Long Non-Coding RNA-Cardiac-Inducing RNA 6 Mediates Repair of Infarcted Hearts by Inducing Mesenchymal Stem Cell Differentiation into Cardiogenic Cells through Cyclin-Dependent Kinase 1
<p>Effect of LncRNA-CIR6 on the induced differentiation of BMSCs and hUCMSCs into Ccardiomyogenic cells. (<b>A</b>) Inverted optical microscope images of MSCs transfected with empty plasmid or LncRNA-CIR6 plasmid on the 10th day (<span class="html-italic">n</span> = 3 per group); scale bar: 1000 μm. (<b>B</b>) Immunofluorescence map of MSCs transfected with empty plasmid or LncRNA-CIR6 plasmid on the 10th day (<span class="html-italic">n</span> = 3 per group); scale bar: 50 μm. (<b>C</b>) Western blot and quantification of cTNT in MSCs transfected with empty plasmid or LncRNA-CIR6 plasmid on the 10th day (<span class="html-italic">n</span> = 3 per group). (<b>D</b>) The fluorescence intensity of APC in MSCs transfected with empty plasmid or LncRNA-CIR6 plasmid on the 10th day (<span class="html-italic">n</span> = 3 per group). For all statistical plots, the data are presented as mean ± SD. ** <span class="html-italic">p</span> < 0.01, **** <span class="html-italic">p</span> < 0.0001 vs. Vehicle group (<b>C</b>,<b>D</b>). (Means ± SD, <span class="html-italic">n</span> = 3).</p> "> Figure 2
<p>The effects of LncRNA-CIR6 or combined hUMSCs on heart function and cardioprotection in vivo in mice with myocardial infarction. (<b>A</b>) Representative echo image of M-mode after 17 days of MI was treated with LncRNA-CIR6 or combined hUMSCs (<span class="html-italic">n</span> = 3 per group). (<b>B</b>) Left ventricular EF (LVEF) and FS (LVFS), LVID,s and LVID,d assessed by echocardiography in mice (<span class="html-italic">n</span> = 3 per group). (<b>C</b>) Maps of ventricular conduction time in mice after 17 days of MI treated with LncRNA-CIR6 or combined hUMSCs (<span class="html-italic">n</span> = 3 per group). (<b>D</b>) Quantification of illustrated conduction time (<span class="html-italic">n</span> = 3 per group). (<b>E</b>) Quantification of average ventricular conduction velocity (<span class="html-italic">n</span> = 3 per group). (<b>F</b>) Quantification of dispersion absolute of ventricular conduction (<span class="html-italic">n</span> = 3 per group). (<b>G</b>) Fluorescence imaging of frozen mouse heart slices (scale bar: 1000 μm for upper panel; 75 μm for lower panel) for measuring infarct size after 17 days of MI was treated with LncRNA-CIR6 or combined hUMSCs (<span class="html-italic">n</span> = 3 per group). (<b>H</b>) Heart sections were stained with Evans blue-TTC, staining for infarct size; after 17 days of MI, they were treated with LncRNA-CIR6 or combined hUMSCs (<span class="html-italic">n</span> = 3 per group). (<b>I</b>) Heart sections were stained with Masson staining; after 17 days of MI, they were treated with LncRNA-CIR6 or combined hUMSCs (Scale bar: 500 μm) (<span class="html-italic">n</span> = 3 per group). For all statistical plots, the data are presented as mean ± SD. <sup>&&&&</sup> <span class="html-italic">p</span> < 0.0001 vs. Before MI group; * <span class="html-italic">p</span> < 0.05, ** <span class="html-italic">p</span> < 0.01, *** <span class="html-italic">p</span> < 0.001, **** <span class="html-italic">p</span> < 0.0001 vs. MI group; <sup>#</sup> <span class="html-italic">p</span> < 0.05, <sup>##</sup> <span class="html-italic">p</span> < 0.01, <sup>###</sup> <span class="html-italic">p</span> < 0.001, vs. LncRNA-CIR6 group (Means ± SD, <span class="html-italic">n</span> = 3).</p> "> Figure 3
