Innovative Therapeutic Strategies for Myocardial Infarction Across Various Stages: Non-Coding RNA and Stem Cells
<p>NcRNAs directly affect angiogenesis in the heart.</p> "> Figure 2
<p>The statistical mechanisms of ncRNAs in stem cell and exosome therapies.</p> "> Figure 3
<p>Summary of the ncRNAs involved in different stages of MI treatment.</p> ">
Abstract
:1. Introduction
2. The Role of ncRNA in the Treatment of the Initial Stage of MI
2.1. The Role of miRNAs in Angiogenesis Following MI
2.2. The Impact of LncRNAs on Angiogenesis in MI
2.3. Regulation of ncRNAs in Stem Cell Therapy for MI to Promote Angiogenesis in Infarcted Regions
2.4. Exosomes Secreted by Stem Cells Induce Angiogenesis in the Infarcted Area via NcRNAs
3. The Role of ncRNA in Treatment Following MI
3.1. The Role of miRNA in MI Repair
3.2. Role of LncRNA in MI Repair
3.3. The Role of ncRNA in Stem Cell-Induced CM Differentiation and Functional Myocardium Supplementation in MI Therapy
3.4. Exosomes Secreted by Stem Cells Mitigate Cardiac IRI via ncRNAs
ncRNA | Function | Pathway | Model | Reference |
---|---|---|---|---|
miRNA | ||||
miR-210 | Inhibits mitochondrial oxygen consumption, increases glycolysis, reduces ROS, and improves ischemia–reperfusion injury | Downregulates mitochondrial glycerol-3-phosphate dehydrogenase expression | Mouse myocardial infarction ischemia–reperfusion model | [38] |
miR-22 | Reduces p38α in cardiomyocytes, inhibits apoptosis, and promotes cell survival | Inhibits p38α | Mouse myocardial infarction ischemia–reperfusion model | [39] |
miR-182/183 | Promotes Akt and ERK activation, decreases catalase and SOD2 in macrophages, reduces local inflammation and ischemia–reperfusion injury | Inhibits RASA1, activates Akt/ERK | Mouse myocardial infarction model | [40] |
miR-218-5p | Inhibits CX43, reduces fibrosis, and significantly lowers collagen type 1 and α-SMA expression | Inhibits CX43/α-SMA | Mouse myocardial infarction model | [41] |
miR-143-3p | Stimulates cardiomyocyte proliferation and improves cardiac function | Upregulates Yap/Ctnnd | Juvenile mouse myocardial infarction model | [42] |
miR-144-3p | Inhibits apoptosis | Downregulates NORAD | Mouse myocardial infarction model | [43] |
let-7b-5p | Aggravates myocardial infarction | Upregulates TLR7/MyD88 | Juvenile mouse myocardial infarction model | [44] |
miR-148a-3p | Reduces local inflammation | Inhibits SOCS3/IL-1β/TNF-α | Mouse myocardial infarction model | [45] |
miR-129-5p | Reduces local inflammation and ischemia–reperfusion injury | Downregulates TRPM7/NLRP3 | Mouse myocardial infarction ischemia–reperfusion model | [46] |
miR-409-5p | Inhibits apoptosis | Downregulates USP7/IL-1β/TNF-α | Mouse myocardial infarction model | [47] |
miR-145-5p | Inhibits apoptosis | Inhibits AIFM1/IL-1β/TNF-α | Mouse myocardial infarction model | [48] |
miR-30e-5p | Reduces local inflammation | Downregulates PTEN | Mouse myocardial infarction model | [50,58] |
miR-708-3p | Reduces local inflammation | Downregulates ADAM17 | Mouse myocardial infarction model | [51] |
miR-26a-5p | Inhibits apoptosis | Downregulates ADAM17, inhibits Wnt/β-catenin | Mouse myocardial infarction ischemia–reperfusion model | [52,53] |
MiR-7a-5p | Inhibits apoptosis | Downregulates VDAC1, inhibits caspase-3/Bax | Mouse myocardial infarction ischemia–reperfusion model | [54] |
Rno-miR-30c-5p | Inhibits apoptosis, reduces local inflammation | Downregulates SIRT1, inhibits NF-κB | Mouse myocardial infarction ischemia–reperfusion model | [57] |
miR-199a-5p | Enhances heart contractility | Downregulates MARK4/dTyr-tub | Mouse myocardial infarction model | [59] |
miR-322-5p | Inhibits apoptosis | Inhibits BTG2/NF-κB, activates EZH2/Akt/GSK3β | Mouse myocardial infarction model | [60,61,62,63] |
miR-146a-3p | Improves cardiac function | Downregulates IRAK1/TRAF6 | Mouse myocardial infarction ischemia–reperfusion model | [64,65] |
miR-327 | Promotes apoptosis | Upregulates ARC/Fas/FasL/caspase-8/Bax | Mouse myocardial infarction model | [68] |
miR-21-5p | Inhibits apoptosis | Inhibits FASLG | Mouse myocardial infarction ischemia–reperfusion model | [69] |
LncRNA | ||||
NR_045363 | Stimulates cardiomyocyte proliferation and improves cardiac function | Inhibits miR-216a’s effect on JAK2-STAT3 pathway | Juvenile mouse myocardial infarction model | [70] |
CRRL | Promotes cardiac regeneration and function | Inhibits miR-199a-3p, represses Hopx | Juvenile rat myocardial infarction model | [71] |
LncRNA-Wisper | Improves myocardial fibrosis | Upregulates Plod2 via TIAR binding | Mouse myocardial infarction model | [72] |
LncRNA-CAIF | Inhibits cardiac autophagy, alleviating myocardial infarction injury | Blocks p53-mediated myocardin transcription | Mouse myocardial infarction model | [73] |
Cfast | Improves myocardial fibrosis | Inhibits COTL1/TRAP1, enhances TGF-β/SMAD signaling | Mouse myocardial infarction model | [74] |
LncRNA UCA1 | Stimulates cardiomyocyte proliferation, inhibits apoptosis | Reduces p27/p53 | Mouse myocardial infarction model | [75,76] |
LncRNA HOTAIR | Inhibits apoptosis, improves cardiac function | Downregulates Bax/Bcl-2/caspase-3 | Mouse myocardial infarction model | [77] |
LncRNA-GAS5 | Promotes apoptosis | Inhibits PI3K/AKT, upregulates caspase-9/BAX | Mouse myocardial infarction model | [78,79,80,81] |
LncRNA MIAT | Promotes apoptosis | Inhibits Akt/Gsk-3β | Mouse myocardial infarction model | [82] |
LncRNA LSINCT5 | Inhibits cardiomyocyte survival | Inhibits PI3K/AKT | Mouse myocardial infarction model | [83] |
