995, 92, 3343–3347. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Zhai, S.; Sun, Y.; Li, M.; Dong, Y.; Wang, X.; Zhang, H.; Zheng, X.; Wang, P.; Zhang, Z. MoTup1 is required for growth, conidiogenesis and pathogenicity of Magnaporthe oryzae. Mol. Plant Pathol. 2015, 16, 799–810. [Google Scholar] [CrossRef] [PubMed]
- Xie, X.; Wang, Y.; Jin, S.; He, L.; Jia, Z.; Huang, B. MrCreC, a carbon catabolite repression gene, is required for the growth, conidiation, stress tolerance and virulence of Metarhizium robertsii. J. Invertebr. Pathol. 2023, 201, 108009. [Google Scholar] [CrossRef]
- Wang, L.; Berndt, P.; Xia, X.; Kahnt, J.; Kahmann, R. A seven-WD40 protein related to human RACK1 regulates mating and virulence in Ustilago maydis. Mol. Microbiol. 2011, 81, 1484–1498. [Google Scholar] [CrossRef]
- Mishra, A.K.; Puranik, S.; Prasad, M. Structure and regulatory networks of WD40 protein in plants. J. Plant Biochem. Biotechnol. 2012, 21, 32–39. [Google Scholar] [CrossRef]
- Shi, D.Q.; Liu, J.; Xiang, Y.H.; Ye, D.; Sundaresan, V.; Yang, W.C. SLOW WALKER1, essential for gametogenesis in Arabidopsis, encodes a WD40 protein involved in 18S ribosomal RNA biogenesis. Plant Cell 2005, 17, 2340–2354. [Google Scholar] [CrossRef]
- Li, B.; Gao, R.; Cui, R.; Lü, B.; Li, X.; Zhao, Y.; You, Z.; Tian, S.; Dong, H. Tobacco TTG2 suppresses resistance to pathogens by sequestering NPR1 from the nucleus. J. Cell Sci. 2012, 125, 4913–4922. [Google Scholar]
- Matar, K.A.O.; Chen, X.; Chen, D.; Anjago, W.M.; Norvienyeku, J.; Lin, Y.; Chen, M.; Wang, Z.; Ebbole, D.J.; Lu, G.D. WD40-repeat protein MoCreC is essential for carbon repression and is involved in conidiation, growth and pathogenicity of Magnaporthe oryzae. Curr. Genet. 2017, 63, 685–696. [Google Scholar] [CrossRef]
- Todd, R.B.; Lockington, R.A.; Kelly, J.M. The Aspergillus nidulans creC gene involved in carbon catabolite repression encodes a WD40 repeat protein. Mol. Gen. Genet. 2000, 263, 561–570. [Google Scholar] [CrossRef] [PubMed]
- Gerbasi, V.R.; Browne, C.M.; Samir, P.; Shen, B.; Sun, M.; Hazelbaker, D.Z.; Galassie, A.C.; Frank, J.; Link, A.J. Critical role for Saccharomyces cerevisiae Asc1p in translational initiation at elevated temperatures. Proteomics 2018, 18, e1800208. [Google Scholar] [CrossRef] [PubMed]
- Yuan, L.; Su, Y.; Zhou, S.; Feng, Y.; Guo, W.; Wang, X. A RACK1-like protein regulates hyphal morphogenesis, root entry and in vivo virulence in Verticillium dahliae. Fungal Genet. Biol. 2017, 99, 52–61. [Google Scholar] [CrossRef]
- Huang, Z.; Lou, J.; Gao, Y.; Noman, M.; Li, D.; Song, F. FonTup1 functions in growth, conidiogenesis and pathogenicity of Fusarium oxysporum f. sp. niveum through modulating the expression of the tricarboxylic acid cycle genes. Microbiol. Res. 2023, 272, 127389. [Google Scholar] [CrossRef]
- de Groot, M.J.; Bundock, P.; Hooykaas, P.J.; Beijersbergen, A.G. Agrobacterium tumefaciens-mediated transformation of filamentous fungi. Nat. Biotechnol. 1998, 16, 839–842. [Google Scholar] [CrossRef]