<p>Prediction of LncRNA-CIR6 secondary structure and its protein interactions. (<b>A</b>) Transcription gene location of LncRNA-CIR6. (<b>B</b>) Predicted LncRNA-CIR6 secondary structure. (<b>C</b>) Mountain chart of LncRNA-CIR6 (LncRNA-CIR6 MFE (minimum free energy) structure), thermodynamic set of RNA structures, and centroid structure. (<b>D</b>) The Venn diagram below illustrates the interaction of 28 proteins with LncRNA-CIR6 (Area 1: Proteins binding to more than 10 binding sites on the secondary structure of LncRNA-CIR6. Area 2: Proteins with binding sites within the functional regions of LncRNA-CIR6. Area 3: Proteins with both more than 10 binding sites and located within the functional regions of LncRNA-CIR6. Area 4: Proteins associated with cardiovascular system diseases. Area 5: Proteins with binding sites within the functional region of LncRNA-CIR6 and associated with cardiovascular diseases. Area 6: Proteins with more than 10 binding sites, all in the functional region of LncRNA-CIR6, and these proteins are related to cardiovascular diseases). (<b>E</b>) CDK1 binding site on LncRNA-CIR6. (<b>F</b>) Western blot and quantification of CDK1 in MSCs transfected with empty plasmid or LncRNA-CIR6 plasmid on the 10th day (<span class="html-italic">n</span> = 3 per group). (<b>G</b>) Immunofluorescence map of MSCs transfected with LncRNA-CIR6 pretreated with/without Ro-3306 on the 10th day (<span class="html-italic">n</span> = 3 per group); Scale bar: 50 μm. For all statistical plots, the data are presented as mean ± SD.* <span class="html-italic">p</span> < 0.05, ** <span class="html-italic">p</span> < 0.01 vs. Vehicle group. (means ± SD, <span class="html-italic">n</span> = 3).</p> "> Figure 4
<p>The cDNA sequence of LncRNA-CIR6.</p> "> Figure 5
<p>Construction of LncRNA-CIR6 plasmid.</p> "> Figure 6
<p>Experimental protocols and treatment reagents in vitro.</p> "> Figure 7
<p>Experimental protocols and treatment reagents in vivo.</p> ">
Abstract
:1. Introduction
2. Results
2.1. Effect of LncRNA-CIR6 on the Induced Differentiation of BMSCs and hUCMSCs into Cardiomyogenic Cells
2.2. The Effects of LncRNA-CIR6 or Combined hUMSCs on Heart Function and Cardioprotection In Vivo in Mice with Myocardial Infarction
2.3. Role of CDK1 in LncRNA-CIR6 Induced Differentiation of MSCs into Cardiogenic Cells
3. Discussion
4. Materials and Methods
4.1. Animals
4.2. Isolation and Culture of Rat Bone Marrow Mesenchymal Stem Cells (BMSCs)
4.3. Plasmid
4.4. Transfect LncRNA-CIR6 into MSCs In Vitro
4.5. Immunofluorescence
4.6. Flow Cytometry
4.7. Western Blot
4.8. Experimental Protocols
4.9. Adeno-Associated Virus (AAV)-Infected Mice
4.10. “Heart Pop Out” Method of MI Model in Mice In Vivo
- After confirming deep anesthesia, the mouse was secured in the supine position on the operating table, and the left anterior chest surgical area was routinely prepared for skin disinfection.
- A 0.5 cm oblique incision was made approximately 1 cm from the left edge of the sternum. The chest wall muscles were bluntly separated layer by layer, and the chest cavity was rapidly opened through the third or fourth intercostal space.
- The anterior descending coronary artery was identified at the junction between the lower margin of the left atrial appendage and the conus pulmonalis. The artery was swiftly ligated using an 8-0 suture, positioned 1–2 mm from its root.
- After confirming the completion of ligation and the absence of bleeding, the heart was gently returned to the chest without suturing the ribs. The positions of the pectoralis minor and pectoralis major muscles were restored to cover the wound in the intercostal space. The skin was pinched, and the chest cavity was promptly squeezed to expel air. Subsequently, the skin was quickly sutured to prevent the re-entry of air and the potential development of pneumothorax.
- Mice were then placed on a 37 °C thermostatic heating pad, and their condition was closely monitored. Once fully awake and turned over, the mice were returned to their cages.
