Identification and Functional Analysis of ThADH1 and ThADH4 Genes Involved in Tolerance to Waterlogging Stress in Taxodium hybrid ‘Zhongshanshan 406’
<p>Alignment of the amino acid sequences of ThADH1, ThADH4 with <span class="html-italic">Arabidopsis thaliana</span> AtADH1, <span class="html-italic">Quercus suber</span> QsADH1, QsADH4 and <span class="html-italic">Amborella trichopoda</span> AmADH4. The highly conserved regions of the ADH proteins are shown by the red, black boxes and blue line, which represent the following conserved domains: ADH_ N domain, ADH_ZIN_N domain and ADH_III_F_hyde domain.</p> "> Figure 2
<p>Phylogenetic analysis of the proteins of the <span class="html-italic">ADH</span> gene family. The phylogenetic tree was constructed using MEGA 7.0 with the maximum likelihood method using 1000 replicate bootstrap tests. Numbers near to the nodes indicate bootstrap values obtained from 1000 replications. The 35 proteins were clustered into two distinct groups: ADH1 and ADH4, as indicated. At, <span class="html-italic">Arabidopsis thaliana</span>; Os, <span class="html-italic">Oryza sativa</span>; Pb, <span class="html-italic">Pinus banksiana</span>; Pt, <span class="html-italic">Populus trichocarpa</span>; Hu, <span class="html-italic">Herrania umbratica</span>; Tc, <span class="html-italic">Theobroma cacao</span>; Vv, <span class="html-italic">Vitis vinifera</span>; Pa, <span class="html-italic">Prunus avium</span>; Qs, <span class="html-italic">Quercus suber</span>; Pm, <span class="html-italic">Panicum miliaceum</span>; Zm, <span class="html-italic">Zea mays</span>; Dl, <span class="html-italic">Dimocarpus longan</span>; Rc, <span class="html-italic">Rosa chinensis</span>; Gh, <span class="html-italic">Gossypium hirsutum</span>; Ca, <span class="html-italic">Coffea arabica</span>; Sh, <span class="html-italic">Saccharum</span> hybrid cultivar; Ms, <span class="html-italic">Miscanthus sinensis</span>; Nn, <span class="html-italic">Nelumbo nucifera</span>; Dk, <span class="html-italic">Diospyros kaki</span>; Oo, <span class="html-italic">Oryza officinalis</span>; Am, <span class="html-italic">Amborella trichopoda</span>; Nn, <span class="html-italic">Nelumbo nucifera</span>; Dz, <span class="html-italic">Durio zibethinus</span>; Gr, <span class="html-italic">Gossypium raimondii</span>; Rc, <span class="html-italic">Rosa chinensis</span>; Jr, <span class="html-italic">Juglans regia</span>; Oe, <span class="html-italic">Olea europaea</span> var. <span class="html-italic">sylvestris</span>; Pm, <span class="html-italic">Prunus mume</span>; Pp, <span class="html-italic">Prunus persica</span>; Pd, <span class="html-italic">Phoenix dactylifera</span>; In, <span class="html-italic">Ipomoea nil</span>; Se, <span class="html-italic">Sesamum indicum</span>; Fv, <span class="html-italic">Fragaria vesca</span> subsp. <span class="html-italic">vesca</span>; Zm, <span class="html-italic">Zea mays</span>; Cp, <span class="html-italic">Carica papaya</span>; Ph, <span class="html-italic">Panicum hallii</span>; Sc, <span class="html-italic">Saccharum</span> hybrid cultivar; Si, <span class="html-italic">Sesamum indicum</span>.</p> "> Figure 3
