Insight into Rice Resistance to the Brown Planthopper: Gene Cloning, Functional Analysis, and Breeding Applications
<p>Timeline of cloned genes for brown planthopper resistance in rice. This figure illustrates a timeline of cloned rice genes conferring resistance to BPH, spanning the years 2009 to 2021. Gene symbols are classified based on their protein domains, including lectin receptor kinases, LRD, B3 DNA-binding, CC-NB, CC-NB-LRR, and CC-NB-NB-LRR, indicating diverse mechanisms of resistance. The chromosome positions (e.g., Chr 3L, Chr 12L) highlight the genomic locations of these genes. Each gene is marked with a unique color based on its year of discovery, facilitating a visual overview of the progress in rice resistance breeding against BPH.</p> "> Figure 2
<p>Functional characterization of salivary proteins secreted by BPH while feeding on rice plants. This figure illustrates the role of various salivary proteins secreted by BPH, which are critical in facilitating feeding and manipulating host plant responses. The top panel shows a schematic of a BPH feeding on a rice plant, highlighting the injection of salivary proteins into plant tissue. The bottom panel provides a classification and functional annotation of these proteins, detailing their diverse roles in inducing plant volatiles, degrading cellulose, interfering with calcium and ROS pathways, initiating plant cell death, and manipulating plant defense mechanisms. Each protein’s function is marked by a unique color, aligning with the key provided, which helps in visually distinguishing their specific roles in BPH–plant interactions.</p> ">
Abstract
:1. Introduction
2. Adaptation of BPH Biotypes to Rice Resistance Genes
3. Genetic Mapping and Cloning Progress of Rice BPH Resistance Genes
3.1. BPH Resistance Genes That Are Classified as Typical R Genes
3.2. BPH Resistance Genes That Are Classified as Atypical R Genes
3.3. BPH Resistance Genes That Are Not Classified as R Genes
4. BPH Resistance-Related Genes and Mechanisms
4.1. Phytohormones Signaling Functions in BPH Resistance
4.2. Metabolites
4.3. Functions of Abiotic Factors in BPH Resistance
Pathway | Genes | Accession Numbers | Gene Annotation | References |
---|---|---|---|---|
MAPK signaling pathway | OsMPK1 | LOC_Os06g06090 | Mitogen-activated protein kinase | [51] |
OsMPK3 | LOC_Os02g05480 | Mitogen-activated protein kinase | [50,51] | |
OsMPK4 | LOC_Os06g48590 | Mitogen-activated protein kinase | [51] | |
OsMPK5 | LOC_Os03g17700 | Mitogen-activated protein kinase | [49,51] | |
OsMPK7 | LOC_Os05g49140 | Mitogen-activated protein kinase | [51] | |
OsMPK8 | LOC_Os01g47530 | Mitogen-activated protein kinase | [51] | |
OsMPK9 | LOC_Os05g50560 | Mitogen-activated protein kinase | [51] | |
OsMPK12 | LOC_Os06g49430 | Mitogen-activated protein kinase | [49,51] | |
OsMPK13 | LOC_Os02g04230 | Mitogen-activated protein kinase | [49,51] | |
OsMPK14 | LOC_Os02g05480 | Mitogen-activated protein kinase | [51] | |
OsMPK16 | LOC_Os01g45620 | Mitogen-activated protein kinase | [51] | |