4.11. Echocardiography
4.12. Electrical Mapping
4.13. Histological Analysis
4.14. Evans Blue-TTC Staining
4.15. LncRNA-CIR6 Bioinformatics and Statistical Analysis
4.16. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Stanojević Pirković, M.; Pavić, O.; Filipović, F.; Saveljić, I.; Geroski, T.; Exarchos, T.; Filipović, N. Fractional Flow Reserve-Based Patient Risk Classification. Diagnostics 2023, 13, 3349. [Google Scholar] [CrossRef]
- Hsieh, P.C.; Segers, V.F.; Davis, M.E.; MacGillivray, C.; Gannon, J.; Molkentin, J.D.; Robbins, J.; Lee, R.T. Evidence from a genetic fate-mapping study that stem cells refresh adult mammalian cardiomyocytes after injury. Nat. Med. 2007, 13, 970–974. [Google Scholar] [CrossRef]
- Mohamed, T.M.A.; Abouleisa, R.; Hill, B.G. Metabolic determinants of cardiomyocyte proliferation. Stem Cells 2022, 40, 458–467. [Google Scholar] [CrossRef]
- Silver, S.E.; Barrs, R.W.; Mei, Y. Transplantation of human pluripotent stem cell-derived cardiomyocytes for cardiac regenerative therapy. Front. Cardiovasc. Med. 2021, 8, 707890. [Google Scholar] [CrossRef]
- Penha, E.M.; Aguiar, P.H.; Barrouin-Melo, S.M.; de Lima, R.S.; da Silveira, A.C.; Otelo, A.R.; Pinheiro, C.M.; Ribeiro-Dos-Santos, R.; Soares, M.B. Clinical neurofunctional rehabilitation of a cat with spinal cord injury after hemilaminectomy and autologous stem cell transplantation. Int. J. Stem Cells 2012, 5, 146–150. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.P.; Hsiao, Y.J.; Chang, K.J.; Foustine, S.; Ko, Y.L.; Tsai, Y.C.; Tai, H.Y.; Ko, Y.C.; Chiou, S.H.; Lin, T.C.; et al. Pluripotent stem cells in clinical cell transplantation: Focusing on induced pluripotent stem cell-derived RPE Cell therapy in age-related macular degeneration. Int. J. Mol. Sci. 2022, 23, 13794. [Google Scholar] [CrossRef]
- de Klerk, E.; Hebrok, M. Stem cell-based clinical trials for diabetes mellitus. Front. Endocrinol. 2021, 12, 631463. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Shapiro, L.; Flynn, A. The clinical application of mesenchymal stem cells and cardiac stem cells as a therapy for cardiovascular disease. Pharmacol. Ther. 2015, 151, 8–15. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Tian, X.; Peng, C.; Yan, C.; Li, Y.; Sun, M.; Kang, J.; Gao, E.; Han, Y. Transplantation of CREG modified embryonic stem cells improves cardiac function after myocardial infarction in mice. Biochem. Biophys. Res. Commun. 2018, 503, 482–489. [Google Scholar] [CrossRef] [PubMed]
- Kuan, J.W.; Su, A.T.; Leong, C.F. Pegylated granulocyte-colony stimulating factor versus non-pegylated granulocyte-colony stimulating factor for peripheral blood stem cell mobilization: A systematic review and meta-analysis. J. Clin. Apher. 2017, 32, 517–542. [Google Scholar] [CrossRef] [PubMed]
- Attar, A.; Hosseinpour, A.; Hosseinpour, H.; Kazemi, A. Major cardiovascular events after bone marrow mononuclear cell transplantation following acute myocardial infarction: An updated post-BAMI meta-analysis of randomized controlled trials. BMC Cardiovasc. Disord. 2022, 22, 259. [Google Scholar] [CrossRef]
- Attar, A.; Monabati, A.; Montaseri, M.; Vosough, M.; Hosseini, S.A.; Kojouri, J.; Abdi-Ardekani, A.; Izadpanah, P.; Azarpira, N.; Pouladfar, G.; et al. Transplantation of mesenchymal stem cells for prevention of acute myocardial infarction induced heart failure: Study protocol of a phase III randomized clinical trial (Prevent-TAHA8). Trials 2022, 23, 632. [Google Scholar] [CrossRef] [PubMed]
