Physiological and Multi-Omics Integrative Analysis Provides New Insights into Tolerance to Waterlogging Stress in Sesame (Sesamum indicum L.)
<p>Physiological changes in different kinds of sesame under waterlogging stress. (<b>A</b>–<b>F</b>). APX, GSH, POD, Pro, SS, and SP contents in different kinds of sesame under different waterlogging stresses. APX: ascorbate peroxidase; GSH: glutathione; POD: peroxidase; Pro: proline; SS: soluble sugar; SP: soluble protein. R and S represent two types of sesame: R is waterlogging-tolerant, and S is waterlogging-intolerant. One-way ANOVA processing was used for significance analysis; different lowercase letters indicate that there are significant differences under the same sesame waterlogging stress at different times (<span class="html-italic">p</span> < 0.05); **, ***, and **** indicate that there is a significant difference between the two types of sesame plants at the same time (**: <span class="html-italic">p</span> < 0.01; ***: <span class="html-italic">p</span> < 0.001; ****: <span class="html-italic">p</span> < 0.0001); and ns indicates no significant change. Bar means the average ± SD, <span class="html-italic">n</span> = 3.</p> "> Figure 2
<p>Differentially expressed genes (DEGs) in sesame under waterlogging stress at different times. (<b>A</b>). Venn diagram showing the intersection of up- and downregulated DEGs in R and S sesame. (<b>B</b>). UpSet plot showing the intersection of DEGs between different comparisons. Yellow means DEGs under waterlogging stress in all groups, pink means DEGs only in R or S, purple means DEGs between R and S under the same waterlogging treatment time, orange means DEGs only in R under waterlogging stress, and blue mesns DEGs only in S under waterlogging stress. (<b>C</b>,<b>D</b>) Heatmaps showing genes differentially expressed at each time point in R (<b>C</b>) or S (<b>D</b>) before (0 h) and after (24, 72, and 120 h) waterlogging treatment. A total of 15,652 DEGs in R and 12,156 DEGs in S were analyzed via using k-means clustering. The color key represents the standardized gene expression levels from high (red) to low (blue).</p> "> Figure 3
<p>DEG functional analysis in sesame at different durations of waterlogging stress. (<b>A</b>). Gene Ontology (GO) analysis. Top 25 GO terms significantly enriched in DEGs upregulated in R and downregulated in S. (<b>B</b>). Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. KEGG pathways significantly enriched in DEGs upregulated in R and downregulated in S. * indicates significantly enriched pathways in R or S. The number indicates the number of DEGs.</p> "> Figure 4
<p>Weighted gene co-expression network analysis (WGCNA) of sesame under waterlogging stress. (<b>A</b>). Cluster dendrogram. Cluster dendrogram of the top 8000 genes with the greatest variation among the genes upregulated in R and those downregulated in S. Each vertical line in the dendrogram represents a gene. All genes are clustered into 16 modules, which are represented by turquoise, magenta, black, green-yellow, green, midnight blue, salmon, pink, yellow, cyan, tan, brown, red, blue, purple, and grey, respectively. (<b>B</b>). Correlation heatmap between 16 modules and the genes upregulated in R and those downregulated in S. The upper numbers in the table are correlations, and the lower numbers in parentheses are significant. Bold is the strongest correlation. Positive and negative correlations are indicated in red and blue, respectively. (<b>C</b>,<b>D</b>). The correlation network of the magenta (<b>C</b>) and