<p>Temporal expression patterns of <span class="html-italic">ThADH1</span> and <span class="html-italic">ThADH4</span> by qPCR. CK, HF and TS represent non-flooding, half-flooding and total submergence. The gene expression level in the root at 0 day was set to 1. <span class="html-italic">ThADH1</span> and <span class="html-italic">ThADH4</span> genes expression in root, stem and leaf of <span class="html-italic">T</span>. hybrid ‘Zhongshanshan 406’at different times (from 0 day to 60 day). For qPCR, the <span class="html-italic">APRT</span> gene was used as the internal control and the relative transcript levels were calculated using the comparative delta-Ct method. All the qPCR data are shown as the mean ± standard deviation (error bar) of three biological replicates. Means with different letters are significantly different at <span class="html-italic">p</span> < 0.05 as determined by one-way ANOVA with Duncan’s multiple range tests. The same below.</p> "> Figure 4
<p>Subcellular localization of ThADH1 and ThADH4 in poplar protoplasts. Green fluorescent protein (GFP), chlorophyll autofluorescence (Auto), bright and merged images are shown. Scale bar = 10 µm. The 35::GFP fusion protein was used as the positive protein control.</p> "> Figure 5
<p>Overexpression of <span class="html-italic">ThADH1</span> or <span class="html-italic">ThADH4</span> conferred enhanced waterlogging tolerance in plants. (<b>A</b>,<b>C</b>) Phenotypic changes of transgenic <span class="html-italic">Populus</span> after 30 days of growth ADH1/ADH4 Lines 1–3 and non-transgenic (Control), respectively. (<b>B</b>,<b>D</b>) 30 days WT and transgenic <span class="html-italic">Populus</span> were photographed at the conclusion of submersion in deionized water for an additional 20 days. Bar scale = 1.0 cm.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and Waterlogging Treatment
2.2. Full-Length cDNA Cloning
2.3. Bioinformatics and Statistical Analyses
2.4. Quantitative Real-Time PCR Analysis
2.5. Vector Construction
2.6. Protoplast Transfection
2.7. Populus Transformation and Waterlogging Treatment
3. Results
3.1. Isolation and Characterization of ADH Genes from T. hybrid ‘Zhongshanshan 406’
3.2. Multiple Alignment and Phylogenetic Analysis of ThADH1 and ThADH4
3.3. Expression Patterns of ThADH1 and ThADH4 Genes
3.4. Subcellular Localization of ThADH1 and ThADH4 Proteins
3.5. Heterologous Overexpression of ThADH 1 and ThADH 4 in Populus and Comparison of Waterlogging Tolerance in Non-Transgenic and Transgenic Populus
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Chang, C.; Meyerowitz, E.M. Molecular cloning and DNA sequence of the Arabidopsis thaliana alcohol dehydrogenase gene. Proc. Natl. Acad. Sci. USA 1986, 83, 1408–1412. [Google Scholar] [CrossRef] [Green Version]
- Dennis, E.S.; Gerlach, W.L.; Pryor, A.J.; Bennetzen, J.L.; Inglis, A.; Llewllyn, D.; Sachs, M.M.; Ferl, R.J.; Peacock, W.J. Molecular analysis of the alcohol dehydrogenase (Adh1) gene of maize. Nucl. Acids Res. 1984, 12, 3983–4000. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Wu, R. Rice alcohol dehydrogenase genes: Anaerobic induction, organ specific expression and characterization of cDNA clones. Plant Mol. Biol. 1989, 13, 53–68. [Google Scholar] [CrossRef] [PubMed]
- Torregrosa, L.; Pradal, M.; Souquet, J.M.; Rambert, M.; Gunata, Z.; Tesniere, C. Manipulation of VvAdh to investigate its function in grape berry development. Plant Sci. 2008, 174, 149–155. [Google Scholar] [CrossRef]