- Liew, L.C.; Ho, B.X.; Soh, B.S. Mending a broken heart: Current strategies and limitations of cell-based therapy. Stem Cell Res. Ther. 2020, 11, 138. [Google Scholar] [CrossRef]
- Siminiak, T.; Kalawski, R.; Fiszer, D.; Jerzykowska, O.; Rzeźniczak, J.; Rozwadowska, N.; Kurpisz, M. Autologous skeletal myoblast transplantation for the treatment of postinfarction myocardial injury: Phase I clinical study with 12 months of follow-up. Am. Heart J. 2004, 148, 531–537. [Google Scholar] [CrossRef] [PubMed]
- Alvarez, P.; Carrillo, E.; Vélez, C.; Hita-Contreras, F.; Martínez-Amat, A.; Rodríguez-Serrano, F.; Boulaiz, H.; Ortiz, R.; Melguizo, C.; Prados, J.; et al. Regulatory systems in bone marrow for hematopoietic stem/progenitor cells mobilization and homing. Biomed. Res. Int. 2013, 2013, 312656. [Google Scholar] [CrossRef] [PubMed]
- Grundmann, S.; Hoefer, I.; Ulusans, S.; Bode, C.; Oesterle, S.; Tijssen, J.G.; Piek, J.J.; Buschmann, I.; van Royen, N. Granulocyte-macrophage colony-stimulating factor stimulates arteriogenesis in a pig model of peripheral artery disease using clinically applicable infusion pumps. J. Vasc. Surg. 2006, 43, 1263–1269. [Google Scholar] [CrossRef] [PubMed]
- Volarevic, V.; Markovic, B.S.; Gazdic, M.; Volarevic, A.; Jovicic, N.; Arsenijevic, N.; Armstrong, L.; Djonov, V.; Lako, M.; Stojkovic, M. Ethical and safety issues of stem cell-based therapy. Int. J. Med. Sci. 2018, 15, 36–45. [Google Scholar] [CrossRef] [PubMed]
- Robinson, P.G.; Murray, I.R.; West, C.C.; Goudie, E.B.; Yong, L.Y.; White, T.O.; LaPrade, R.F. Reporting of mesenchymal stem cell preparation protocols and composition: A Systematic review of the clinical orthopaedic literature. Am. J. Sports Med. 2019, 47, 991–1000. [Google Scholar] [CrossRef]
- Yang, G.D.; Ma, D.S.; Ma, C.Y.; Bai, Y. Research progress on cardiac tissue construction of mesenchymal stem cells for myocardial infarction. Curr. Stem Cell Res. Ther. 2024, 19, 942–958. [Google Scholar] [CrossRef]
- Xiong, Y.; Tang, R.; Xu, J.; Jiang, W.; Gong, Z.; Zhang, L.; Li, X.; Ning, Y.; Huang, P.; Xu, J.; et al. Sequential transplantation of exosomes and mesenchymal stem cells pretreated with a combination of hypoxia and Tongxinluo efficiently facilitates cardiac repair. Stem Cell Res. Ther. 2022, 13, 63. [Google Scholar] [CrossRef]
- Zhang, Z.; Tian, H.; Yang, C.; Liu, J.; Zhang, H.; Wang, J.; Hu, S.; Sun, Z.; He, K.; Chen, G. Mesenchymal stem cells promote the resolution of cardiac inflammation after ischemia reperfusion via enhancing efferocytosis of neutrophils. J. Am. Heart Assoc. 2020, 9, e014397. [Google Scholar] [CrossRef]
- Shao, L.; Shen, Y.; Ren, C.; Kobayashi, S.; Asahara, T.; Yang, J. Inflammation in myocardial infarction: Roles of mesenchymal stem cells and their secretome. Cell Death Discov. 2022, 8, 452. [Google Scholar] [CrossRef]
- Xia, C.; Dai, Z.; Jin, Y.; Chen, P. Emerging antioxidant paradigm of mesenchymal stem cell-derived exosome therapy. Front. Endocrinol. 2021, 12, 727272. [Google Scholar] [CrossRef]