- Liu, N.; Chen, G.Q.; Ning, G.A.; Shi, H.B.; Zhang, C.L.; Lu, J.P.; Mao, L.J.; Feng, X.X.; Liu, X.H.; Su, Z.Z.; et al. Agrobacterium tumefaciens-mediated transformation: An efficient tool for insertional mutagenesis and targeted gene disruption in Harpophora oryzae. Microbiol. Res. 2016, 182, 40–48. [Google Scholar] [CrossRef]
- Sun, D.; Cao, H.; Shi, Y.; Huang, P.; Dong, B.; Liu, X.; Lin, F.; Lu, J. The regulatory factor X protein MoRfx1 is required for development and pathogenicity in the rice blast fungus Magnaporthe oryzae. Mol. Plant. Pathol. 2017, 18, 1075–1088. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2 −∆∆CT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Lian, T.; Yang, T.; Liu, G.; Sun, J.; Dong, C. Reliable reference gene selection for Cordyceps militaris gene expression studies under different developmental stages and media. FEMS Microbiol. Lett. 2014, 356, 97–104. [Google Scholar] [CrossRef]
- Kim, S.; Ahn, I.P.; Rho, H.S.; Lee, Y.H. MHP1, a Magnaporthe grisea hydrophobin gene, is required for fungal development and plant colonization. Mol. Microbiol. 2005, 57, 1224–1237. [Google Scholar] [CrossRef]
- Babitskaia, V.G.; Shcherba, V.V.; Filimonova, T.V.; Grigorchuk, E.Z. Melanin pigments of the fungi Paecilomyces variotii and Aspergillus carbonarius. Prikl. Biokhim. Mikrobiol. 2000, 36, 153–159. [Google Scholar] [PubMed]
- Kim, D.; Langmead, B.; Salzberg, S.L. HISAT: A fast spliced aligner with low memory requirements. Nat. Methods 2015, 12, 357–360. [Google Scholar] [CrossRef] [PubMed]
- Liao, Y.; Smyth, G.K.; Shi, W. featureCounts: An efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 2014, 30, 923–930. [Google Scholar] [CrossRef] [PubMed]
- Anders, S.; Huber, W. Differential expression analysis for sequence count data. Genome Biol. 2010, 11, R106. [Google Scholar] [CrossRef] [PubMed]
- Yu, G.; Wang, L.G.; Han, Y.; He, Q.Y. ClusterProfiler: An R package for comparing biological themes among gene clusters. OMICS 2012, 16, 284–287. [Google Scholar] [CrossRef]
- Blin, K.; Shaw, S.; Augustijn, H.E.; Reitz, Z.L.; Biermann, F.; Alanjary, M.; Fetter, A.; Terlouw, B.R.; Metcalf, W.W.; Helfrich, E.J.N.; et al. antiSMASH 7.0: New and improved predictions for detection, regulation, chemical structures and visualisation. Nucleic Acids Res. 2023, 51, W46–W50. [Google Scholar] [CrossRef]
- Francisco, C.S.; Ma, X.; Zwyssig, M.M.; McDonald, B.A.; Palma-Guerrero, J. Morphological changes in response to environmental stresses in the fungal plant pathogen Zymoseptoria tritici. Sci. Rep. 2019, 9, 9642. [Google Scholar] [CrossRef]
- Zhu, S.; Yan, Y.; Qu, Y.; Wang, J.; Feng, X.; Liu, X.; Lin, F.; Lu, J. Role refinement of melanin synthesis genes by gene knockout reveals their functional diversity in Pyricularia oryzae strains. Microbiol. Res. 2021, 242, 126620. [Google Scholar] [CrossRef]