- Xuewen, X.; Huihui, W.; Xiaohua, Q.; Qiang, X.; Xuehao, C. Waterlogging-induced increase in fermentation and related gene expression in the root of cucumber (Cucumis sativus L.). Sci. Hortic. 2014, 179, 388–395. [Google Scholar] [CrossRef]
- Kennedy, R.A.; Fox, R.T. Anaerobic Metabolism in Plants. Plant Physiol. 1992, 100, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Bailey-Serres, J.; Voesenek, L.A.C.J. Flooding stress: Acclimations and genetic diversity. Annu. Rev. Plant Biol. 2008, 59, 313–318. [Google Scholar] [CrossRef] [Green Version]
- Bhupesh, T.; Mande, S.C. Conserved structural features and sequence patterns in the GroES fold family. Protein Eng. 1999, 12, 815–818. [Google Scholar]
- Zhang, J.Y.; Wang, G.; Huang, S.N.; Xuan, J.P.; Guo, Z.R. Functions of Alcohol Dehydrogenase Family in Abiotic Stress Responses in Plants. Chin. Agric. Sci. Bull. 2015, 31, 246–250. [Google Scholar]
- Ellis, M.H.; Setter, T.L. Hypoxia induces anoxia tolerance in completely submerged rice seedlings. J. Plant Physiol. 1999, 154, 219–230. [Google Scholar] [CrossRef]
- Chen, D.Q.; Zhu, Y.F.; Wu, G.Q.; Li, Y.N. Characterization Analysis of Response of Alcohol Dehydrogenase Gene (ADH1) in Coix lacroyma>/em> jobi L. to Waterlogging Stress. Adv. J. Food Sci. Technol. 2012, 4, 417–425. [Google Scholar]
- Dolferus, R.; Marbaix, G.; Jacobs, M. Alcohol dehydrogenase in Arabidopsis: Analysis of the induction phenomenon in plantlets and tissue cultures. Mol. Gen. Genet. MGG 1985, 199, 256–264. [Google Scholar] [CrossRef]
- Matsumura, H.; Takano, T.; Takeda, G.; Uchimiya, H. Adh1 is transcriptionally active but its translational product is reduced in a rad mutant of rice (Oryza sativa L.), which is vulnerable to submergence stress. Theor. Appl. Genet. 1998, 97, 1197–1203. [Google Scholar] [CrossRef]
- Jacobs, M.; Dolferus, R.; Bossche, D. Isolation and biochemical analysis of ethyl methanesulfonate-induced alcohol dehydrogenase null mutants of Arabidopsis thaliana (L.) Heynh. Biochem. Genet. 1988, 26, 105–122. [Google Scholar] [CrossRef]
- Hirokazu, T.; Hank, G.; Hideo, M.; Nobuhiro, T.; Mikio, N. Rice alcohol dehydrogenase 1 promotes survival and has a major impact on carbohydrate metabolism in the embryo and endosperm when seeds are germinated in partially oxygenated water. Ann. Bot. 2014, 113, 851–859. [Google Scholar]
- Jiang, M.; Deng, H.; Cai, Q.; Wu, G. Species richness in a riparian plant community along the banks of the Xiangxi River, the Three Gorges region. Int. J. Sustain. Dev. World Ecol. 2005, 12, 60–67. [Google Scholar] [CrossRef] [Green Version]
- Wang, P.; Zhang, Q.; Xu, Y.S.; Yu, F.H. Effects of water level fluctuation on the growth of submerged macrophyte communities. Flora-Morphol. Distrib. Funct. Ecol. Plants 2016, 223, 83–89. [Google Scholar] [CrossRef]
- Yu, X.; Luo, N.; Yan, J.; Tang, J.; Liu, S.; Jiang, Y. Differential growth response and carbohydrate metabolism of global collection of perennial ryegrass accessions to submergence and recovery following de-submergence. J. Plant Physiol. 2012, 169, 1040–1049. [Google Scholar] [CrossRef]
- Wang, Z.Q.; Yin, Y.L.; Hua, J.F.; Fan, W.C.; Xuan, L. Cloning and Characterization of ThSHRs and ThSCR Transcription Factors in Taxodium Hybrid ‘Zhongshanshan 406’. Genes 2017, 8, 185. [Google Scholar] [CrossRef] [Green Version]