OsMPK17 | LOC_Os05g50120 | Mitogen-activated protein kinase | [49] | |
OsMKK3 | LOC_Os06g27890 | Mitogen-activated protein kinase kinase | [52] | |
Transcription factor | OsbHLH065 | LOC_Os04g41570 | Phosphorylated substrate of OsMPK3 | [50] |
OsbZIP60 | LOC_Os07g44950 | bZIP transcription factor | [49] | |
OsSPL10 | LOC_Os06g44860 | Squamosa promoter binding protein | [57] | |
OsMYB30; OsMYB5P | LOC_Os02g41510 | MYB transcription factor | [84] | |
OsWRKY45 | LOC_Os05g25770 | WRKY transcription factor | [55] | |
OsWRKY53 | LOC_Os05g27730 | WRKY transcription factor | [54] | |
OsMYB22 | LOC_Os01g65370 | MYB transcription factor | [58] | |
OsI-BAK1 | LOC_Os08g07760 | SERK family of receptor-like protein kinases | [56] | |
OsWRKY70 | LOC_Os05g39720 | WRKY transcription factor | [56] | |
miRNA | OsmiR319 | - | BPH resistance-related gene | [58] |
OsmiR396 | - | BPH resistance-related gene | [60] | |
OsGRF8 | LOC_Os11g35030 | Growth regulatory factor | [60] | |
OsF3H | LOC_Os03g03034 | Flavanone 3 beta-hydroxylase | [60] | |
OsmiR156 | - | BPH resistance-related gene | [59] | |
OsmiR159 | - | BPH resistance-related gene | [62] | |
Osa-miR162a | - | BPH resistance-related gene | [61] | |
Phytohormones | OsAOC | LOC_Os03g32314 | Allene oxide cyclase | [64] |
OsMYC2 | LOC_Os10g42430 | Basic helix–loop–helix transcription factors | [64] | |
OsNOMT | LOC_Os12g13800 | Naringenin 7-O-methyltransferase | [85] | |
OsAOS2; AOS | LOC_Os03g12500 | Allylene oxide synthase | [104] | |
OsAOS1 | LOC_Os03g55800 | Allylene oxide synthase | [67] | |
OsHI-LOX; OsLOX9 | LOC_Os08g39840 | Lipoxygenase gene | [66] | |
OsJMT1 | LOC_Os06g20920 | Jasmonate carboxymethyl transferase | [105] | |
Os6PGDH1 | LOC_Os06g02144 | 6-phosphogluconate dehydrogenase | [68] | |
OsCsLF6 | LOC_Os08g06380 | Cellulose-like synthase F | [69] | |
OsCOI1; OsCOI1a | LOC_Os01g63420 | F-box protein, jasmonic acid receptor | [106,107] | |
OsCOI1b | LOC_Os05g37690 | Principal component of a receptor of JA | [70] | |
OsCOI2 | LOC_Os03g15880 | Jasmonate receptor | [70] | |
OsPAL6 | LOC_Os04g43800 | Phenylalanine ammonia-lyase | [84] | |
OsPAL8 | LOC_Os11g48110 | Phenylalanine ammonia-lyase | [84] | |
OsNPR1 | LOC_Os01g09800 | SA receptor | [108] | |
OsNPR3 | LOC_Os03g46440 | SA receptor | [108] | |
OsNPR4 | LOC_Os01g61990 | SA receptor | [108] | |
OsHLH61 | LOC_Os07g47960 | Helix–loop–helix protein | [71] | |
OsbHLH96 | LOC_Os03g08930 | bHLH transcription factor | [71] | |
Bphi008a | LOC_Os06g29730 | BPH resistance gene | [49] | |
OsOPR7; OPR3 | LOC_Os08g35740 | 12-oxygen-plant dienolate reductase | [72] | |
OsACS2 | LOC_Os04g48850 | 1-aminocyclopropane-1-carboxylate synthase | [72] | |
OsEBF2 | LOC_Os02g10700 | OsFBL7-F-box domain and LRR containing protein | [73] | |
AP37; OsERF3 | LOC_Os01g58420 | Ethylene response factor | [74] | |
OsEIL2 | LOC_Os07g48630 | Ethylene signaling regulatory factors | [109] | |
PHYB; OsphyB | LOC_Os03g19590 | Photochrome B | [75] | |
OsEBF1 | LOC_Os06g40360 | E3 ubiquitin ligase | [75] | |
OsSAMS1 | LOC_Os05g04510 | S-adenosine-l-methionine synthase 1 | [75] | |