- Bradfield, G.; Somerfield, P.; Meyn, T.; Holby, M.; Babcock, D.; Bradley, D.; Segel, I.H. Regulation of sulfate transport in filamentous fungi. Plant Physiol. 1970, 46, 720–727. [Google Scholar] [CrossRef]
- van de Kamp, M.; Schuurs, T.A.; Vos, A.; van der Lende, T.R.; Konings, W.N.; Driessen, A.J. Sulfur regulation of the sulfate transporter genes sutA and sutB in Penicillium chrysogenum. Appl. Environ. Microbiol. 2000, 66, 4536–4538. [Google Scholar] [CrossRef]
- Zhu, J.; Jeong, J.C.; Zhu, Y.; Sokolchik, I.; Miyazaki, S.; Zhu, J.K.; Hasegawa, P.M.; Bohnert, H.J.; Shi, H.; Yun, D.J.; et al. Involvement of Arabidopsis HOS15 in histone deacetylation and cold tolerance. Proc. Natl. Acad. Sci. USA 2008, 105, 4945–4950. [Google Scholar] [CrossRef] [PubMed]
- Bradford, W.; Buckholz, A.; Morton, J.; Price, C.; Jones, A.M.; Urano, D. Eukaryotic G protein signaling evolved to require G protein-coupled receptors for activation. Sci. Signal. 2013, 6, ra37. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Liu, R.; Chen, L.; Wang, Y.; Liang, Y.; Wu, X.; Li, B.; Wu, J.; Liang, Y.; Wang, X.; et al. Nicotiana tabacum TTG1 contributes to ParA1-induced signalling and cell death in leaf trichomes. J. Cell Sci. 2009, 122, 2673–2685. [Google Scholar] [CrossRef] [PubMed]
- Jain, B.P.; Pandey, S. WD40 repeat proteins: Signalling scaffold with diverse functions. Protein J. 2018, 37, 391–406. [Google Scholar] [CrossRef]
- Simonin, A.R.; Rasmussen, C.G.; Yang, M.; Glass, N.L. Genes encoding a striatin-like protein (ham-3) and a forkhead associated protein (ham-4) are required for hyphal fusion in Neurospora crassa. Fungal Genet. Biol. 2010, 47, 855–868. [Google Scholar] [CrossRef]
- Cai, Z.D.; Chai, Y.F.; Zhang, C.Y.; Qiao, W.R.; Sang, H.; Lu, L. The Gβ-like protein CpcB is required for hyphal growth, conidiophore morphology and pathogenicity in Aspergillus fumigatus. Fungal Genet. Biol. 2015, 81, 120–131. [Google Scholar] [CrossRef]
- Noman, M.; Azizullah; Ahmed, T.; Gao, Y.; Wang, H.; Xiong, X.; Wang, J.; Lou, J.; Li, D.; Song, F. Degradation of α-Subunits, Doa1 and Doa4, are critical for growth, development, programmed cell death events, stress responses, and pathogenicity in the watermelon Fusarium wilt fungus Fusarium oxysporum f. sp. niveum. J. Agric. Food. Chem. 2023, 71, 11667–11679. [Google Scholar] [CrossRef]
- Ma, Q.Z.; Wu, H.Y.; Xie, S.P.; Zhao, B.S.; Yin, X.M.; Ding, S.L.; Guo, Y.S.; Xu, C.; Zang, R.; Geng, Y.H.; et al. BsTup1 is required for growth, conidiogenesis, stress response and pathogenicity of Bipolaris sorokiniana. Int. J. Biol. Macromol. 2022, 20, 721–732. [Google Scholar] [CrossRef]
- Meena, M.; Gupta, S.K.; Swapnil, P.; Zehra, A.; Dubey, M.K.; Upadhyay, R.S. Alternaria toxins: Potential virulence factors and genes related to pathogenesis. Front. Microbiol. 2017, 8, 1451. [Google Scholar] [CrossRef]