LncRNA XIST | Promotes apoptosis | Upregulates XIST/PDE4D, increase FOS | Mouse myocardial infarction model | [84,85] |
LncRNA NEAT1 | Stimulates cardiac autophagy | Upregulates Atg12 | Mouse myocardial infarction model | [86] |
LncRNA HULC | Promotes cardiac function, Inhibits apoptosis | Downregulates NLRP3/Caspase-1/IL-1β/GSDMD | Mouse myocardial infarction model | [87,88] |
4. The Role of ncRNA in End-Stage Treatment of MI
Immunomodulatory Effects of ncRNA on Stem Cells in MI Therapy
ncRNA | Function | Pathway | Model | Reference |
---|---|---|---|---|
miRNA | ||||
miRNA-204-3p | Inhibits MSC proliferation, aggravates inflammation | Downregulates CXCR4,inhibits M2 polarization | MSCs and macrophage co-cultures model | [130] |
miR-155 | Inhibits MSC immunoregulation | Downregulates TAB2, represses iNOS | In vitro inflammation model | [131] |
miR-19a/19b | Inhibits inflammation, improves heart function | Downregulates Il-1β, TNF-α, IL-6 and MCP-1 | Mouse myocardial infarction model | [132] |
miR-335 | Inhibits hMSC repair phenotypic switching | Upregulates Runx2 | In vitro inflammation model | [133] |
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Yeh, Y.T.; Sung, F.C.; Tsai, C.F.; Hsu, C.C.; Tsai, W.C.; Hsu, Y.H. Statin therapy associated mortality in hyperlipidemic dialysis patients with percutaneous coronary intervention for acute myocardial infarction, a retrospective cohort study. Heliyon 2024, 10, e39906. [Google Scholar] [CrossRef] [PubMed]
- Elbadawi, A.; Hamed, M.; Gad, M.; Elseidy, S.A.; Barghout, M.; Jneid, H.; Mamas, M.A.; Alfonso, F.; Elgendy, I.Y. Immediate Versus Staged Complete Revascularization for Patients with ST-Segment-Elevation Myocardial Infarction and Multivessel Disease: A Network Meta-Analysis of Randomized Trials. J. Am. Heart Assoc. 2024, 13, e035535. [Google Scholar] [CrossRef] [PubMed]
- Siopi, S.A.; Antonitsis, P.; Karapanagiotidis, G.T.; Tagarakis, G.; Voucharas, C.; Anastasiadis, K. Cardiac Failure and Cardiogenic Shock: Insights Into Pathophysiology, Classification, and Hemodynamic Assessment. Cureus 2024, 16, e72106. [Google Scholar] [CrossRef] [PubMed]
- Xia, Y.; Yang, R.; Hou, Y.; Wang, H.; Li, Y.; Zhu, J.; Fu, C. Application of mesenchymal stem cell-derived exosomes from different sources in intervertebral disc degeneration. Front. Bioeng. Biotechnol. 2022, 10, 1019437. [Google Scholar] [CrossRef]
- Hade, M.D.; Suire, C.N.; Suo, Z. Mesenchymal Stem Cell-Derived Exosomes: Applications in Regenerative Medicine. Cells 2021, 10, 1959. [Google Scholar] [CrossRef]
- Zeng, Y.; Wu, N.; Zhang, Z.; Zhong, L.; Li, G.; Li, Y. Non-coding RNA and arrhythmias: Expression, function, and molecular mechanism. Europace 2023, 25, 1296–1308. [Google Scholar] [CrossRef]
- Kreutzer, F.P.; Fiedler, J.; Thum, T. Non-coding RNAs: Key players in cardiac disease. J. Physiol. 2020, 598, 2995–3003. [Google Scholar] [CrossRef]
- Naz, M.; Shafique, H.; Majeed, M.I.; Nawaz, H.; Rashid, N.; Alshammari, A.; Albekairi, N.A.; Amber, A.; Zohaib, M.; Shahid, U.; et al. Surface-enhanced Raman spectroscopy (SERS) for the diagnosis of acute myocardial infarction (AMI) using blood serum samples. RSC Adv. 2024, 14, 29151–29159. [Google Scholar] [CrossRef]
- Li, Y.; Chen, X.; Jin, R.H.; Chen, L.; Dang, M.; Cao, H.; Dong, Y.; Cai, B.L.; Bai, G.; Gooding, J.J.; et al. Injectable hydrogel with MSNs/microRNA-21-5p delivery enables both immunomodification and enhanced angiogenesis for myocardial infarction therapy in pigs. Sci. Adv. 2021, 7, eabd6740. [Google Scholar] [CrossRef]
- Gao, W.H.; Cui, H.B.; Li, Q.J.; Zhong, H.; Yu, J.J.; Li, P.; He, X.J. Upregulation of microRNA-218 reduces cardiac microvascular endothelial cells injury induced by coronary artery disease through the inhibition of HMGB1. J. Cell Physiol. 2020, 235, 3079–3095. [Google Scholar] [CrossRef]
- Juni, R.P.; Kocken, J.M.M.; Abreu, R.C.; Ottaviani, L.; Davalan, T.; Duygu, B.; Poels, E.M.; Vasilevich, A.; Hegenbarth, J.C.; Appari, M.; et al. MicroRNA-216a is essential for cardiac angiogenesis. Mol. Ther. 2023, 31, 1807–1828. [Google Scholar] [CrossRef] [PubMed]
- Hu, S.J.; Huang, M.; Li, Z.J.; Jia, F.J.; Ghosh, Z.M.; Lijkwan, M.A.; Fasanaro, P.; Sun, N.; Wang, X.; Li, F.M.; et al. MicroRNA-210 as a Novel Therapy for Treatment of Ischemic Heart Disease. Circulation 2010, 122, S124–S131. [Google Scholar] [CrossRef] [PubMed]
- Iaconetti, C.; Polimeni, A.; Sorrentino, S.; Sabatino, J.; Pironti, G.; Esposito, G.; Curcio, A.; Indolfi, C. Inhibition of miR-92a increases endothelial proliferation and migration in vitro as well as reduces neointimal proliferation in vivo after vascular injury. Basic Res. Cardiol. 2012, 107, 296. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Wang, H.; He, F.; Zheng, J.; Zhang, H.; Cheng, C.; Hu, P.; Lu, R.; Yan, G. Depletion of microRNA-92a Enhances the Role of Sevoflurane Treatment in Reducing Myocardial Ischemia-Reperfusion Injury by Upregulating KLF4. Cardiovasc. Drugs Ther. 2023, 37, 1053–1064. [Google Scholar] [CrossRef]
- Zhang, X.L.; Wang, S.Z.; Qin, Y.T.; Guo, H. Downregulation of microRNA-221-3p promotes angiogenesis of lipoprotein(a)-injured endothelial progenitor cells by targeting silent information regulator 1 to activate the RAF/MEK/ERK signaling pathway. Mol. Med. Rep. 2024, 30, 223. [Google Scholar] [CrossRef]