green-yellow (<b>D</b>) modules. Magenta represents magenta module, and green-yellow represents green-yellow module. The gene network was constructed via WGCNA, and each node represents a gene; the connecting line (edge) between genes represents the co-expression correlation. The size of the gene font and the depth of the color are determined by the co-expression correlation. The higher the co-expression correlation, the larger the gene font and the deeper the color. On the contrary, the smaller the gene font, the lighter the color. The top 20 genes combined with the centrality and number of edges were visualized via Cytoscape. (<b>E</b>). Venn diagram of the hub genes. (<b>F</b>). Heatmaps showing hub gene expression before and after waterlogging stress.</p> "> Figure 5
<p>Differentially expressed miRNAs (DEMis) in sesame at different waterlogging treatment times. (<b>A</b>). UpSet plot showing the intersection of DEMis between different comparisons. Yellow means DEMis under waterlogging stress in all groups, pink means DEMis only in R or S, purple means DEMis between R and S under the same waterlogging treatment time, orange means DEMis only in R under waterlogging stress, and blue mesns DEMis only in S under waterlogging stress. (<b>B</b>,<b>C</b>). Heatmaps showing the DEMis that were differentially expressed in R (<b>B</b>) and S (<b>C</b>). (<b>D</b>,<b>E</b>). KEGG analysis. Top 25 KEGG pathways enriched by DEMi target genes in R (<b>D</b>) and S (<b>E</b>).</p> "> Figure 6
<p>DEMi and DEG correlation network. The yellow circles in the network indicate the DEGs in R, the green circles indicate the DEGs in S, and the pink circles indicate the common DEGs both in R and S. The red dotted boxes in the network indicate the DEMis both in R and S. The arrow points to DEGs that miRNA can regulate.</p> "> Figure 7
<p>Analysis of differentially accumulated metabolites (DAMs) in sesame under waterlogging stress. (<b>A</b>). UpSet plot showing the DAMs under waterlogging stress. Yellow means DAMs under waterlogging stress in all groups, pink means DAMs only in R or S, purple means DAMs between R and S under the same waterlogging treatment time, orange means DAMs only in R under waterlogging stress, and blue mesns DAMs only in S under waterlogging stress. (<b>B</b>). Classification of DAMs. (<b>C</b>,<b>D</b>). KEGG analysis. Top 25 KEGG pathways enriched by DAMs in R (<b>C</b>) and S (<b>D</b>).</p> "> Figure 8
<p>Plant hormone signal transduction in sesame under waterlogging stress. (<b>A</b>). DAMs related to the plant hormone signal transduction pathway. Red represents the DAM. (<b>B</b>). DEGs related to the plant hormone signal transduction pathway. Heatmaps showing the expression of DEGs or DAMs at different waterlogging treatment times.</p> "> Figure 9
<p>Glutathione metabolism pathway in sesame under waterlogging stress. Red represents the DAM. Heatmaps showing the expression of DEGs or DAMs at different waterlogging durations.</p> "> Figure 10
<p>The glyoxylate and dicarboxylate metabolism pathway in sesame under waterlogging stress. Red represents the DAM. Heatmaps showing the expression of DEGs or DAMs at different waterlogging treatment times.</p> "> Figure 11
<p>qRT-PCR analysis of analysis of DEGs. The mRNAs were isolated from the roots of R and S with waterlogging treatment, respectively. The <span class="html-italic">α-tubulin</span> gene was chosen as the internal control. Student’s <span class="html-italic">t</span> test was used for significance analysis, and different lowercase letters indicate <span class="html-italic">p</span> < 0.05. Bar means the average ± SD, n = 3.</p> ">