- Zhao, C.; Xie, W.; Zhu, H.; Zhao, M.; Liu, W.; Wu, Z.; Wang, L.; Zhu, B.; Li, S.; Zhou, Y.; et al. LncRNAs and their RBPs: How to influence the fate of stem cells? Stem Cell Res. Ther. 2022, 13, 175. [Google Scholar] [CrossRef]
- Hu, S.; Shan, G. LncRNAs in Stem Cells. Stem Cells Int. 2016, 2016, 2681925. [Google Scholar] [CrossRef]
- Tye, C.E.; Gordon, J.A.; Martin-Buley, L.A.; Stein, J.L.; Lian, J.B.; Stein, G.S. Could lncRNAs be the missing links in control of mesenchymal stem cell differentiation? J. Cell Physiol. 2015, 230, 526–534. [Google Scholar] [CrossRef]
- Zhang, B.F.; Jiang, H.; Chen, J.; Hu, Q.; Yang, S.; Liu, X.P.; Liu, G. LncRNA H19 ameliorates myocardial infarction-induced myocardial injury and maladaptive cardiac remodelling by regulating KDM3A. J. Cell Mol. Med. 2020, 24, 1099–1115. [Google Scholar] [CrossRef]
- Wang, Y.; He, L.; Du, Y.; Zhu, P.; Huang, G.; Luo, J.; Yan, X.; Ye, B.; Li, C.; Xia, P.; et al. The long noncoding RNA lncTCF7 promotes self-renewal of human liver cancer stem cells through activation of Wnt signaling. Cell Stem Cell 2015, 16, 413–425. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Dube, D.K.; Huang, X.; Zajdel, R.W.; Bhatia, R.; Foster, D.; Lemanski, S.L.; Lemanski, L.F. A point mutation in bioactive RNA results in the failure of mutant heart correction in Mexican axolotls. Anat. Embryol. 2003, 206, 495–506. [Google Scholar] [CrossRef] [PubMed]
- Moses-Arms, A.; Kochegarov, A.; Arms, J.; Burlbaw, S.; Lian, W.; Meyer, J.; Lemanski, L.F. Identification of a human mitochondrial RNA that promotes tropomyosin synthesis and myocardial differentiation. In Vitro Cell Dev. Biol. Anim. 2015, 51, 273–280. [Google Scholar] [CrossRef] [PubMed]
- Kochegarov, A.; Moses-Arms, A.; Lemanski, L.F. A fetal human heart cardiac-inducing RNA (CIR) promotes the differentiation of stem cells into cardiomyocytes. In Vitro Cell Dev. Biol. Anim. 2015, 51, 739–748. [Google Scholar] [CrossRef]
- Mohamed, T.M.A.; Ang, Y.S.; Radzinsky, E.; Zhou, P.; Huang, Y.; Elfenbein, A.; Foley, A.; Magnitsky, S.; Srivastava, D. Regulation of Cell Cycle to Stimulate Adult Cardiomyocyte Proliferation and Cardiac Regeneration. Cell 2018, 173, 104–116.e12. [Google Scholar] [CrossRef]
- Pagano, F.; Calicchio, A.; Picchio, V.; Ballarino, M. The noncoding side of cardiac differentiation and regeneration. Curr. Stem Cell Res. Ther. 2020, 15, 723–738. [Google Scholar] [CrossRef]
- Sun, X.; Jia, B.; Qiu, X.L.; Chu, H.X.; Zhang, Z.Q.; Wang, Z.P.; Zhao, J.J. Potential functions of long non-coding RNAs in the osteogenic differentiation of human bone marrow mesenchymal stem cells. Mol. Med. Rep. 2019, 19, 103–114. [Google Scholar] [CrossRef]
- Li, Y.P.; Wang, Y. Large noncoding RNAs are promising regulators in embryonic stem cells. J. Genet. Genom. 2015, 42, 99–105. [Google Scholar] [CrossRef]
- Cai, B.; Ma, W.; Wang, X.; Sukhareva, N.; Hua, B.; Zhang, L.; Xu, J.; Li, X.; Li, S.; Liu, S.; et al. Targeting LncDACH1 promotes cardiac repair and regeneration after myocardium infarction. Cell Death Differ. 2020, 27, 2158–2175. [Google Scholar] [CrossRef]
- Shelby, H.; Shelby, T.; Wernig, M. Somatic Lineage Reprogramming. Cold Spring Harb. Perspect. Biol. 2022, 14, a040808. [Google Scholar] [CrossRef] [PubMed]