- Meloni, M.; Marchetti, M.; Garner, K.; Littlejohns, B.; Sala-Newby, G.; Xenophontos, N.; Floris, I.; Suleiman, M.S.; Madeddu, P.; Caporali, A.; et al. Local Inhibition of MicroRNA-24 Improves Reparative Angiogenesis and Left Ventricle Remodeling and Function in Mice with Myocardial Infarction. Mol. Ther. 2013, 21, 1390–1402. [Google Scholar] [CrossRef]
- Icli, B.; Wara, A.K.M.; Moslehi, J.; Sun, X.H.; Plovie, E.; Cahill, M.; Marchini, J.F.; Schissler, A.; Padera, R.F.; Shi, J.R.; et al. MicroRNA-26a Regulates Pathological and Physiological Angiogenesis by Targeting BMP/SMAD1 Signaling. Circ. Res. 2013, 113, 1231–1241. [Google Scholar] [CrossRef]
- Dai, G.H.; Ma, P.Z.; Song, X.B.; Liu, N.; Zhang, T.; Wu, B. MicroRNA-223-3p Inhibits the Angiogenesis of Ischemic Cardiac Microvascular Endothelial Cells via Affecting RPS6KB1/hif-1a Signal Pathway. PLoS ONE 2014, 9, e108468. [Google Scholar] [CrossRef]
- Michalik, K.M.; You, X.T.; Manavski, Y.; Doddaballapur, A.; Zörnig, M.; Braun, T.; John, D.; Ponomareva, Y.; Chen, W.; Uchida, S.; et al. Long Noncoding RNA MALAT1 Regulates Endothelial Cell Function and Vessel Growth. Circ. Res. 2014, 114, 1389–1397. [Google Scholar] [CrossRef]
- Cremer, S.; Michalik, K.M.; Fischer, A.; Pfisterer, L.; Jaé, N.; Winter, C.; Boon, R.A.; Muhly-Reinholz, M.; John, D.; Uchida, S.; et al. Hematopoietic Deficiency of the Long Noncoding RNA MALAT1 Promotes Atherosclerosis and Plaque Inflammation. Circulation 2019, 139, 1320–1334, Correction in Circulation 2019, 140, E161. [Google Scholar] [CrossRef]
- Gast, M.; Rauch, B.H.; Nakagawa, S.; Haghikia, A.; Jasina, A.; Haas, J.; Nath, N.; Jensen, L.; Stroux, A.; Böhm, A.; et al. Immune system-mediated atherosclerosis caused by deficiency of long non-coding RNA MALAT1 in ApoE−/− mice. Cardiovasc. Res. 2019, 115, 302–314. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.Q.; Li, S.; Zhang, Y.; Wang, M.S.; Li, X.Y.; Liu, S.; Xu, D.Y.; Bao, Y.D.; Jia, P.Y.; Wu, N.; et al. The lncRNA Malat1 regulates microvascular function after myocardial infarction in mice via miR-26b-5p/Mfn1 axis-mediated mitochondrial dynamics. Redox Biol. 2021, 41, 101910. [Google Scholar] [CrossRef] [PubMed]
- Hofmann, P.; Sommer, J.; Theodorou, K.; Kirchhof, L.; Fischer, A.; Li, Y.H.; Perisic, L.; Hedin, U.; Maegdefessel, L.; Dimmeler, S.; et al. Long non-coding RNA H19 regulates endothelial cell aging via inhibition of STAT3 signalling. Cardiovasc. Res. 2019, 115, 230–242. [Google Scholar] [CrossRef] [PubMed]
- Lyu, Q.; Xu, S.W.; Lyu, Y.Y.; Choi, M.; Christie, C.K.; Slivano, O.J.; Rahman, A.; Jin, Z.G.; Long, X.C.; Xu, Y.W.; et al. SENCR stabilizes vascular endothelial cell adherens junctions through interaction with CKAP4. Proc. Natl. Acad. Sci. USA 2019, 116, 546–555. [Google Scholar] [CrossRef]
- Huang, Q.; Pan, M.; Zhou, J.P.; Yin, F. Overexpression of long non-coding RNA ANRIL promotes post-ischaemic angiogenesis and improves cardiac functions by targeting Akt. J. Cell Mol. Med. 2020, 24, 6860–6868. [Google Scholar] [CrossRef]
- Dang, Y.N.; Hua, W.J.; Zhang, X.T.; Sun, H.; Zhang, Y.J.; Yu, B.B.; Wang, S.R.; Zhang, M.; Kong, Z.H.; Pan, D.J.; et al. Anti-angiogenic effect of exo-LncRNA TUG1 in myocardial infarction and modulation by remote ischemic conditioning. Basic Res. Cardiol. 2023, 118, 1. [Google Scholar] [CrossRef]
- Zhang, Y.; Zheng, L.; Xu, B.M.; Tang, W.H.; Ye, Z.D.; Huang, C.; Ma, X.; Zhao, J.J.; Guo, F.X.; Kang, C.M.; et al. LncRNA-RP11-714G18.1 suppresses vascular cell migration via directly targeting LRP2BP. Immunol. Cell Biol. 2018, 96, 175–189. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhang, L.; Guo, J.C.; Chen, M.; Zheng, H.S.; Zhou, B.F. Long Non-Coding RNA PCAT19 Suppresses Cell Proliferation and Angiogenesis in Coronary Artery Disease through Interaction with GCNT2. Cell Biochem. Biophys. 2024, 82, 2237–2248. [Google Scholar] [CrossRef]
- Huang, S.Q.; Tao, W.Q.; Guo, Z.F.; Cao, J.; Huang, X.M. Suppression of long noncoding RNA TTTY15 attenuates hypoxia-induced cardiomyocytes injury by targeting miR-455-5p. Gene 2019, 701, 1–8. [Google Scholar] [CrossRef]
- Huang, F.; Zhu, X.; Hu, X.Q.; Fang, Z.F.; Tang, L.; Lu, X.L.; Zhou, S.H. Mesenchymal stem cells modified with miR-126 release angiogenic factors and activate Notch ligand Delta-like-4, enhancing ischemic angiogenesis and cell survival. Int. J. Mol. Med. 2013, 31, 484–492. [Google Scholar] [CrossRef]
- Zeng, Y.L.; Zheng, H.; Chen, Q.R.; Yuan, X.H.; Ren, J.H.; Luo, X.F.; Chen, P.; Lin, Z.Y.; Chen, S.Z.; Wu, X.Q.; et al. Bone marrow-derived mesenchymal stem cells overexpressing MiR-21 efficiently repair myocardial damage in rats. Oncotarget 2017, 8, 29161–29173. [Google Scholar] [CrossRef] [PubMed]
- Xu, B.; Luo, Y.; Liu, Y.L.; Li, B.Y.; Wang, Y. Platelet-derived growth factor-BB enhances MSC-mediated cardioprotection via suppression of miR-320 expression. Am. J. Physiol.-Heart Circ. Physiol. 2015, 308, H980–H989. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.J.; Zhou, S.H. Mesenchymal stem cells overexpressing MiR-126 enhance ischemic angiogenesis via the AKT/ERK-related pathway. Cardiol. J. 2011, 18, 675–681. [Google Scholar] [CrossRef] [PubMed]
- Liang, X.; Zhang, L.; Wang, S.; Han, Q.; Zhao, R.C. Exosomes secreted by mesenchymal stem cells promote endothelial cell angiogenesis by transferring miR-125a. J. Cell Sci. 2016, 129, 2182–2189. [Google Scholar] [CrossRef]
- Gray, W.D.; French, K.M.; Ghosh-Choudhary, S.; Maxwell, J.T.; Brown, M.E.; Platt, M.O.; Searles, C.D.; Davis, M.E. Identification of Therapeutic Covariant MicroRNA Clusters in Hypoxia-Treated Cardiac Progenitor Cell Exosomes Using Systems Biology. Circ. Res. 2015, 116, 255–263. [Google Scholar] [CrossRef]