Abstract
:1. Introduction
2. Results
2.1. Analysis of the Physiological Indicators of Sesame Under Waterlogging Stress
2.2. Analysis of Differentially Expressed Genes (DEGs) in Sesame Under Waterlogging Stress
2.3. Analysis of DEGs Function Under Waterlogging Stress
2.4. Weighted Gene Co-Expression Network Analysis (WGCNA) of Sesame Under Waterlogging Stress
2.5. Differentially Expressed miRNAs (DEMis) Analysis of Sesame Under Waterlogging Stress
2.6. Construction of DEMi and DEG Co-Expression Networks
2.7. Analysis of Sesame Metabolites Under Waterlogging Stress
2.8. KEGG Pathway Analysis of the Integrated DEGs and DAMs
2.9. qRT-PCR Validation
3. Discussion
3.1. Transcriptome Analysis
3.2. Small RNA Sequencing Analysis
3.3. Metabolomics Analysis
3.4. Plant Hormone Signal Transduction Pathway in Response to Sesame Waterlogging Stress
3.5. Glutathione Metabolic Pathway in Response to Sesame Waterlogging Stress
3.6. Glyoxylate and Dicarboxylate Metabolism Pathway in Response to Sesame Waterlogging Stress
4. Materials and Methods
4.1. Plant Materials and Waterlogging Treatment
4.2. Physiological Phenotype of Sesame Under Waterlogging Treatment
4.3. Transcriptome Sequencing Analysis
4.4. Small RNA (sRNA) Sequencing Analysis
4.5. Metabolomics Sequencing Analysis
4.6. qRT-PCR Verification of Genes
4.7. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pan, J.; Sharif, R.; Xu, X.; Chen, X. Mechanisms of waterlogging tolerance in plants: Research progress and prospects. Front. Plant Sci. 2021, 11, 627331. [Google Scholar] [CrossRef] [PubMed]
- Shahzad, A.; Ullah, S.; Dar, A.A.; Sardar, M.F.; Mehmood, T.; Tufail, M.A.; Shakoor, A.; Haris, M. Nexus on climate change: Agriculture and possible solution to cope future climate change stresses. Environ. Sci. Pollut. Res. Int. 2021, 28, 14211–14232. [Google Scholar] [CrossRef] [PubMed]
- Striker, G.G.; Colmer, T.D. Flooding tolerance of forage legumes. J. Exp. Bot. 2017, 68, 1851–1872. [Google Scholar] [CrossRef] [PubMed]
- Domisch, T.; Qian, J.; Sondej, I.; Martz, F.; Lehto, T.; Piirainen, S.; Finér, L.; Silvennoinen, R.; Repo, T. Here comes the flood Stress effects of continuous and interval waterlogging periods during the growing season on Scots pine saplings. Tree Physiol. 2020, 40, 869–885. [Google Scholar] [CrossRef]
- Ahsan, A.F.M.S.; Alam, Z.; Ahmed, F.; Akter, S.; Khan, M.A.H. Selection of waterlogging tolerant sesame genotypes (Sesamum indicum L.) from a dataset using the MGIDI index. Data Brief 2024, 53, 110176. [Google Scholar] [CrossRef]
- Belliappa, S.H.; Bomma, N.; Pranati, J.; Soregaon, C.D.; Hingane, A.J.; Basavaraj, P.S.; Satheesh Naik, S.J.; Lohithaswa, H.C.; Muniswamy, S.; Mushoriwa, H.; et al. Breeding for water-logging tolerance in pigeonpea: Current status and future prospects. CABI Agric. Biosci. 2024, 5, 98. [Google Scholar] [CrossRef]
- Wittig, P.R.; Ambros, S.; Müller, J.T.; Bammer, B.; Álvarez-Cansino, L.; Konnerup, D.; Pedersen, O.; Mustroph, A. Two Brassica napus cultivars differ in gene expression, but not in their response to submergence. Physiol. Plant. 2021, 171, 400–415. [Google Scholar] [CrossRef]
- Arbona, V.; Hossain, Z.; López-Climent, M.F.; Pérez-Clemente, R.M.; Gómez-Cadenas, A. Antioxidant enzymatic activity is linked to waterlogging stress tolerance in citrus. Physiol. Plant. 2008, 132, 452–466. [Google Scholar] [CrossRef]