- Hou, J.; Long, H.; Zhou, C.; Zheng, S.; Wu, H.; Guo, T.; Wu, Q.; Zhong, T.; Wang, T. Long noncoding RNA Braveheart promotes cardiogenic differentiation of mesenchymal stem cells in vitro. Stem Cell Res. Ther. 2017, 8, 4. [Google Scholar] [CrossRef] [PubMed]
- Klattenhoff, C.A.; Scheuermann, J.C.; Surface, L.E.; Bradley, R.K.; Fields, P.A.; Steinhauser, M.L.; Ding, H.; Butty, V.L.; Torrey, L.; Haas, S.; et al. Braveheart, a long noncoding RNA required for cardiovascular lineage commitment. Cell 2013, 152, 570–583. [Google Scholar] [CrossRef] [PubMed]
- Kochegarov, A.; Lemanski, L.F. New Trends in Heart Regeneration: A Review. J. Stem Cells Regen. Med. 2016, 12, 61–68. [Google Scholar] [PubMed]
- Kochegarov, A.; Moses, A.; Lian, W.; Meyer, J.; Hanna, M.C.; Lemanski, L.F. A new unique form of microRNA from human heart, microRNA-499c, promotes myofibril formation and rescues cardiac development in mutant axolotl embryos. J. Biomed. Sci. 2013, 20, 20. [Google Scholar] [CrossRef]
- Sano, T.; Ishigami, S.; Ito, T.; Sano, S. Stem cell therapy in heart disease: Limitations and future possibilities. Acta Med. Okayama 2020, 74, 185–190. [Google Scholar]
- Lemanski, L.F.; Kochegarov, A.; Kaveh, K.; Neal, M.; Arms, A.; Lopez Rodriguez, Y.; Hong, L.; Equbal, M.J.; Biswas, P.; Biswas, P.; et al. Differentiation of mouse embryonic fibroblasts (MEFs) into cardiomyocytes using human-derived cardiac inducing RNA (CIR). Stem Cells Regen. Med. 2021, 5, 1–11. [Google Scholar] [CrossRef]
- Herman, A.B.; Tsitsipatis, D.; Gorospe, M. Integrated lncRNA function upon genomic and epigenomic regulation. Mol. Cell 2022, 82, 2252–2266. [Google Scholar] [CrossRef] [PubMed]
- Yan, L.; Zhang, Y.; Zhang, W.; Deng, S.Q.; Ge, Z.R. lncRNA-NRF is a potential biomarker of heart failure after acute myocardial infarction. J. Cardiovasc. Transl. Res. 2020, 13, 1008–1015. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Bu, Y.; Shao, H.; Li, W.; Zhao, D.; Wang, J. Protective effect of bone marrow mesenchymal stem cell-derived exosomes on cardiomyoblast hypoxia-reperfusion injury through the HAND2-AS1/miR-17-5p/Mfn2 axis. BMC Cardiovasc. Disord. 2023, 23, 114. [Google Scholar] [CrossRef]
- Chen, A.C.H.; Peng, Q.; Fong, S.W.; Lee, K.C.; Yeung, W.S.B.; Lee, Y.L. DNA damage response and cell cycle regulation in pluripotent stem cells. Genes 2021, 12, 1548. [Google Scholar] [CrossRef] [PubMed]
- Rosendo-Pineda, M.J.; Vicente, J.J.; Vivas, O.; Pacheco, J.; Loza-Huerta, A.; Sampieri, A.; Wordeman, L.; Moreno, C.; Vaca, L. Phosphorylation of NMDA receptors by cyclin B/CDK1 modulates calcium dynamics and mitosis. Commun. Biol. 2020, 3, 665. [Google Scholar] [CrossRef]
- Chen, J.; Rajasekaran, M.; Xia, H.; Kong, S.N.; Deivasigamani, A.; Sekar, K.; Gao, H.; Swa, H.L.; Gunaratne, J.; Ooi, L.L.; et al. CDK1-mediated BCL9 phosphorylation inhibits clathrin to promote mitotic Wnt signalling. EMBO J. 2018, 37, e99395. [Google Scholar] [CrossRef]
- Palermo, V.; Rinalducci, S.; Sanchez, M.; Grillini, F.; Sommers, J.A.; Brosh, R.M., Jr.; Zolla, L.; Franchitto, A.; Pichierri, P. CDK1 phosphorylates WRN at collapsed replication forks. Nat. Commun. 2016, 7, 12880. [Google Scholar] [CrossRef]
- Cselenyi, C.S.; Jernigan, K.K.; Tahinci, E.; Thorne, C.A.; Lee, L.A.; Lee, E. LRP6 transduces a canonical Wnt signal independently of Axin degradation by inhibiting GSK3’s phosphorylation of β-catenin. Proc. Natl. Acad. Sci. USA 2008, 105, 8032–8037. [Google Scholar] [CrossRef]