GID1; OsGID1 | LOC_Os05g33730 | GA is not sensitive to dwarf genes | [76] | |
OsSLR1 | LOC_Os03g49990 | Slender stalk gene | [77] | |
OsCKX1 | LOC_Os01g09260 | Cytokinin oxidase/dehydrogenase | [78] | |
OsNCED3 | LOC_Os03g44380 | 9-cis-epoxide carotenoid dioxygenase | [78] | |
OsJMJ715 | LOC_Os03g31594 | RING E3 ubiquitin ligase | [82] | |
Metabolites | OsC4H | LOC_Os05g25640 | Cytochrome P450 | [51] |
OsCHS | LOC_Os11g32650 | Chalcone synthase | [51] | |
OsCHI | LOC_Os03g60509 | Chitinase | [51] | |
OsHPL3 | LOC_Os02g02000 | Lip hydroperoxide lyase | [87] | |
CYP71A1 | LOC_Os12g16720 | Tryptamine hydroxylase | [89] | |
OsHI-XIP | LOC_Os05g15770 | Xylanase inhibitor gene | [91] | |
OsRIP1; OsjRIP1.1 | LOC_Os11g06460 | Ribosome inactivating protein | [92] | |
OsATL15 | LOC_Os01g41420 | Transmembrane amino acid transporter protein | [93] | |
OsLCB2a1 | LOC_Os01g70380 | Serine palmitoyl transferase 2 | [94] | |
OsPep3 | LOC_Os08g07660 | Plant elicitor peptide | [95] | |
Biotic and abiotic factors | OsPIL14 | LOC_Os07g05010 | Photochrome interaction factor | [75] |
OsACO1 | LOC_Os03g04410 | 1-aminocyclopropane-1-carboxylate oxidase | [75] | |
SWEET13 | LOC_Os12g29220 | Sucrose transporter | [98] | |
SWEET14 | LOC_Os11g31190 | Sucrose transporter | [98] | |
OsBi1 | LOC_Os02g57280 | CBS-like domain, Cystathione-beta synthase | [99] | |
OsLOX1 | LOC_Os03g49380 | Lipoxygenase gene | [100] | |
TPS46; OsTPS31 | LOC_Os08g07100 | Terpene synthase | [101] | |
OsSAMSL | LOC_Os07g29440 | S-adenosine-l-methionine synthetase 2 | [46] | |
OsExo70E1 | LOC_Os01g55799 | Exo70 exocyst complex subunit domain containing protein | [45] | |
OsExo70H3 | LOC_Os12g01040 | Exo70 exocyst complex subunit domain containing protein | [46] | |
ACL1 | LOC_Os04g33860 | Abaxially curled leaf 1 | [102] | |
ROC4 | LOC_Os04g48070 | Homeodomain leucine zipper IV transcription factor | [102] | |
ROC5 | LOC_Os02g45250 | Homeodomain leucine zipper class IV gene | [102] | |
OsLRR2 | LOC_Os11g31540 | Leucine-rich repeat protein | [103] | |
OsSERK1 | LOC_Os08g07760 | SERK-family receptor-like protein kinase | [103] | |
OsSERK2 | LOC_Os04g38480 | SERK-family receptor-like protein kinase | [103] | |
OsPEPR1 | LOC_Os08g34640 | Plant elicitor peptide receptor | [95] | |
OsFLS2 | LOC_Os04g52780 | Leucine-rich repeat receptor protein kinase EXS precursor | [103] | |
OsBRI1 | LOC_Os01g52050 | BR receptor kinase | [103] |
5. Complex Interaction Mechanism Between BPH Saliva Components and Rice Defense Response
5.1. Interaction Between BPH Saliva and Rice
5.2. Other BPH Effectors
6. BPH-Mediated Rice Virus Transmission and RNA Interference-Based Resistance Strategies
7. Development and Improvement of BPH-Resistant Rice Varieties
8. Summary and Outlook
8.1. Research on Rice and BPH Resistance and Breeding Challenges
8.2. Molecular Mechanisms of BPH Resistance Genes and Rice Defense Strategies
8.3. Research on Salivary Proteins of BPH and the Mechanism of Insect Resistance