- Cao, M.; Zheng, L.; Li, J.; Mao, Y.; Zhang, R.; Niu, X.; Geng, M.; Zhang, X.; Huang, W.; Luo, K.; et al. Transcriptomic profiling suggests candidate molecular responses to waterlogging in cassava. PLoS ONE 2022, 17, e0261086. [Google Scholar] [CrossRef]
- Yu, F.; Liang, K.; Fang, T.; Zhao, H.; Han, X.; Cai, M.; Qiu, F. A group VII ethylene response factor gene, ZmEREB180, coordinates waterlogging tolerance in maize seedlings. Plant Biotechnol. J. 2019, 17, 2286–2298. [Google Scholar] [CrossRef]
- Kamal, A.H.M.; Komatsu, S. Jasmonic acid induced protein response to biophoton emissions and flooding stress in soybean. J. Proteom. 2016, 133, 33–47. [Google Scholar] [CrossRef] [PubMed]
- Loreti, E.; Valeri, M.C.; Novi, G.; Perata, P. Gene regulation and survival under hypoxia requires starch availability and metabolism. Plant Physiol. 2018, 176, 1286–1298. [Google Scholar] [CrossRef] [PubMed]
- Xuan, L.; Hua, J.; Zhang, F.; Wang, Z.; Pei, X.; Yang, Y.; Yin, Y.; Creech, D.L. Identification and functional analysis of ThADH1 and ThADH4 genes involved in tolerance to waterlogging stress in Taxodium hybrid ‘Zhongshanshan 406’. Genes 2021, 12, 225. [Google Scholar] [CrossRef] [PubMed]
- Gui, G.; Zhang, Q.; Hu, W.; Liu, F. Application of multi-omics analysis to plant flooding response. Front. Plant Sci. 2024, 15, 1389379. [Google Scholar] [CrossRef]
- Jin, Q.; Xu, Y.; Mattson, N.; Li, X.; Wang, B.; Zhang, X.; Jiang, H.; Liu, X.; Wang, Y.; Yao, D. Identification of submergence-responsive microRNAs and their targets reveals complex miRNA-mediated regulatory networks in Lotus (Nelumbo nucifera Gaertn). Front. Plant Sci. 2017, 8, 6. [Google Scholar] [CrossRef]
- De la Rosa, C.; Covarrubias, A.A.; Reyes, J.L. A dicistronic precursor encoding miR398 and the legume-specific miR2119 coregulates CSD1 and ADH1 mRNAs in response to water deficit. Plant Cell Environ. 2019, 42, 133–144. [Google Scholar] [CrossRef]
- Mishra, V.; Singh, A.; Gandhi, N.; Sarkar Das, S.; Yadav, S.; Kumar, A.; Sarkar, A.K. A unique miR775-GALT9 module regulates leaf senescence in Arabidopsis during post-submergence recovery by modulating ethylene and the abscisic acid pathway. Development 2022, 149, dev199974. [Google Scholar] [CrossRef]
- Zhao, Q.; Feng, Y.; Shao, Y.; Huang, J.; Chen, Z. Response mechanism of Cynodon dactylon to flooding stress based on integrating metabonomics and transcriptomics analysis. Environ. Exp. Bot. 2024, 225, 105846. [Google Scholar] [CrossRef]
- Wang, F.; Zhou, Z.; Liu, X.; Zhu, L.; Guo, B.; Lv, C.; Zhu, J.; Chen, Z.H.; Xu, R. Transcriptome and metabolome analyses reveal molecular insights into waterlogging tolerance in Barley. BMC Plant Biol. 2024, 24, 385. [Google Scholar] [CrossRef]
- Shang, P.; Shen, B.; Zeng, B.; Bi, L.; Qu, M.; Zheng, Y.; Ye, Y.; Li, W.; Zhou, X.; Yang, X.; et al. Integrated transcriptomic and metabolomics analysis of the root responses of orchardgrass to submergence stress. Int. J. Mol. Sci. 2023, 24, 2089. [Google Scholar] [CrossRef]
- Lin, Y.; Li, W.; Zhang, Y.; Xia, C.; Liu, Y.; Wang, C.; Xu, R.; Zhang, L. Identification of genes/proteins related to submergence tolerance by transcriptome and proteome analyses in soybean. Sci. Rep. 2019, 9, 14688. [Google Scholar] [CrossRef] [PubMed]
- Sanni, G.B.T.A.; Ezin, V.; Chabi, I.B.; Missihoun, A.A.; Florent, Q.; Hamissou, Z.; Niang, M.; Ahanchede, A. Production and achievements of Sesamum indicum industry in the world: Past and current state. Oil Crop Sci. 2024, 9, 187–197. [Google Scholar] [CrossRef]