- Yin, Y.L.; Yu, C.G.; Hua, J.F.; Huan, J.J.; Han, L.W.; Qi, B.Y.; Ren, P.; Wu, X.H.; Qi, X.C. A trial on the silviculture of Taxodium hybrid ‘Zhonshanshan118’ planted in the hydro-fluctuation belt of the Three Gorges Reservoir within the Wanzhou district area of Chongqing City. China For. Sci. Technol. 2014, 2, 110–114. [Google Scholar]
- Fan, W.; Yang, Y.; Wang, Z.; Yin, Y.; Yu, C.; Shi, Q.; Guo, J.; Xuan, L.; Hua, J. Molecular cloning and expression analysis of three ThERFs involved in the response to waterlogging stress of Taxodium ‘Zhongshanshan406’ and subcellular localization of the gene products. PeerJ 2018, 6, 1–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qi, B.; Yang, Y.; Yin, Y.L.; Xu, M.; Li, H.G. De novo sequencing, assembly and analysis of the Taxodium ‘Zhongshansa’ roots and shoots transcriptome in response to short-term waterlogging. BMC Plant Biol. 2014, 14, 201–218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tadege, M.; Dupuis, I.I.; Kuhlemeier, C. Ethanolic fermentation: New functions for an old pathway. Trends Plant Sci. 1999, 4, 320–325. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Z.; Gu, C.; Xuan, L.; Hua, J.; Shi, Q.; Fan, W.; Yin, Y.; Yu, F. Identification of suitable reference genes in Taxodium ‘Zhongshanshan’ under abiotic stresses. Trees 2017, 31, 1519–1530. [Google Scholar] [CrossRef]
- Schmittgen, T.D.; Livak, K.J. Analyzing real-time PCR data by the comparative CT method. Nat. Protoc. 2008, 3, 1101–1108. [Google Scholar] [CrossRef] [PubMed]
- Tan, B.; Xu, M.; Chen, Y.; Huang, M. Transient expression for functional gene analysis using Populus protoplasts. Plant Cell Tissue Organ Cult. 2013, 114, 11–18. [Google Scholar] [CrossRef]
- Xu, M.; Chen, C.; Cai, H.; Wu, L. Overexpression of PeHKT1;1 Improves Salt Tolerance in Populus. Genes 2018, 9, 457. [Google Scholar] [CrossRef] [Green Version]
- Fukuda, T.; Yokoyama, J.; Nakamura, T.; Song, I.J.; Ito, T.; Ochiai, T.; Kanno, A.; Kameya, T.; Maki, M. Molecular phylogeny and evolution of alcohol dehydrogenase (Adh) genes in legumes. BMC Plant Biol. 2005, 6, 1–10. [Google Scholar]
- Strommer, J. The plant ADH gene family. Plant J. 2011, 66, 128–142. [Google Scholar] [CrossRef] [PubMed]
- Komatsu, S.; Thibaut, D.; Hiraga, S.; Kato, M.; Chiba, M.; Hashiguchi, A.; Tougou, M.; Shimamura, S.; Yasue, H. Characterization of a novel flooding stress-responsive alcohol dehydrogenase expressed in soybean roots. Plant Mol. Biol. 2011, 77, 309–322. [Google Scholar] [CrossRef]
- Li, C.F.; Xu, D.P.; Han, W.B.; Zhang, X.J.; Qi, M.; Tian, C.J.; Zheng, S.F. Genome-wide Identification and Expression Analysis of the ADH Gene Family in Upland Cotton (Gossypium hirsutum L.). Mol. Plant Breed. 2018, 7, 2065–2077. [Google Scholar]
- Papdi, C.; Pérez-Salamó, I.; Joseph, M.P.; Giuntoli, B.; Bögre, L. The low oxygen, oxidative and osmotic stress responses synergistically act through the ethylene response factor VII genes RAP2.12, RAP2.2 and RAP2.3. Plant J. 2015, 82, 772–784. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Drew, M.C. Oxygen Deficiency and Root Metabolism: Injury and Acclimation under Hypoxia and Anoxia. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1997, 48, 223–250. [Google Scholar] [CrossRef] [PubMed]
- Shen, C.W.; Yuan, J.P.; Qu, X.Q. Alcohol dehydrogenase (ADH) genes family in wheat (Triticum aestivum): Genome-wide identification, characterization, phylogenetic relationship and expression patterns. Reach Sq. 2020, 8, 1–14. [Google Scholar]