- Xu, H.Y.; Wang, Z.C.; Liu, L.M.; Zhang, B.X.; Li, B. Exosomes derived from adipose tissue, bone marrow, and umbilical cord blood for cardioprotection after myocardial infarction. J. Cell Biochem. 2020, 121, 2089–2102. [Google Scholar] [CrossRef]
- Huang, P.S.; Wang, L.; Li, Q.; Tian, X.Q.; Xu, J.; Xu, J.Y.; Xiong, Y.Y.; Chen, G.H.; Qian, H.Y.; Jin, C.; et al. Atorvastatin enhances the therapeutic efficacy of mesenchymal stem cells-derived exosomes in acute myocardial infarction via up-regulating long non-coding RNA H19. Cardiovasc. Res. 2020, 116, 353–367. [Google Scholar] [CrossRef]
- Song, R.; Dasgupta, C.; Mulder, C.; Zhang, L.B. MicroRNA-210 Controls Mitochondrial Metabolism and Protects Heart Function in Myocardial Infarction. Circulation 2022, 145, 1140–1153. [Google Scholar] [CrossRef]
- Li, G.R.; Wang, G.K.; Ma, L.L.; Guo, J.; Song, J.W.; Ma, L.P.; Zhao, X.X. miR-22 regulates starvation-induced autophagy and apoptosis in cardiomyocytes by targeting p38α. Biochem. Biophys. Res. Commun. 2016, 478, 1165–1172. [Google Scholar] [CrossRef]
- Yang, Y.J.; Johnson, J.; Troupes, C.D.; Feldsott, E.A.; Kraus, L.; Megill, E.; Bian, Z.L.; Asangwe, N.; Kino, T.; Eaton, D.M.; et al. miR-182/183-Rasa1 axis induced macrophage polarization and redox regulation promotes repair after ischemic cardiac injury. Redox Biol. 2023, 67, 102909. [Google Scholar] [CrossRef]
- Sun, B.; Zhao, C.M.; Mao, Y. MiR-218-5p Mediates Myocardial Fibrosis after Myocardial Infarction by Targeting CX43. Curr. Pharm. Design 2021, 27, 4504–4512. [Google Scholar] [CrossRef] [PubMed]
- Ren, Z.; Liu, Y.; Cai, A.; Yu, Y.; Wang, X.; Lan, L.; Guo, X.; Yan, H.; Gao, X.; Li, H.; et al. Cannabidiol represses miR-143 to promote cardiomyocyte proliferation and heart regeneration after myocardial infarction. Eur. J. Pharmacol. 2024, 963, 176245. [Google Scholar] [CrossRef]
- Qian, D.; Wen, J.; Yuan, Y.; Wang, L.; Feng, X. Sevoflurane preconditioning attenuates myocardial cell damage caused by hypoxia and reoxygenation via regulating the NORAD/miR-144-3p axis. Hum. Exp. Toxicol. 2024, 43, 9603271241297883. [Google Scholar] [CrossRef]
- Zhang, Y.; Cui, H.; Zhao, M.; Yu, H.; Xu, W.; Wang, Z.; Xiao, H. Cardiomyocyte-derived small extracellular vesicle-transported let-7b-5p modulates cardiac remodeling via TLR7 signaling pathway. FASEB J. 2024, 38, e70196. [Google Scholar] [CrossRef]
- Mo, C.; Tang, X.; Wei, Y.; Han, H.; Wei, G.; Wei, L.; Lin, X. miRNA-148a-3p targets to regulate the lipid metabolism gene SOCS3 to reduce myocardial ischemia/reperfusion injury. Minerva Cardiol. Angiol. 2024. [Google Scholar] [CrossRef]
- Liu, S.; Liao, Q.; Xu, W.; Zhang, Z.; Yin, M.; Cao, X. MiR-129-5p Protects H9c2 Cardiac Myoblasts From Hypoxia/Reoxygenation Injury by Targeting TRPM7 and Inhibiting NLRP3 Inflammasome Activation. J. Cardiovasc. Pharmacol. 2021, 77, 586–593. [Google Scholar] [CrossRef]
- Xue, Q.; Yang, D.; Zhang, J.; Gan, P.; Lin, C.; Lu, Y.; Zhang, W.; Zhang, L.; Guang, X. USP7, negatively regulated by miR-409-5p, aggravates hypoxia-induced cardiomyocyte injury. APMIS 2021, 129, 152–162. [Google Scholar] [CrossRef]
- Zhou, W.; Ji, L.; Liu, X.; Tu, D.; Shi, N.; Yangqu, W.; Chen, S.; Gao, P.; Zhu, H.; Ruan, C. AIFM1, negatively regulated by miR-145-5p, aggravates hypoxia-induced cardiomyocyte injury. Biomed. J. 2022, 45, 870–882. [Google Scholar] [CrossRef]
- Chen, Y.; Yin, Y.; Jiang, H. miR-30e-5p Alleviates Inflammation and Cardiac Dysfunction After Myocardial Infarction Through Targeting PTEN. Inflammation 2021, 44, 769–779. [Google Scholar] [CrossRef]
- Qu, Y.; Zhang, J.; Zhang, J.; Xiao, W. MiR-708-3p Alleviates Inflammation and Myocardial Injury After Myocardial Infarction by Suppressing ADAM17 Expression. Inflammation 2021, 44, 1083–1095. [Google Scholar] [CrossRef]
- Wen, X.; Yin, Y.; Li, X.; He, T.; Wang, P.; Song, M.; Gao, J. Effect of miR-26a-5p targeting ADAM17 gene on apoptosis, inflammatory factors and oxidative stress response of myocardial cells in hypoxic model. J. Bioenerg. Biomembr. 2020, 52, 83–92. [Google Scholar] [CrossRef] [PubMed]
- Yan, G.; Wang, J.; Fang, Z.; Yan, S.; Zhang, Y. MiR-26a-5p Targets WNT5A to Protect Cardiomyocytes from Injury Due to Hypoxia/Reoxygenation Through the Wnt/β-catenin Signaling Pathway. Int. Heart J. 2021, 62, 1145–1152. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.; Zhang, J.; Xuan, F. MiR-7a-5p Attenuates Hypoxia/Reoxygenation-Induced Cardiomyocyte Apoptosis by Targeting VDAC1. Cardiovasc. Toxicol. 2022, 22, 108–117. [Google Scholar] [CrossRef] [PubMed]
- Ge, L.; Cai, Y.; Ying, F.; Liu, H.; Zhang, D.; He, Y.; Pang, L.; Yan, D.; Xu, A.; Ma, H.; et al. miR-181c-5p Exacerbates Hypoxia/Reoxygenation-Induced Cardiomyocyte Apoptosis via Targeting PTPN4. Oxid. Med. Cell Longev. 2019, 2019, 1957920. [Google Scholar] [CrossRef] [PubMed]
- Liang, G.; Tang, H.; Guo, C.; Zhang, M. MiR-224-5p overexpression inhibits oxidative stress by regulating the PI3K/Akt/FoxO1 axis to attenuate hypoxia/reoxygenation-induced cardiomyocyte injury. Nan Fang Yi Ke Da Xue Xue Bao 2024, 44, 1173–1181. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, M.; Zhang, S.; Wu, J.; Xue, S. Rno-microRNA-30c-5p promotes myocardial ischemia reperfusion injury in rats through activating NF-κB pathway and targeting SIRT1. BMC Cardiovasc. Disord. 2020, 20, 240. [Google Scholar] [CrossRef]