- Baghery, M.A.; Kazemitabar, S.K.; Dehestani, A.; Mehrabanjoubani, P. Sesame (Sesamum indicum L.) response to drought stress: Susceptible and tolerant genotypes exhibit different physiological, biochemical, and molecular response patterns. Physiol. Mol. Biol. Plants 2023, 29, 1353–1369. [Google Scholar] [CrossRef] [PubMed]
- Shah, A.; Gadol, N.; Priya, G.; Mishra, P.; Rao, M.; Singh, N.K.; Kumar, R.; Kalia, S.; Rai, V. Morpho-physiological and metabolites alteration in the susceptible and tolerant genotypes of sesame under waterlogging stress and post-waterlogging recovery. Plant Stress 2024, 11, 100361. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, Y.; Qi, X.; Li, D.; Wei, W.; Zhang, X. Global gene expression responses to waterlogging in roots of sesame (Sesamum indicum L.). Acta Physiol. Plant. 2012, 34, 2241–2249. [Google Scholar] [CrossRef]
- Chugh, V.; Mishra, V.; Sharma, V.; Kumar, M.; Ghorbel, M.; Kumar, H.; Rai, A.; Kumar, R. Deciphering physio-biochemical basis of tolerance mechanism for sesame (Sesamum indicum L.) genotypes under waterlogging stress at early vegetative stage. Plants 2024, 13, 501. [Google Scholar] [CrossRef]
- Bimpong, D.; Zhao, L.; Ran, M.; Zhao, X.; Wu, C.; Li, Z.; Wang, X.; Cheng, L.; Fang, Z.; Hu, Z.; et al. Transcriptomic analysis reveals the regulatory mechanisms of messenger RNA (mRNA) and long non-coding RNA (lncRNA) in response to waterlogging stress in rye (Secale cereale L.). BMC Plant Biol. 2024, 24, 534. [Google Scholar] [CrossRef]
- Koramutla, M.K.; Tuan, P.A.; Ayele, B.T. Salicylic acid enhances adventitious root and aerenchyma formation in wheat under waterlogged conditions. Int. J. Mol. Sci. 2022, 23, 1243. [Google Scholar] [CrossRef]
- Li, X.; Liu, H.; He, F.; Li, M.; Zi, Y.; Long, R.; Zhao, G.; Zhu, L.; Hong, L.; Wang, S.; et al. Multi-omics integrative analysis provided new insights into alkaline stress in alfalfa. Plant Physiol. Biochem. 2024, 215, 109048. [Google Scholar] [CrossRef]
- Luo, Z.; Zhou, Z.; Li, Y.; Tao, S.; Hu, Z.R.; Yang, J.S.; Cheng, X.; Hu, R.; Zhang, W. Transcriptome-based gene regulatory network analyses of differential cold tolerance of two tobacco cultivars. BMC Plant Biol. 2022, 22, 369. [Google Scholar] [CrossRef]
- Pagano, L.; Rossi, R.; Paesano, L.; Marmiroli, N.; Marmiroli, M. miRNA regulation and stress adaptation in plants. Environ. Exp. Bot. 2021, 184, 104369. [Google Scholar] [CrossRef]
- Liu, Z.; Kumari, S.; Zhang, L.; Zheng, Y.; Ware, D. Characterization of miRNAs in response to short-term waterlogging in three inbred lines of Zea mays. PLoS ONE 2012, 7, e39786. [Google Scholar] [CrossRef] [PubMed]
- Kell, D.B.; Oliver, S.G. The metabolome 18 years on: A concept comes of age. Metabolomics 2016, 12, 148. [Google Scholar] [CrossRef] [PubMed]
- Wei, W.; Li, D.; Wang, L.; Ding, X.; Zhang, Y.; Gao, Y.; Zhang, X. Morpho-anatomical and physiological responses to waterlogging of sesame (Sesamum indicum L.). Plant Sci. 2013, 208, 102–111. [Google Scholar] [CrossRef]
- Hong, B.; Zhou, B.; Peng, Z.; Yao, M.; Wu, J.; Wu, X.; Guan, C.; Guan, M. Tissue-specific transcriptome and metabolome analysis reveals the response mechanism of Brassica napus to waterlogging stress. Int. J. Mol. Sci. 2023, 24, 6015. [Google Scholar] [CrossRef]
- Fujita, Y.; Nakashima, K.; Yoshida, T.; Katagiri, T.; Kidokoro, S.; Kanamori, N.; Umezawa, T.; Fujita, M.; Maruyama, K.; Ishiyama, K.; et al. Three SnRK2 protein kinases are the main positive regulators of abscisic acid signaling in response to water stress in Arabidopsis. Plant Cell Physiol. 2009, 50, 2123–2132. [Google Scholar] [CrossRef]
- Acharya, B.R.; Assmann, S.M. Hormone interactions in stomatal function. Plant Mol. Biol. 2009, 69, 451–462. [Google Scholar] [CrossRef]