- Chen, Y.; Cao, Y.; Jiao, C.; Sun, X.; Gai, Y.; Zhu, Z.; Li, H. The Alternaria alternata StuA transcription factor interacting with the pH-responsive regulator PacC for the biosynthesis of host-selective toxin and virulence in citrus. Microbiol. Spectr. 2023, 11, e0233523. [Google Scholar] [CrossRef]
- Fu, H.; Chung, K.R.; Gai, Y.; Mao, L.; Li, H. The basal transcription factor II H subunit Tfb5 is required for stress response and pathogenicity in the tangerine pathotype of Alternaria alternata. Mol. Plant. Pathol. 2020, 21, 1337–1352. [Google Scholar] [CrossRef]
- Ajiro, N.; Miyamoto, Y.; Masunaka, A.; Tsuge, T.; Yamamoto, M.; Ohtani, K.; Fukumoto, T.; Gomi, K.; Peever, T.L.; Izumi, Y.; et al. Role of the host-selective ACT-toxin synthesis gene ACTTS2 encoding an enoyl-reductase in pathogenicity of the tangerine pathotype of Alternaria alternata. Phytopathology 2010, 100, 120–126. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Ma, H.; Zheng, F.; Chen, Y.; Wang, M.; Jiao, C.; Li, H.; Gai, Y. The transcription regulator ACTR controls ACT-toxin biosynthesis and pathogenicity in the tangerine pathotype of Alternaria alternata. Microbiol. Res. 2021, 248, 126747. [Google Scholar] [CrossRef] [PubMed]
- Eisenman, H.C.; Greer, E.M.; McGrail, C.W. The role of melanins in melanotic fungi for pathogenesis and environmental survival. Appl. Microbiol. Biotechnol. 2020, 104, 4247–4257. [Google Scholar] [CrossRef] [PubMed]
- Piłsyk, S.; Natorff, R.; Sieńko, M.; Paszewski, A. Sulfate transport in Aspergillus nidulans: A novel gene encoding alternative sulfate transporter. Fungal Genet. Biol. 2007, 44, 715–725. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lan, J.; Mei, S.; Du, Y.; Chi, M.; Yang, J.; Guo, S.; Chu, M.; He, R.; Gao, J. ApWD40a, a Member of the WD40-Repeat Protein Family, Is Crucial for Fungal Development, Toxin Synthesis, and Pathogenicity in the Ginseng Alternaria Leaf Blight Fungus Alternaria panax. J. Fungi 2025, 11, 59. https://doi.org/10.3390/jof11010059
Lan J, Mei S, Du Y, Chi M, Yang J, Guo S, Chu M, He R, Gao J. ApWD40a, a Member of the WD40-Repeat Protein Family, Is Crucial for Fungal Development, Toxin Synthesis, and Pathogenicity in the Ginseng Alternaria Leaf Blight Fungus Alternaria panax. Journal of Fungi. 2025; 11(1):59. https://doi.org/10.3390/jof11010059
Chicago/Turabian StyleLan, Jinling, Shengjie Mei, Yingxue Du, Meili Chi, Jiayi Yang, Shuliu Guo, Mingliang Chu, Ronglin He, and Jie Gao. 2025. "ApWD40a, a Member of the WD40-Repeat Protein Family, Is Crucial for Fungal Development, Toxin Synthesis, and Pathogenicity in the Ginseng Alternaria Leaf Blight Fungus Alternaria panax" Journal of Fungi 11, no. 1: 59. https://doi.org/10.3390/jof11010059
APA StyleLan, J., Mei, S., Du, Y., Chi, M., Yang, J., Guo, S., Chu, M., He, R., & Gao, J. (2025). ApWD40a, a Member of the WD40-Repeat Protein Family, Is Crucial for Fungal Development, Toxin Synthesis, and Pathogenicity in the Ginseng Alternaria Leaf Blight Fungus Alternaria panax. Journal of Fungi, 11(1), 59. https://doi.org/10.3390/jof11010059