- Andrews, D.L.; Cobb, B.G.; Johnson, J.R. Hypoxic and anoxic induction of alcoholdehydrogenase in roots and shoots of seedlings of Zea mays: Adh transcripts and enzyme activity. Plant Physiol. 1993, 101, 407–414. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Prime-ID | Forward PCR Primer (5’-3’) | Reverse PCR Primer (5’-3’) |
---|---|---|
ThADH1_3OUTER | AAAGAAAGCATTACAGAGGCGTG | AAATCACTAGTGGAACGACGGTA |
ThADH1_3INNER | CAGTACCAGTACCAAATACCGAGGGTTGA | CCTATAGTGAAATCACTAGTGGAGGATCCGCG |
ThADH1_5OUTER | CTAATACGACTCACTATAGGGCAAGCAGTGGTAT | TTTTTCCTCCATTTGCTCGTTCTCAA |
ThADH1_5INNER | CTAATACGACTCACTATAGGGC | TCTGATTTCCGCAGCAAACTTTC |
ThADH1_ORF | ATGTCAAGCGCTACTGCAGG | ATCATCCAGTTTCATGACACATCT |
ThADH1_qRT-PCR | AGCGCTACTGCAGGGAAGGT | TTGATCCTGACTTCCATTGC |
ThADH4_3OUTER | TTCAAGAAGTTATAGCAGAGATGA | AAATCACTAGTGGAACGACGGTA |
ThADH4_3INNER | GGCCAAAACACAATTGCCTGGAATTGTGGAG | CCTATAGTGAAATCACTAGTGGAGGATCCGCG |
ThADH4_5OUTER | GAAACGTGCTTTCTTCCCCTCCCAT | GCTTTCTATTGTATTGGGCTTCGTCTT |
ThADH4_5INNER | GGATCCACCTGAACATCTTCTATTACCAGA | ACCAGACAAAGTTATTGGGAGCAGAGG |
ThADH4_ORF | ATGGAGATACAGAATGGAATA | GAAGTGAAGAACACATCTCA |
ThADH4_qRT-PCR | CAAAGTCCCTCTGTCT | AATATGCGAGGAAACGTG |
Gene_ID | Full-Length cDNA (bp) | 5′-UTR (bp) | 3′-UTR (bp) | ORF (bp) | Predicted Peptide | Secondary Structure Prediction | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
MW (kDa) | pI | GRAVY | Hh (%) | Ee (%) | Tt (%) | Cc (%) | |||||
ThADH1 | 1518 | 89 | 283 | 1146 | 41.03 | 6.23 | −0.024 | 15.22 | 32.55 | 0.00 | 52.23 |
ThADH4 | 1506 | 117 | 177 | 1212 | 43.7 | 5.91 | 0.064 | 16.13 | 29.53 | 0.00 | 54.34 |
Biomass (g) | Height (cm) | ||
---|---|---|---|
0 Day | ThADH1-Transgenic Populus | 0.5449 ± 0.015b | 11.5 ± 0.08b |
ThADH4-Transgenic Populus | 0.3133 ± 0.009f | 5.275 ± 0.09e | |
Non-transgenic Populus | 0.4713 ± 0.004c | 7.975 ± 0.17c | |
Submerged 20 Days | ThADH1-Transgenic Populus | 0.6161 ± 0.011a | 12.025 ± 0.22a |
ThADH4-Transgenic Populus | 0.3471 ± 0.014e | 6.075 ± 0.09d | |
Non-transgenic Populus | 0.4131 ± 0.004d | 8.05 ± 0.13c |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xuan, L.; Hua, J.; Zhang, F.; Wang, Z.; Pei, X.; Yang, Y.; Yin, Y.; Creech, D.L. Identification and Functional Analysis of ThADH1 and ThADH4 Genes Involved in Tolerance to Waterlogging Stress in Taxodium hybrid ‘Zhongshanshan 406’. Genes 2021, 12, 225. https://doi.org/10.3390/genes12020225
Xuan L, Hua J, Zhang F, Wang Z, Pei X, Yang Y, Yin Y, Creech DL. Identification and Functional Analysis of ThADH1 and ThADH4 Genes Involved in Tolerance to Waterlogging Stress in Taxodium hybrid ‘Zhongshanshan 406’. Genes. 2021; 12(2):225. https://doi.org/10.3390/genes12020225
Chicago/Turabian StyleXuan, Lei, Jianfeng Hua, Fan Zhang, Zhiquan Wang, Xiaoxiao Pei, Ying Yang, Yunlong Yin, and David L. Creech. 2021. "Identification and Functional Analysis of ThADH1 and ThADH4 Genes Involved in Tolerance to Waterlogging Stress in Taxodium hybrid ‘Zhongshanshan 406’" Genes 12, no. 2: 225. https://doi.org/10.3390/genes12020225
APA StyleXuan, L., Hua, J., Zhang, F., Wang, Z., Pei, X., Yang, Y., Yin, Y., & Creech, D. L. (2021). Identification and Functional Analysis of ThADH1 and ThADH4 Genes Involved in Tolerance to Waterlogging Stress in Taxodium hybrid ‘Zhongshanshan 406’. Genes, 12(2), 225. https://doi.org/10.3390/genes12020225