- Cheng, N.; Li, L.; Wu, Y.; Wang, M.; Yang, M.; Wei, S.; Wang, R. microRNA-30e up-regulation alleviates myocardial ischemia-reperfusion injury and promotes ventricular remodeling via SOX9 repression. Mol. Immunol. 2021, 130, 96–103. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, S.; Liang, Y.; He, Y.; Li, Q.; Zhan, J.; Hou, H.; Qiu, X. Single dose of intravenous miR199a-5p delivery targeting ischemic heart for long-term repair of myocardial infarction. Nat. Commun. 2024, 15, 5565. [Google Scholar] [CrossRef]
- Ruan, Y.; Meng, S.; Jia, R.; Cao, X.; Jin, Z. MicroRNA-322-5p protects against myocardial infarction through targeting BTG2. Am. J. Med. Sci. 2024, 367, 397–405. [Google Scholar] [CrossRef]
- Guo, L.; Li, K.; Ma, Y.; Niu, H.; Li, J.; Shao, X.; Li, N.; Sun, Y.; Wang, H. MicroRNA-322-5p targeting Smurf2 regulates the TGF-beta/Smad pathway to protect cardiac function and inhibit myocardial infarction. Hum. Cell 2024, 37, 972–985. [Google Scholar] [CrossRef]
- Dong, W.; Dong, C.; Zhu, J.; Zheng, Y.; Weng, J.; Liu, L.; Ruan, Y.; Fang, X.; Chen, J.; Liu, W.; et al. HIF-1alpha-induced upregulated miR-322 forms a feedback loop by targeting Smurf2 and Smad7 to activate Smad3/beta-catenin/HIF-1alpha, thereby improving myocardial ischemia-reperfusion injury. Cell Biol. Int. 2023, 47, 894–906. [Google Scholar] [CrossRef] [PubMed]
- Dong, W.; Xie, F.; Chen, X.Y.; Huang, W.L.; Zhang, Y.Z.; Luo, W.B.; Chen, J.; Xie, M.T.; Peng, X.P. Inhibition of Smurf2 translation by miR-322/503 protects from ischemia-reperfusion injury by modulating EZH2/Akt/GSK3beta signaling. Am. J. Physiol. Cell Physiol. 2019, 317, C253–C261. [Google Scholar] [CrossRef] [PubMed]
- He, L.; Wang, Z.; Zhou, R.; Xiong, W.; Yang, Y.; Song, N.; Qian, J. Dexmedetomidine exerts cardioprotective effect through miR-146a-3p targeting IRAK1 and TRAF6 via inhibition of the NF-κB pathway. Biomed. Pharmacother. 2021, 133, 110993. [Google Scholar] [CrossRef] [PubMed]
- An, R.; Feng, J.; Xi, C.; Xu, J.; Sun, L. miR-146a Attenuates Sepsis-Induced Myocardial Dysfunction by Suppressing IRAK1 and TRAF6 via Targeting ErbB4 Expression. Oxid. Med. Cell Longev. 2018, 2018, 7163057. [Google Scholar] [CrossRef]
- Zhang, Q.; Yin, J.; Zou, Y. MiR-568 mitigated cardiomyocytes apoptosis, oxidative stress response and cardiac dysfunction via targeting SMURF2 in heart failure rats. Heart Vessel. 2023, 38, 857–868. [Google Scholar] [CrossRef]
- Li, S.H.; Zhang, Y.Y.; Sun, Y.L.; Zhao, H.J.; Wang, Y. Inhibition of microRNA-802-5p inhibits myocardial apoptosis after myocardial infarction via Sonic Hedgehog signaling pathway by targeting PTCH1. Eur. Rev. Med. Pharmacol. Sci. 2021, 25, 326–334. [Google Scholar] [CrossRef]
- Ma, Z.F.; Wang, N.; Zhang, J.; Wan, Y.F.; Xiao, N.; Chen, C. Overexpression of miR-431 inhibits cardiomyocyte apoptosis following myocardial infarction via targeting HIPK3. Eur. Rev. Med. Pharmacol. Sci. 2021, 25, 2056–2064. [Google Scholar] [CrossRef]
- Li, Q.; Yang, J.; Zhang, J.; Liu, X.W.; Yang, C.J.; Fan, Z.X.; Wang, H.B.; Yang, Y.; Zheng, T.; Yang, J. Inhibition of microRNA-327 ameliorates ischemia/reperfusion injury-induced cardiomyocytes apoptosis through targeting apoptosis repressor with caspase recruitment domain. J. Cell Physiol. 2020, 235, 3753–3767. [Google Scholar] [CrossRef]
- Tang, M.; Pan, H.; Zheng, Z.; Guo, Y.; Peng, J.; Yang, J.; Luo, Y.; He, J.; Yan, S.; Wang, P.; et al. Prostaglandin E1 protects cardiomyocytes against hypoxia-reperfusion induced injury via the miR-21-5p/FASLG axis. Biosci. Rep. 2019, 39, BSR20190597. [Google Scholar] [CrossRef]
- Wang, J.; Chen, X.D.; Shen, D.P.; Ge, D.H.; Chen, J.L.; Pei, J.Q.; Li, Y.D.; Yue, Z.; Feng, J.; Chu, M.P.; et al. A long noncoding RNA NR_045363 controls cardiomyocyte proliferation and cardiac repair. J. Mol. Cell Cardiol. 2019, 127, 105–114. [Google Scholar] [CrossRef]
- Chen, G.J.; Li, H.R.; Li, X.Z.; Li, B.; Zhong, L.T.; Huang, S.L.; Zheng, H.; Li, M.S.; Jin, G.Q.; Liao, W.J.; et al. Loss of long non-coding RNA CRRL promotes cardiomyocyte regeneration and improves cardiac repair by functioning as a competing endogenous RNA. J. Mol. Cell Cardiol. 2018, 122, 152–164. [Google Scholar] [CrossRef] [PubMed]
- Micheletti, R.; Plaisance, I.; Abraham, B.J.; Sarre, A.; Ting, C.C.; Alexanian, M.; Maric, D.; Maison, D.; Nemir, M.; Young, R.A.; et al. The long noncoding RNA controls cardiac fibrosis and remodeling. Sci. Transl. Med. 2017, 9, eaai9118. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.Y.; Zhang, Y.H.; Li, R.B.; Zhou, L.Y.; An, T.; Zhang, R.C.; Zhai, M.; Huang, Y.; Yan, K.W.; Dong, Y.H.; et al. LncRNA CAIF inhibits autophagy and attenuates myocardial infarction by blocking p53-mediated myocardin transcription. Nat. Commun. 2018, 9, 29. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Fu, X.Y.; Kataoka, M.; Liu, N.; Wang, Y.C.; Gao, F.; Liang, T.; Dong, X.X.; Pei, J.Q.; Hu, X.Y.; et al. Long noncoding RNA regulates cardiac fibrosis. Mol. Ther-Nucl. Acids 2021, 23, 377–392. [Google Scholar] [CrossRef]
- Huang, K.; Huang, D.; Li, Q.; Zhong, J.; Zhou, Y.; Zhong, Z.; Tang, S.; Zhang, W.; Chen, Z.; Lu, S. Upregulation of LncRNA UCA1 promotes cardiomyocyte proliferation by inhibiting the miR-128/SUZ12/P27 pathway. Heliyon 2024, 10, e34181. [Google Scholar] [CrossRef]
- Wang, Q.S.; Zhou, J.; Li, X. LncRNA UCA1 protects cardiomyocytes against hypoxia/reoxygenation induced apoptosis through inhibiting miR-143/MDM2/p53 axis. Genomics 2020, 112, 574–580. [Google Scholar] [CrossRef]