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Min, S.; Lee, S.W.; Choi, B.-R.; Lee, S.H.; Kwon, D.H. Insecticide resistance monitoring and correlation analysis to select appropriate insecticides against Nilaparvata lugens (Stål), a migratory pest in Korea. J. Asia-Pac. Entomol. 2014, 17, 711–716. [Google Scholar] [CrossRef]
- Chandler, R.F. Improving the Rice Plant and its Culture. Nature 1969, 221, 1007–1010. [Google Scholar] [CrossRef] [PubMed]
- Khush, G.S. What it will take to Feed 5.0 Billion Rice consumers in 2030. Plant. Mol. Biol. 2005, 59, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Tuyen, L.Q.; Liu, Y.; Jiang, L.; Wang, B.; Wang, Q.; Hanh, T.T.T.; Wan, J. Identification of quantitative trait loci associated with small brown planthopper (Laodelphax striatellus Fallén) resistance in rice (Oryza sativa L.). Hereditas 2012, 149, 16–23. [Google Scholar] [CrossRef]
- Muduli, L.; Pradhan, S.K.; Mishra, A.; Bastia, D.N.; Samal, K.C.; Agrawal, P.K.; Dash, M. Understanding Brown Planthopper Resistance in Rice: Genetics, Biochemical and Molecular Breeding Approaches. Rice Sci. 2021, 28, 532–546. [Google Scholar] [CrossRef]
- Normile, D. Reinventing Rice to Feed the World. Science 2008, 321, 330–333. [Google Scholar] [CrossRef]
- Huang, C.; Sede, A.R.; Elvira-González, L.; Yan, Y.; Rodriguez, M.; Mutterer, J.; Boutant, E.; Shan, L.; Heinlein, M. Rice Responses and Resistance to Planthopper-Borne Viruses at Transcriptomic and Proteomic Levels. Curr. Issues Mol. Biol. 2016, 19, 43–52. [Google Scholar] [CrossRef]
- Shah, L.; Sohail, A.; Ahmad, R.; Cheng, S.; Cao, L.; Wu, W.; Sarao, P.S.; Sahi, G.K.; Neelam, K.; Mangat, G.S.; et al. Donors for Resistance to Brown Planthopper Nilaparvata lugens (Stål) from Wild Rice Species. Rice Sci. 2016, 23, 219–224. [Google Scholar] [CrossRef]
- Chang, X.; Wang, F.; Fang, Q.; Chen, F.; Yao, H.; Gatehouse, A.M.R.; Ye, G. Virus-induced plant volatiles mediate the olfactory behaviour of its insect vectors. Plant Cell Environ. 2021, 44, 2700–2715. [Google Scholar] [CrossRef]
- Wu, J.; Zhang, Y.; Li, F.; Zhang, X.; Ye, J.; Wei, T.; Li, Z.; Tao, X.; Cui, F.; Wang, X.; et al. Plant Virology in the 21st Century in China: Recent Advances and Future Directions. J. Integr. Plant Biol. 2024, 66, 579–622. [Google Scholar] [CrossRef]
- Huang, H.-J.; Bao, Y.-Y.; Lao, S.-H.; Huang, X.-H.; Ye, Y.-Z.; Wu, J.-X.; Xu, H.-J.; Zhou, X.-P.; Zhang, C.-X. Rice Ragged Stunt Virus-Induced Apoptosis Affects Virus Transmission from Its Insect Vector, the Brown Planthopper to the Rice Plant. Sci. Rep. 2015, 5, 11413. [Google Scholar] [CrossRef]
- Arif, M.; Islam, S.U.; Adnan, M.; Anwar, M.; Ali, H.; Wu, Z. Recent progress on gene silencing/suppression by virus-derived small interfering RNAs in rice viruses especially Rice grassy stunt virus. Microb. Pathog. 2018, 125, 210–218. [Google Scholar] [CrossRef]
- Lu, K.; Chen, X.; Liu, W.; Zhang, Z.; Wang, Y.; You, K.; Li, Y.; Zhang, R.; Zhou, Q. Characterization of heat shock protein 70 transcript from Nilaparvata lugens (Stål): Its response to temperature and insecticide stresses. Pestic. Biochem. Physiol. 2017, 142, 102–110. [Google Scholar] [CrossRef]