- Dawood, T.; Yang, X.; Visser, E.J.; Te Beek, T.A.; Kensche, P.R.; Cristescu, S.M.; Lee, S.; Floková, K.; Nguyen, D.; Mariani, C.; et al. A co-opted hormonal cascade activates dormant adventitious root primordia upon flooding in Solanum dulcamara. Plant Physiol. 2016, 170, 2351–2364. [Google Scholar] [CrossRef]
- Tamaoki, D.; Seo, S.; Yamada, S.; Kano, A.; Miyamoto, A.; Shishido, H.; Miyoshi, S.; Taniguchi, S.; Akimitsu, K.; Gomi, K. Jasmonic acid and salicylic acid activate a common defense system in rice. Plant Signal Behav. 2013, 8, e24260. [Google Scholar] [CrossRef]
- Salah, A.; Zhan, M.; Cao, C.; Han, Y.; Ling, L.; Liu, Z.; Li, P.; Ye, M.; Jiang, Y. γ-Aminobutyric acid promotes chloroplast ultrastructure, antioxidant capacity, and growth of waterlogged maize seedlings. Sci. Rep. 2019, 9, 484. [Google Scholar] [CrossRef]
- Ateeq, M.; Khan, A.H.; Zhang, D.; Alam, S.M.; Shen, W.; Wei, M.; Meng, J.; Shen, X.; Pan, J.; Zhu, K.; et al. Comprehensive physio-biochemical and transcriptomic characterization to decipher the network of key genes under waterlogging stress and its recuperation in Prunus persica. Tree Physiol. 2023, 43, 1265–1283. [Google Scholar] [CrossRef] [PubMed]
- Hasanuzzaman, M.; Ahmed, N.; Saha, T.; Rahman, M.; Rahman, K.; Alam, M.M.; Rohman, M.M.; Nahar, K. Exogenous salicylic acid and kinetin modulate reactive oxygen species metabolism and glyoxalase system to confer waterlogging stress tolerance in soybean (Glycine max L.). Plant Stress 2022, 3, 100057. [Google Scholar] [CrossRef]
- Kaur, G.; Vikal, Y.; Kaur, L.; Kalia, A.; Mittal, A.; Kaur, D.; Yadav, I. Elucidating the morpho-physiological adaptations and molecular responses under long-term waterlogging stress in maize through gene expression analysis. Plant Sci. 2021, 304, 110823. [Google Scholar] [CrossRef] [PubMed]
- Andreadeli, A.; Flemetakis, E.; Axarli, I.; Dimou, M.; Udvardi, M.K.; Katinakis, P.; Labrou, N.E. Cloning and characterization of Lotus japonicus formate dehydrogenase: A possible correlation with hypoxia. Biochim. Biophys. Acta 2009, 1794, 976–984. [Google Scholar] [CrossRef]
- Anee, T.I.; Nahar, K.; Rahman, A.; Mahmud, J.A.; Bhuiyan, T.F.; Alam, M.U.; Fujita, M.; Hasanuzzaman, M. Oxidative damage and antioxidant defense in Sesamum indicum after different waterlogging durations. Plants 2019, 8, 196. [Google Scholar] [CrossRef]
- Paradiso, A.; Berardino, R.; de Pinto, M.C.; Sanità di Toppi, L.; Storelli, M.M.; Tommasi, F.; De Gara, L. Increase in ascorbate-glutathione metabolism as local and precocious systemic responses induced by cadmium in durum wheat plants. Plant Cell Physiol. 2008, 49, 362–374. [Google Scholar] [CrossRef]
- Huang, C.; He, W.; Guo, J.; Chang, X.; Su, P.; Zhang, L. Increased sensitivity to salt stress in an ascorbate-deficient Arabidopsis mutant. J. Exp. Bot. 2005, 56, 3041–3049. [Google Scholar] [CrossRef]
- Chen, S.; Zhou, Y.; Chen, Y.; Gu, J. fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018, 34, i884–i890. [Google Scholar] [CrossRef]
- Kim, D.; Langmead, B.; Salzberg, S.L. HISAT: A fast spliced aligner with low memory requirements. Nat. Methods 2015, 12, 357–360. [Google Scholar] [CrossRef]
- Pertea, M.; Pertea, G.M.; Antonescu, C.M.; Chang, T.C.; Mendell, J.T.; Salzberg, S.L. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat. Biotechnol. 2015, 33, 290–295. [Google Scholar] [CrossRef]
- Wang, L.; Yu, S.; Tong, C.; Zhao, Y.; Liu, Y.; Song, C.; Zhang, Y.; Zhang, X.; Wang, Y.; Hua, W.; et al. Genome sequencing of the high oil crop sesame provides insight into oil biosynthesis. Genome Biol. 2014, 15, R39. [Google Scholar] [CrossRef] [PubMed]