- Zhang, D.; Wang, B.; Ma, M.; Yu, K.; Zhang, Q.; Zhang, X. lncRNA HOTAIR Protects Myocardial Infarction Rat by Sponging miR-519d-3p. J. Cardiovasc. Transl. Res. 2019, 12, 171–183. [Google Scholar] [CrossRef]
- Zhang, Y.; Hou, Y.M.; Gao, F.; Xiao, J.W.; Li, C.C.; Tang, Y. lncRNA GAS5 regulates myocardial infarction by targeting the miR-525-5p/CALM2 axis. J. Cell Biochem. 2019, 120, 18678–18688. [Google Scholar] [CrossRef]
- Zhou, X.H.; Chai, H.X.; Bai, M.; Zhang, Z. LncRNA-GAS5 regulates PDCD4 expression and mediates myocardial infarction-induced cardiomyocytes apoptosis via targeting MiR-21. Cell Cycle 2020, 19, 1363–1377. [Google Scholar] [CrossRef]
- Wu, N.; Zhang, X.; Bao, Y.; Yu, H.; Jia, D.; Ma, C. Down-regulation of GAS5 ameliorates myocardial ischaemia/reperfusion injury via the miR-335/ROCK1/AKT/GSK-3beta axis. J. Cell Mol. Med. 2019, 23, 8420–8431. [Google Scholar] [CrossRef]
- Han, Y.; Wu, N.; Xia, F.; Liu, S.; Jia, D. Long non-coding RNA GAS5 regulates myocardial ischemia-reperfusion injury through the PI3K/AKT apoptosis pathway by sponging miR-532-5p. Int. J. Mol. Med. 2020, 45, 858–872. [Google Scholar] [CrossRef] [PubMed]
- Cong, L.; Su, Y.; Wei, D.; Qian, L.; Xing, D.; Pan, J.; Chen, Y.; Huang, M. Catechin relieves hypoxia/reoxygenation-induced myocardial cell apoptosis via down-regulating lncRNA MIAT. J. Cell Mol. Med. 2020, 24, 2356–2368. [Google Scholar] [CrossRef] [PubMed]
- Tong, X.; Chen, J.; Liu, W.; Liang, H.; Zhu, H. LncRNA LSINCT5/miR-222 regulates myocardial ischemia-reperfusion injury through PI3K/AKT pathway. J. Thromb. Thrombolysis 2021, 52, 720–729. [Google Scholar] [CrossRef] [PubMed]
- Zhou, T.; Qin, G.; Yang, L.; Xiang, D.; Li, S. LncRNA XIST regulates myocardial infarction by targeting miR-130a-3p. J. Cell Physiol. 2019, 234, 8659–8667. [Google Scholar] [CrossRef]
- Lin, B.; Xu, J.; Wang, F.; Wang, J.; Zhao, H.; Feng, D. LncRNA XIST promotes myocardial infarction by regulating FOS through targeting miR-101a-3p. Aging 2020, 12, 7232–7247. [Google Scholar] [CrossRef]
- Zhao, J.; Chen, F.; Ma, W.; Zhang, P. Suppression of long noncoding RNA NEAT1 attenuates hypoxia-induced cardiomyocytes injury by targeting miR-378a-3p. Gene 2020, 731, 144324. [Google Scholar] [CrossRef]
- Liang, H.; Li, F.; Li, H.; Wang, R.; Du, M. Overexpression of lncRNA HULC Attenuates Myocardial Ischemia/reperfusion Injury in Rat Models and Apoptosis of Hypoxia/reoxygenation Cardiomyocytes via Targeting miR-377-5p through NLRP3/Caspase-1/IL-1beta Signaling Pathway Inhibition. Immunol. Investig. 2021, 50, 925–938. [Google Scholar] [CrossRef]
- Kang, H.; Yu, H.; Zeng, L.; Ma, H.; Cao, G. LncRNA Rian reduces cardiomyocyte pyroptosis and alleviates myocardial ischemia-reperfusion injury by regulating by the miR-17-5p/CCND1 axis. Hypertens. Res. 2022, 45, 976–989. [Google Scholar] [CrossRef]
- Makino, S.; Fukuda, K.; Miyoshi, S.; Konishi, F.; Kodama, H.; Pan, J.; Sano, M.; Takahashi, T.; Hori, S.; Abe, H.; et al. Cardiomyocytes can be generated from marrow stromal cells in vitro. J. Clin. Investig. 1999, 103, 697–705. [Google Scholar] [CrossRef]
- Dai, F.J.; Du, P.Z.; Chang, Y.W.; Ji, E.D.; Xu, Y.J.; Wei, C.Y.; Li, J.M. Downregulation of MiR-199b-5p Inducing Differentiation of Bone-Marrow Mesenchymal Stem Cells (BMSCs) Toward Cardiomyocyte-Like Cells via HSF1/HSP70 Pathway. Med. Sci. Monitor 2018, 24, 2700–2710. [Google Scholar] [CrossRef]
- Cai, B.Z.; Li, J.P.; Wang, J.H.; Luo, X.B.; Ai, J.; Liu, Y.J.; Wang, N.; Liang, H.H.; Zhang, M.Y.; Chen, N.; et al. microRNA-124 Regulates Cardiomyocyte Differentiation of Bone Marrow-Derived Mesenchymal Stem Cells Via Targeting STAT3 Signaling. Stem Cells 2012, 30, 1746–1755. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.L.; Yang, B.; Ma, L.N.; Dong, Y.H. MicroRNA-1 effectively induces differentiation of myocardial cells from mouse bone marrow mesenchymal stem cells. Artif. Cell Nanomed. B 2016, 44, 1665–1670. [Google Scholar] [CrossRef]
- Shen, X.; Pan, B.; Zhou, H.M.; Liu, L.J.; Lv, T.W.; Zhu, J.; Huang, X.P.; Tian, J. Differentiation of mesenchymal stem cells into cardiomyocytes is regulated by miRNA-1-2 via WNT signaling pathway. J. Biomed. Sci. 2017, 24, 29. [Google Scholar] [CrossRef]
- Huang, F.; Li, M.L.; Fang, Z.F.; Hu, X.Q.; Liu, Q.M.; Liu, Z.J.; Tang, L.; Zhao, Y.S.; Zhou, S.H. Overexpression of MicroRNA-1 Improves the Efficacy of Mesenchymal Stem Cell Transplantation after Myocardial Infarction. Cardiology 2013, 125, 18–30. [Google Scholar] [CrossRef]
- Kochegarov, A.; Moses-Arms, A.; Lemanski, L.F. A fetal human heart cardiac-inducing RNA (CIR) promotes the differentiation of stem cells into cardiomyocytes. In Vitro Cell. Dev. Biol. Anim. 2015, 51, 739–748. [Google Scholar] [CrossRef]
- Cui, X.T.; Dong, H.; Luo, S.H.; Zhuang, B.Q.; Li, Y.S.; Zhong, C.N.; Ma, Y.T.; Hong, L. Long Non-Coding RNA-Cardiac-Inducing RNA 6 Mediates Repair of Infarcted Hearts by Inducing Mesenchymal Stem Cell Differentiation into Cardiogenic Cells through Cyclin-Dependent Kinase 1. Int. J. Mol. Sci. 2024, 25, 3466. [Google Scholar] [CrossRef]
- Klattenhoff, C.A.; Scheuermann, J.C.; Surface, L.E.; Bradley, R.K.; Fields, P.A.; Steinhauser, M.L.; Ding, H.M.; Butty, V.L.; Torrey, L.; Haas, S.; et al. Braveheart, a Long Noncoding RNA Required for Cardiovascular Lineage Commitment. Cell 2013, 152, 570–583. [Google Scholar] [CrossRef]
- Hou, J.Y.; Long, H.B.; Zhou, C.Q.; Zheng, S.X.; Wu, H.; Guo, T.Z.; Wu, Q.H.; Zhong, T.T.; Wang, T. Long noncoding RNA Braveheart promotes cardiogenic differentiation of mesenchymal stem cells in vitro. Stem Cell Res. Ther. 2017, 8, 4. [Google Scholar] [CrossRef]