- Ge, L.; Huang, L.; Yang, G.; Song, Q.; Stanley, D.; Gurr, G.M.; Wu, J. Molecular basis for insecticide-enhanced thermotolerance in the brown planthopper Nilaparvata lugens Stål (Hemiptera: Delphacidae). Mol. Ecol. 2013, 22, 5624–5634. [Google Scholar] [CrossRef]
- Wu, S.-F.; Zeng, B.; Zheng, C.; Mu, X.-C.; Zhang, Y.; Hu, J.; Zhang, S.; Gao, C.-F.; Shen, J.-L. The evolution of insecticide resistance in the brown planthopper (Nilaparvata lugens Stål) of China in the period 2012–2016. Sci. Rep. 2018, 8, 4586. [Google Scholar] [CrossRef] [PubMed]
- Alam, M.J.; Das, G. Toxicity of insecticides to predators of rice brown planthopper: Wolf spider and carabid beetle. J. Food Nut. Agric. 2020, 3, 9–13. [Google Scholar] [CrossRef]
- Wu, J.; Ge, L.; Liu, F.; Song, Q.; Stanley, D. Pesticide-Induced Planthopper Population Resurgence in Rice Cropping Systems. Annu. Rev. Entomol. 2020, 65, 409–429. [Google Scholar] [CrossRef] [PubMed]
- Khush, G.S. Green revolution: The way forward. Nat. Rev. Genet. 2001, 2, 815–822. [Google Scholar] [CrossRef]
- Jena, K.K.; Jeung, J.U.; Lee, J.H.; Choi, H.C.; Brar, D.S. High-resolution mapping of a new brown planthopper (BPH) resistance gene, Bph18(t), and marker-assisted selection for BPH resistance in rice (Oryza sativa L.). Theor. Appl. Genet. 2006, 112, 288–297. [Google Scholar] [CrossRef]
- Sharma, H.C. Host plant resistance to insects: Modern approaches and limitations. Indian J. Plant Prot. 2007, 35, 179–184. [Google Scholar]
- Gurr, G.M.; Liu, J.; Read, D.M.Y.; Catindig, J.L.A.; Cheng, J.A.; Lan, L.P.; Heong, K.L. Parasitoids of Asian rice planthopper (Hemiptera: Delphacidae) pests and prospects for enhancing biological control by ecological engineering. Ann. Appl. Biol. 2011, 158, 149–176. [Google Scholar] [CrossRef]
- Kumar, K.; Kaur, P.; Kishore, A.; Vikal, Y.; Singh, K.; Neelam, K. Recent advances in genomics-assisted breeding of brown planthopper (Nilaparvata lugens) resistance in rice (Oryza sativa). Plant Breed. 2020, 139, 1052–1066. [Google Scholar] [CrossRef]
- Jutras, B.L.; Verma, A.; Stevenson, B.; Sani Haliru, B.; Rafii, M.Y.; Mazlan, N.; Ramlee, S.I.; Muhammad, I.; Silas Akos, I.; Halidu, J.; et al. Recent Strategies for Detection and Improvement of Brown Planthopper Resistance Genes in Rice: A Review. Plants 2012, 9, 1202. [Google Scholar] [CrossRef]
- Wang, H.; Ye, S.; Mou, T.; Shi, S.; Wang, H.; Zha, W.; Wu, Y.; Liu, K.; Xu, D.; He, G.; et al. Recent Advances in the Genetic and Biochemical Mechanisms of Rice Resistance to Brown Planthoppers (Nilaparvata lugens Stål). Int. J. Mol. Sci. 2016, 24, 16959. [Google Scholar] [CrossRef]
- Yan, L.; Luo, T.; Huang, D.; Wei, M.; Ma, Z.; Liu, C.; Qin, Y.; Zhou, X.; Lu, Y.; Li, R.; et al. Recent Advances in Molecular Mechanism and Breeding Utilization of Brown Planthopper Resistance Genes in Rice: An Integrated Review. Int. J. Mol. Sci. 2023, 24, 12061. [Google Scholar] [CrossRef]