- Zhu, S.; Al-Mathkour, M.; Cao, L.; Khalafi, S.; Chen, Z.; Poveda, J.; Peng, D.; Lu, H.; Soutto, M.; Hu, T.; et al. CDK1 bridges NF-κB and β-catenin signaling in response to H. pylori infection in gastric tumorigenesis. Cell Rep. 2023, 42, 112005. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.; Yang, X.; Li, Q.; Ma, Y.; Cui, S.; He, D.; Lin, X.; Schwartz, R.J.; Chang, J. Protein tyrosine phosphatase-like A regulates myoblast proliferation and differentiation through MyoG and the cell cycling signaling pathway. Mol. Cell. Biol. 2012, 32, 297–308. [Google Scholar] [CrossRef] [PubMed]
- Ahuja, P.; Sdek, P.; MacLellan, W.R. Cardiac myocyte cell cycle control in development, disease, and regeneration. Physiol. Rev. 2007, 87, 521–544. [Google Scholar] [CrossRef] [PubMed]
- Gao, Q.; Guo, M.; Jiang, X.; Hu, X.; Wang, Y.; Fan, Y. A cocktail method for promoting cardiomyocyte differentiation from bone marrow-derived mesenchymal stem cells. Stem Cells Int. 2014, 2014, 162024. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.L.; Liu, J.J.; Liu, F.; Liu, W.H.; Wang, Y.S.; Zhu, B.; Yu, B. MiR-499 induces cardiac differentiation of rat mesenchymal stem cells through wnt/β-catenin signaling pathway. Biochem. Biophys. Res Commun. 2012, 420, 875–881. [Google Scholar] [CrossRef]
- Moon, J.S.; Ko, H.M.; Park, J.I.; Kim, J.H.; Kim, S.H.; Kim, M.S. Inhibition of human mesenchymal stem cell proliferation via Wnt signaling activation. J. Cell. Biochem. 2018, 119, 1670–1678. [Google Scholar] [CrossRef]
- Xu, T.B.; Li, L.; Luo, X.D.; Lin, H. BMSCs protect against liver injury via suppressing hepatocyte apoptosis and activating TGF-β1/Bax singling pathway. Biomed. Pharmacother. 2017, 96, 1395–1402. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cui, X.; Dong, H.; Luo, S.; Zhuang, B.; Li, Y.; Zhong, C.; Ma, Y.; Hong, L. Long Non-Coding RNA-Cardiac-Inducing RNA 6 Mediates Repair of Infarcted Hearts by Inducing Mesenchymal Stem Cell Differentiation into Cardiogenic Cells through Cyclin-Dependent Kinase 1. Int. J. Mol. Sci. 2024, 25, 3466. https://doi.org/10.3390/ijms25063466
Cui X, Dong H, Luo S, Zhuang B, Li Y, Zhong C, Ma Y, Hong L. Long Non-Coding RNA-Cardiac-Inducing RNA 6 Mediates Repair of Infarcted Hearts by Inducing Mesenchymal Stem Cell Differentiation into Cardiogenic Cells through Cyclin-Dependent Kinase 1. International Journal of Molecular Sciences. 2024; 25(6):3466. https://doi.org/10.3390/ijms25063466
Chicago/Turabian StyleCui, Xiaotian, Hui Dong, Shenghe Luo, Bingqi Zhuang, Yansheng Li, Chongning Zhong, Yuting Ma, and Lan Hong. 2024. "Long Non-Coding RNA-Cardiac-Inducing RNA 6 Mediates Repair of Infarcted Hearts by Inducing Mesenchymal Stem Cell Differentiation into Cardiogenic Cells through Cyclin-Dependent Kinase 1" International Journal of Molecular Sciences 25, no. 6: 3466. https://doi.org/10.3390/ijms25063466
APA StyleCui, X., Dong, H., Luo, S., Zhuang, B., Li, Y., Zhong, C., Ma, Y., & Hong, L. (2024). Long Non-Coding RNA-Cardiac-Inducing RNA 6 Mediates Repair of Infarcted Hearts by Inducing Mesenchymal Stem Cell Differentiation into Cardiogenic Cells through Cyclin-Dependent Kinase 1. International Journal of Molecular Sciences, 25(6), 3466. https://doi.org/10.3390/ijms25063466