- Yamanaka, S. Pluripotent Stem Cell-Based Cell Therapy- Promise and Challenges. Cell Stem Cell 2020, 27, 523–531. [Google Scholar] [CrossRef]
- Zhang, Z.W.; Li, X.T.; Zhuang, J.W.; Ding, Q.W.; Zheng, H.; Ma, T.; Meng, Q.Y.; Gao, L. miR-590-3p Overexpression Improves the Efficacy of hiPSC-CMs for Myocardial Repair. JACC-Basic Transl. Sc. 2024, 9, 557–573. [Google Scholar] [CrossRef]
- Zhao, M.; Nakada, Y.; Wei, Y.H.; Bian, W.H.; Chu, Y.X.; Borovjagin, A.V.; Xie, M.; Zhu, W.Q.; Nguyen, T.; Zhou, Y.; et al. Cyclin D2 Overexpression Enhances the Efficacy of Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes for Myocardial Repair in a Swine Model of Myocardial Infarction. Circulation 2021, 144, 210–228. [Google Scholar] [CrossRef] [PubMed]
- Bian, W.H.; Chen, W.P.; Nguyen, T.; Zhou, Y.; Zhang, J.Y. miR-199a Overexpression Enhances the Potency of Human Induced-Pluripotent Stem-Cell-Derived Cardiomyocytes for Myocardial Repair. Front. Pharmacol. 2021, 12, 673621. [Google Scholar] [CrossRef] [PubMed]
- Lu, T.Y.; Lin, B.; Li, Y.; Arora, A.; Han, L.; Cui, C.; Coronnello, C.; Sheng, Y.; Benos, P.V.; Yang, L. Overexpression of microRNA-1 promotes cardiomyocyte commitment from human cardiovascular progenitors via suppressing WNT and FGF signaling pathways. J. Mol. Cell Cardiol. 2013, 63, 146–154. [Google Scholar] [CrossRef]
- White, M.C.; Pang, L.; Yang, X. MicroRNA-mediated maturation of human pluripotent stem cell-derived cardiomyocytes: Towards a better model for cardiotoxicity? Food Chem. Toxicol. 2016, 98, 17–24. [Google Scholar] [CrossRef]
- Zhu, L.P.; Tian, T.; Wang, J.Y.; He, J.N.; Chen, T.; Pan, M.; Xu, L.; Zhang, H.X.; Qiu, X.T.; Li, C.C.; et al. Hypoxia-elicited mesenchymal stem cell-derived exosomes facilitates cardiac repair through miR-125b-mediated prevention of cell death in myocardial infarction. Theranostics 2018, 8, 6163–6177. [Google Scholar] [CrossRef]
- Shi, B.; Wang, Y.; Zhao, R.Z.; Long, X.P.; Deng, W.W.; Wang, Z.L. Bone marrow mesenchymal stem cell-derived exosomal miR-21 protects C-kit cardiac stem cells from oxidative injury through the PTEN/PI3K/Akt axis. PLoS ONE 2018, 13, e0191616. [Google Scholar] [CrossRef]
- Peng, Y.; Zhao, J.L.; Peng, Z.Y.; Xu, W.F.; Yu, G.L. Exosomal miR-25-3p from mesenchymal stem cells alleviates myocardial infarction by targeting pro-apoptotic proteins and EZH2. Cell Death Dis. 2020, 11, 317, Correction in Cell Death Dis. 2020, 11, 845. [Google Scholar] [CrossRef]
- Zhou, M.; Cai, J.F.; Tang, Y.L.; Zhao, Q. MiR-17-92 cluster is a novel regulatory gene of cardiac ischemic/reperfusion injury. Med. Hypotheses 2013, 81, 108–110. [Google Scholar] [CrossRef]
- Cheng, H.; Chang, S.F.; Xu, R.D.; Chen, L.; Song, X.Y.; Wu, J.; Qian, J.Y.; Zou, Y.Z.; Ma, J.Y. Hypoxia-challenged MSC-derived exosomes deliver miR-210 to attenuate post-infarction cardiac apoptosis. Stem Cell Res. Ther. 2020, 11, 224. [Google Scholar] [CrossRef]
- Ding, S.; Abudupataer, M.; Zhou, Z.; Chen, J.; Li, H.; Xu, L.; Zhang, W.; Zhang, S.; Zou, Y.; Hong, T.; et al. Histamine deficiency aggravates cardiac injury through miR-206/216b-Atg13 axis-mediated autophagic-dependant apoptosis. Cell Death Dis. 2018, 9, 694. [Google Scholar] [CrossRef]
- Yu, H.; Pan, Y.; Dai, M.; Wang, X.; Chen, H. Mesenchymal Stem Cell-Originated Exosomal Lnc A2M-AS1 Alleviates Hypoxia/Reperfusion-Induced Apoptosis and Oxidative Stress in Cardiomyocytes. Cardiovasc. Drugs Ther. 2023, 37, 891–904. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.H.; Wang, X.; Zhang, Y.; Hui, J. Exosomes of bone-marrow stromal cells inhibit cardiomyocyte apoptosis under ischemic and hypoxic conditions via miR-486-5p targeting the PTEN/PI3K/AKT signaling pathway. Thromb. Res. 2019, 177, 23–32. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Liu, Y.; Ding, X.; Li, Q.; Qiu, F.; Wang, M.; Shen, Z.; Zheng, H.; Fu, G. Bone marrow mesenchymal stem cell-secreted exosomes carrying microRNA-125b protect against myocardial ischemia reperfusion injury via targeting SIRT7. Mol. Cell Biochem. 2020, 465, 103–114. [Google Scholar] [CrossRef] [PubMed]
- Mao, S.; Zhao, J.; Zhang, Z.J.; Zhao, Q. MiR-183-5p overexpression in bone mesenchymal stem cell-derived exosomes protects against myocardial ischemia/reperfusion injury by targeting FOXO1. Immunobiology 2022, 227, 152204. [Google Scholar] [CrossRef]
- Wen, Z.; Mai, Z.; Zhu, X.; Wu, T.; Chen, Y.; Geng, D.; Wang, J. Mesenchymal stem cell-derived exosomes ameliorate cardiomyocyte apoptosis in hypoxic conditions through microRNA144 by targeting the PTEN/AKT pathway. Stem Cell Res. Ther. 2020, 11, 36. [Google Scholar] [CrossRef]
- Song, Y.; Wang, B.; Zhu, X.; Hu, J.; Sun, J.; Xuan, J.; Ge, Z. Human umbilical cord blood-derived MSCs exosome attenuate myocardial injury by inhibiting ferroptosis in acute myocardial infarction mice. Cell Biol. Toxicol. 2021, 37, 51–64. [Google Scholar] [CrossRef]
- Huang, Z.; Wu, S.; Kong, F.; Cai, X.; Ye, B.; Shan, P.; Huang, W. MicroRNA-21 protects against cardiac hypoxia/reoxygenation injury by inhibiting excessive autophagy in H9c2 cells via the Akt/mTOR pathway. J. Cell Mol. Med. 2017, 21, 467–474. [Google Scholar] [CrossRef]
- Li, Q.; Gao, Y.; Zhu, J.; Jia, Q. MiR-101 Attenuates Myocardial Infarction-induced Injury by Targeting DDIT4 to Regulate Autophagy. Curr. Neurovasc. Res. 2020, 17, 123–130. [Google Scholar] [CrossRef]