- Bunga, A.P.; Avinashe, H.; Dubey, N.; Choudhary, S.; Rasane, P.; Sachan, S. Dissecting brown planthopper resistance genes in Oryza and its wild relatives: A review. Euphytica 2024, 220, 32. [Google Scholar] [CrossRef]
- Claridge, M.F.; Den Hollander, J. The “Biotypes” of the Rice Brown Planthopper, Nilaparvata Lugens. Entomol. Exp. Appl. 1980, 27, 23–30. [Google Scholar] [CrossRef]
- Saxena, R.C.; Barrion, A.A. Biotypes of the brown planthopper Nilaparvata lugens (Stål) and strategies in deployment of host plant resistance. Int. J. Trop. Insect Sci. 1985, 6, 271–289. [Google Scholar] [CrossRef]
- Jing, S.; Zhao, Y.; Du, B.; Chen, R.; Zhu, L.; He, G. Genomics of interaction between the brown planthopper and rice. Curr. Opin. Insect Sci. 2017, 19, 82–87. [Google Scholar] [CrossRef]
- Zhou, C.; Zhang, Q.; Chen, Y.; Huang, J.; Guo, Q.; Li, Y.; Wang, W.; Qiu, Y.; Guan, W.; Zhang, J.; et al. Balancing Selection and Wild Gene Pool Contribute to Resistance in Global Rice Germplasm against Planthopper. J. Integr. Plant Biol. 2021, 63, 1695–1711. [Google Scholar] [CrossRef]
- Guan, X.; Fu, Q.; Wang, G.; Lai, F.; Zhang, Z.T. The DNA polymorphism of host-associated populations of Nilaparvata lugens (Stål) with different virulence. Acta Entomol. Sin. 2004, 47, 152. [Google Scholar]
- Lin, K.; Yue, L.; Yuan, L.; Kang, K.; Zhang, Y.; Pang, R.; Zhang, W. Alanine metabolism mediates energy allocation of the brown planthopper to adapt to resistant rice. J. Adv. Res. 2024, in press. [Google Scholar] [CrossRef]
- Deng, F.; Ni, S.; Zhu, X. Present Status and Prospect of Breeding Resistant Cultivers of Brown Planthopper in Rice. Chin. Agric. Sci. Bull. 2011, 27, 229. [Google Scholar]
- Bottrell, D.G.; Schoenly, K.G. Resurrecting the Ghost of Green Revolutions Past: The Brown Planthopper as a Recurring Threat to High-Yielding Rice Production in Tropical Asia. J. Asia-Pac. Entomol. 2012, 15, 122–140. [Google Scholar] [CrossRef]
- Pathak, M.D.; Cheng, C.H.; Fortuno, M.E. Resistance to Nephotettix impicticeps and Nilaparvata lugens in Varieties of Rice. Nature 1969, 223, 502–504. [Google Scholar] [CrossRef]
- Ye, Y.; Wang, Y.; Zou, L.; Wu, X.; Zhang, F.; Chen, C.; Xiong, S.; Liang, B.; Zhu, Z.; Wu, W.; et al. Identification and candidate analysis of a new brown planthopper resistance locus in an Indian landrace of rice, paedai kalibungga. Mol. Breed. 2024, 44, 45. [Google Scholar] [CrossRef]
- Essuman, K.; Milbrandt, J.; Dangl, J.L.; Nishimura, M.T. Shared TIR Enzymatic Functions Regulate Cell Death and Immunity across the Tree of Life. Science 2022, 377, eabo0001. [Google Scholar] [CrossRef]
- Du, B.; Zhang, W.; Liu, B.; Hu, J.; Wei, Z.; Shi, Z.; He, R.; Zhu, L.; Chen, R.; Han, B.; et al. Identification and Characterization of Bph14, a Gene Conferring Resistance to Brown Planthopper in Rice. Proc. Natl. Acad. Sci. USA 2009, 106, 22163–22168. [Google Scholar] [CrossRef]
- Cheng, X.; Wu, Y.; Guo, J.; Du, B.; Chen, R.; Zhu, L.; He, G. A Rice Lectin Receptor-like Kinase That Is Involved in Innate Immune Responses Also Contributes to Seed Germination. Plant J. 2013, 76, 687–698. [Google Scholar] [CrossRef]