- Liao, Y.; Smyth, G.K.; Shi, W. featureCounts: An efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 2014, 30, 923–930. [Google Scholar] [CrossRef] [PubMed]
- Young, M.D.; Wakefield, M.J.; Smyth, G.K.; Oshlack, A. Gene ontology analysis for RNA-seq: Accounting for selection bias. Genome Biol. 2010, 11, R14. [Google Scholar] [CrossRef] [PubMed]
- Ogata, H.; Goto, S.; Sato, K.; Fujibuchi, W.; Bono, H.; Kanehisa, M. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 1999, 27, 29–34. [Google Scholar] [CrossRef]
- Chen, C.; Chen, H.; Zhang, Y.; Thomas, H.R.; Frank, M.H.; He, Y.; Xia, R. TBtools: An integrative toolkit developed for interactive analyses of big biological data. Mol. Plant. 2020, 13, 1194–1202. [Google Scholar] [CrossRef]
- Robinson, M.D.; McCarthy, D.J.; Smyth, G.K. 2010. edgeR: A bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 2010, 26, 139–140. [Google Scholar] [CrossRef]
- Bartel, D.P. Metazoan microRNAs. Cell 2018, 173, 20–51. [Google Scholar] [CrossRef]
- Friedländer, M.R.; Mackowiak, S.D.; Li, N.; Chen, W.; Rajewsky, N. miRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades. Nucleic Acids Res. 2012, 40, 37–52. [Google Scholar] [CrossRef]
- Wu, H.J.; Ma, Y.K.; Chen, T.; Wang, M.; Wang, X.J. PsRobot: A web-based plant small RNA meta-analysis toolbox. Nucleic Acids Res. 2012, 40, W22–W28. [Google Scholar] [CrossRef]
- Want, E.J.; Wilson, I.D.; Gika, H.; Theodoridis, G.; Plumb, R.S.; Shockcor, J.; Holmes, E.; Nicholson, J.K. Global metabolic profiling procedures for urine using UPLC-MS. Nat. Protoc. 2010, 5, 1005–1018. [Google Scholar] [CrossRef]
- Dai, W.; Xie, D.; Lu, M.; Li, P.; Lv, H.; Yang, C.; Peng, Q.; Zhu, Y.; Guo, L.; Zhang, Y.; et al. Characterization of white tea metabolome: Comparison against green and black tea by a nontargeted metabolomics approach. Food Res. Int. 2017, 96, 40–45. [Google Scholar] [CrossRef] [PubMed]
- Haspel, J.A.; Chettimada, S.; Shaik, R.S.; Chu, J.H.; Raby, B.A.; Cernadas, M.; Carey, V.; Process, V.; Hunninghake, G.M.; Ifedigbo, E.; et al. Circadian rhythm reprogramming during lung inflammation. Nat. Commun. 2014, 5, 4753. [Google Scholar] [CrossRef] [PubMed]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, L.; Wang, S.; Yang, X.; He, L.; Hu, L.; Tang, R.; Li, J.; Liu, Z. Physiological and Multi-Omics Integrative Analysis Provides New Insights into Tolerance to Waterlogging Stress in Sesame (Sesamum indicum L.). Int. J. Mol. Sci. 2025, 26, 351. https://doi.org/10.3390/ijms26010351
Zhang L, Wang S, Yang X, He L, Hu L, Tang R, Li J, Liu Z. Physiological and Multi-Omics Integrative Analysis Provides New Insights into Tolerance to Waterlogging Stress in Sesame (Sesamum indicum L.). International Journal of Molecular Sciences. 2025; 26(1):351. https://doi.org/10.3390/ijms26010351
Chicago/Turabian StyleZhang, Lu, Suhua Wang, Xuele Yang, Luqiu He, Liqin Hu, Rui Tang, Jiguang Li, and Zhongsong Liu. 2025. "Physiological and Multi-Omics Integrative Analysis Provides New Insights into Tolerance to Waterlogging Stress in Sesame (Sesamum indicum L.)" International Journal of Molecular Sciences 26, no. 1: 351. https://doi.org/10.3390/ijms26010351
APA StyleZhang, L., Wang, S., Yang, X., He, L., Hu, L., Tang, R., Li, J., & Liu, Z. (2025). Physiological and Multi-Omics Integrative Analysis Provides New Insights into Tolerance to Waterlogging Stress in Sesame (Sesamum indicum L.). International Journal of Molecular Sciences, 26(1), 351. https://doi.org/10.3390/ijms26010351