- Chen, G.; Wang, M.; Ruan, Z.; Zhu, L.; Tang, C. Mesenchymal stem cell-derived exosomal miR-143-3p suppresses myocardial ischemia-reperfusion injury by regulating autophagy. Life Sci. 2021, 280, 119742. [Google Scholar] [CrossRef]
- Shao, L.B.; Zhang, Y.; Lan, B.B.; Wang, J.J.; Zhang, Z.W.; Zhang, L.L.; Xiao, P.L.; Meng, Q.Y.; Geng, Y.J.; Yu, X.Y.; et al. MiRNA-Sequence Indicates That Mesenchymal Stem Cells and Exosomes Have Similar Mechanism to Enhance Cardiac Repair. Biomed. Res. Int. 2017, 2017, 4150705. [Google Scholar] [CrossRef]
- Zhu, W.W.; Sun, L.; Zhao, P.C.; Liu, Y.W.; Zhang, J.; Zhang, Y.L.; Hong, Y.M.; Zhu, Y.Q.; Lu, Y.; Zhao, W.; et al. Macrophage migration inhibitory factor facilitates the therapeutic efficacy of mesenchymal stem cells derived exosomes in acute myocardial infarction through upregulating miR-133a-3p. J. Nanobiotechnol. 2021, 19, 61. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Wei, Q.; Liu, X.; Zhang, T.; Wang, S.; Zhou, L.; Zou, L.; Fan, F.; Chi, H.; Sun, J.; et al. Exosomal microRNA-98-5p from hypoxic bone marrow mesenchymal stem cells inhibits myocardial ischemia-reperfusion injury by reducing TLR4 and activating the PI3K/Akt signaling pathway. Int. Immunopharmacol. 2021, 101, 107592. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Li, L.; Liu, T.; Jiang, W.Y.; Hu, X.T. miR-19a/19b-loaded exosomes in combination with mesenchymal stem cell transplantation in a preclinical model of myocardial infarction. Regen. Med. 2020, 15, 1749–1759. [Google Scholar] [CrossRef] [PubMed]
- Yan, F.; Cui, W.; Chen, Z.Y. Mesenchymal Stem Cell-Derived Exosome-Loaded microRNA-129-5p Inhibits TRAF3 Expression to Alleviate Apoptosis and Oxidative Stress in Heart Failure. Cardiovasc. Toxicol. 2022, 22, 631–645. [Google Scholar] [CrossRef]
- Chen, Y.Q.; Zhao, Y.F.; Chen, W.Q.; Xie, L.C.; Zhao, Z.A.; Yang, J.J.; Chen, Y.H.; Lei, W.; Shen, Z.Y. MicroRNA-133 overexpression promotes the therapeutic efficacy of mesenchymal stem cells on acute myocardial infarction. Stem Cell Res. Ther. 2017, 8, 268. [Google Scholar] [CrossRef]
- Kmiotek-Wasylewska, K.; Bobis-Wozowicz, S.; Karnas, E.; Orpel, M.; Woznicka, O.; Madeja, Z.; Dawn, B.; Zuba-Surma, E.K. Anti-inflammatory, Anti-fibrotic and Pro-cardiomyogenic Effects of Genetically Engineered Extracellular Vesicles Enriched in miR-1 and miR-199a on Human Cardiac Fibroblasts. Stem Cell Rev. Rep. 2023, 19, 2756–2773. [Google Scholar] [CrossRef]
- Paw, M.; Kusiak, A.A.; Nit, K.; Litewka, J.J.; Piejko, M.; Wnuk, D.; Sarna, M.; Fic, K.; Stopa, K.B.; Hammad, R.; et al. Hypoxia enhances anti-fibrotic properties of extracellular vesicles derived from hiPSCs via the miR302b-3p/TGFbeta/SMAD2 axis. BMC Med. 2023, 21, 412. [Google Scholar] [CrossRef]
- Grov, I.; Authen, A.R.; Arora, S.; Bergh, N.; Rolid, K.; Gustafsson, F.; Eiskjaer, H.; Radegran, G.; Gude, E.; Andreassen, A.K.; et al. The Effect of Everolimus Versus Calcineurin Inhibitors on Quality of Life 10–12 Years After Heart Transplantation: The Results of a Randomized Controlled Trial (SCHEDULE Trial). Clin. Transplant. 2024, 38, e70028. [Google Scholar] [CrossRef]
- Wen, Z.Z.; Zheng, S.X.; Zhou, C.Q.; Wang, J.F.; Wang, T. Repair mechanisms of bone marrow mesenchymal stem cells in myocardial infarction. J. Cell Mol. Med. 2011, 15, 1032–1043. [Google Scholar] [CrossRef]
- Tuo, L.; Song, H.; Jiang, D.T.; Bai, X.; Song, G.M. Mesenchymal stem cells transfected with anti-miRNA-204-3p inhibit acute rejection after heart transplantation by targeting C-X-C motif chemokine receptor 4 (CXCR4) in vitro. J. Thorac. Dis. 2021, 13, 5077–5092. [Google Scholar] [CrossRef]
- Xu, C.L.; Ren, G.W.; Cao, G.; Chen, Q.; Shou, P.S.; Zheng, C.X.; Du, L.M.; Han, X.Y.; Jiang, M.H.; Yang, Q.; et al. miR-155 Regulates Immune Modulatory Properties of Mesenchymal Stem Cells by Targeting TAK1-binding Protein 2. J. Biol. Chem. 2013, 288, 11074–11079. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.B.; Chen, T.B.; Li, Y.Y.; Xu, Y.B. miR-19a/19b improves the therapeutic potential of mesenchymal stem cells in a mouse model of myocardial infarction. Gene Ther. 2021, 28, 29–37. [Google Scholar] [CrossRef] [PubMed]
- Tomé, M.; López-Romero, P.; Albo, C.; Sepúlveda, J.C.; Fernández-Gutiérrez, B.; Dopazo, A.; Bernad, A.; González, M.A. miR-335 orchestrates cell proliferation, migration and differentiation in human mesenchymal stem cells. Cell Death Differ. 2011, 18, 985–995. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhuang, B.; Zhong, C.; Ma, Y.; Wang, A.; Quan, H.; Hong, L. Innovative Therapeutic Strategies for Myocardial Infarction Across Various Stages: Non-Coding RNA and Stem Cells. Int. J. Mol. Sci. 2025, 26, 231. https://doi.org/10.3390/ijms26010231
Zhuang B, Zhong C, Ma Y, Wang A, Quan H, Hong L. Innovative Therapeutic Strategies for Myocardial Infarction Across Various Stages: Non-Coding RNA and Stem Cells. International Journal of Molecular Sciences. 2025; 26(1):231. https://doi.org/10.3390/ijms26010231
Chicago/Turabian StyleZhuang, Bingqi, Chongning Zhong, Yuting Ma, Ao Wang, Hailian Quan, and Lan Hong. 2025. "Innovative Therapeutic Strategies for Myocardial Infarction Across Various Stages: Non-Coding RNA and Stem Cells" International Journal of Molecular Sciences 26, no. 1: 231. https://doi.org/10.3390/ijms26010231
APA StyleZhuang, B., Zhong, C., Ma, Y., Wang, A., Quan, H., & Hong, L. (2025). Innovative Therapeutic Strategies for Myocardial Infarction Across Various Stages: Non-Coding RNA and Stem Cells. International Journal of Molecular Sciences, 26(1), 231. https://doi.org/10.3390/ijms26010231