- Liu, Y.; Wu, H.; Chen, H.; Liu, Y.; He, J.; Kang, H.; Sun, Z.; Pan, G.; Wang, Q.; Hu, J.; et al. A Gene Cluster Encoding Lectin Receptor Kinases Confers Broad-Spectrum and Durable Insect Resistance in Rice. Nat. Biotechnol. 2015, 33, 301–305. [Google Scholar] [CrossRef]
- Hu, L.; Wu, Y.; Wu, D.; Rao, W.; Guo, J.; Ma, Y.; Wang, Z.; Shangguan, X.; Wang, H.; Xu, C.; et al. The Coiled-Coil and Nucleotide Binding Domains of BROWN PLANTHOPPER RESISTANCE14 Function in Signaling and Resistance against Planthopper in Rice. Plant Cell 2017, 29, 3157–3185. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Wang, H.; Guan, W.; Guo, Q.; Wang, J.; Yang, J.; Peng, Y.; Shan, J.; Gao, M.; Shi, S.; et al. A tripartite rheostat controls self-regulated host plant resistance to insects. Nature 2023, 618, 799–807. [Google Scholar] [CrossRef]
- Zhao, Y.; Huang, J.; Wang, Z.; Jing, S.; Wang, Y.; Ouyang, Y.; Cai, B.; Xin, X.-F.; Liu, X.; Zhang, C.; et al. Allelic Diversity in an NLR Gene BPH9 Enables Rice to Combat Planthopper Variation. Proc. Natl. Acad. Sci. USA 2016, 113, 12850–12855. [Google Scholar] [CrossRef] [PubMed]
- Shi, S.; Wang, H.; Nie, L.; Tan, D.; Zhou, C.; Zhang, Q.; Li, Y.; Du, B.; Guo, J.; Huang, J.; et al. Bph30 Confers Resistance to Brown Planthopper by Fortifying Sclerenchyma in Rice Leaf Sheaths. Mol. Plant 2021, 14, 1714–1732. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Xu, C.; Wu, D.; Zhao, Y.; Qiu, Y.; Wang, X.; Ouyang, Y.; Cai, B.; Liu, X.; Jing, S.; et al. Bph6 Encodes an Exocyst-Localized Protein and Confers Broad Resistance to Planthoppers in Rice. Nat. Genet. 2018, 50, 297–306. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Guo, J.; Zhang, Q.; Shi, S.; Guan, W.; Zhou, C.; Chen, R.; Du, B.; Zhu, L.; He, G. Necessity of Rice Resistance to Planthoppers for OsEXO70H3 Regulating SAMSL Excretion and Lignin Deposition in Cell Walls. New Phytol. 2022, 234, 1031–1046. [Google Scholar] [CrossRef]
- Wang, Y.; Cao, L.; Zhang, Y.; Cao, C.; Liu, F.; Huang, F.; Qiu, Y.; Li, R.; Lou, X. Map-Based Cloning and Characterization of BPH29, a B3 Domain-Containing Recessive Gene Conferring Brown Planthopper Resistance in Rice. J. Exp. Bot. 2015, 66, 6035–6045. [Google Scholar] [CrossRef]
- Ren, J.; Gao, F.; Wu, X.; Lu, X.; Zeng, L.; Lv, J.; Su, X.; Luo, H.; Ren, G. Bph32, a Novel Gene Encoding an Unknown SCR Domain-Containing Protein, Confers Resistance against the Brown Planthopper in Rice. Sci. Rep. 2016, 6, 37645. [Google Scholar] [CrossRef]
- Hu, J.; Zhou, J.; Peng, X.; Xu, H.; Liu, C.; Du, B.; Yuan, H.; Zhu, L.; He, G. The Bphi008a Gene Interacts with the Ethylene Pathway and Transcriptionally Regulates MAPK Genes in the Response of Rice to Brown Planthopper Feeding. J. Exp. Bot. 2011, 156, 856–872. [Google Scholar] [CrossRef]
- Shin, H.-Y.; You, M.K.; Jeung, J.U.; Shin, J.S. OsMPK3 is a TEY-type rice MAPK in Group C and phosphorylates OsbHLH65, a transcription factor binding to the E-box element. Plant Cell Rep. 2014, 33, 1343–1353. [Google Scholar] [CrossRef]
- Nanda, S.; Wan, P.-J.; Yuan, S.-Y.; Lai, F.-X.; Wang, W.-X.; Fu, Q. Differential Responses of OsMPKs in IR56 Rice to Two BPH Populations of Different Virulence Levels. Int. J. Mol. Sci. 2018, 19, 4030. [Google Scholar] [CrossRef]
- Zhou, S.; Chen, M.; Zhang, Y.; Gao, Q.; Noman, A.; Wang, Q.; Li, H.; Chen, L.; Zhou, P.; Lu, J.; et al. OsMKK3, a Stress-Responsive Protein Kinase, Positively Regulates Rice Resistance to Nilaparvata lugens via Phytohormone Dynamics. Int. J. Mol. Sci. 2019, 20, 3023. [Google Scholar] [CrossRef] [PubMed]
- Alves, M.; Dadalto, S.; Gonçalves, A.; De Souza, G.; Barros, V.; Fietto, L. Transcription Factor Functional Protein-Protein Interactions in Plant Defense Responses. Proteomes 2014, 2, 85–106. [Google Scholar] [CrossRef] [PubMed]
- Hu, L.; Ye, M.; Li, R.; Lou, Y. OsWRKY53, a versatile switch in regulating herbivore-induced defense responses in rice. Plant Signal. Behav. 2016, 11, e1169357. [Google Scholar] [CrossRef] [PubMed]
- Huangfu, J.; Li, J.; Li, R.; Ye, M.; Kuai, P.; Zhang, T.; Lou, Y. The Transcription Factor OsWRKY45 Negatively Modulates the Resistance of Rice to the Brown Planthopper Nilaparvata lugens. Int. J. Mol. Sci. 2016, 17, 697. [Google Scholar] [CrossRef]
- Ye, M.; Kuai, P.; Chen, S.; Lin, N.; Ye, M.; Hu, L.; Lou, Y. Silencing a Simple Extracellular Leucine-Rich Repeat Gene OsI-BAK1 Enhances the Resistance of Rice to Brown Planthopper Nilaparvata lugens. Int. J. Mol. Sci. 2021, 22, 12182. [Google Scholar] [CrossRef]
- Lu, L.; Sun, Z.; Wang, R.; Du, Y.; Zhang, Z.; Lan, T.; Song, Y.; Zeng, R. Integration of transcriptome and metabolome analyses reveals the role of OsSPL10 in rice defense against brown planthopper. Plant Cell Rep. 2023, 42, 2023–2038. [Google Scholar] [CrossRef]
- Sun, B.; Shen, Y.; Zhu, L.; Yang, X.; Liu, X.; Li, D.; Zhu, M.; Miao, X.; Shi, Z. OsmiR319-OsPCF5 modulate resistance to brown planthopper in rice through association with MYB proteins. BMC Biol. 2024, 22, 68. [Google Scholar] [CrossRef]
- Ge, Y.; Han, J.; Zhou, G.; Xu, Y.; Ding, Y.; Shi, M.; Guo, C.; Wu, G. Silencing of miR156 Confers Enhanced Resistance to Brown Planthopper in Rice. Planta 2018, 248, 813–826. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, D.; Xiong, X.; Yan, B.; Xie, W.; Sheen, J.; Li, J.-F.; Dai, Z.; Tan, J.; Zhou, C.; et al. The OsmiR396–OsGRF8–OsF3H-flavonoid Pathway Mediates Resistance to the Brown Planthopper in Rice (Oryza Sativa). Plant Biotechnol. J. 2019, 17, 1657–1669. [Google Scholar] [CrossRef]
- Shen, W.; Cao, S.; Liu, J.; Zhang, W.; Chen, J.; Li, J.-F. Overexpression of an Osa-miR162a Derivative in Rice Confers Cross-Kingdom RNA Interference-Mediated Brown Planthopper Resistance without Perturbing Host Development. Int. J. Mol. Sci. 2021, 22, 12652. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Yang, G.; Miao, X.; Shi, Z. OsmiR159 Modulate BPH Resistance Through Regulating G-Protein γ Subunit GS3 Gene in Rice. Rice 2023, 16, 30. [Google Scholar] [CrossRef]
- King, R.W.; Zeevaart, J.A.D. Enhancement of Phloem Exudation from Cut Petioles by Chelating Agents. Plant Physiol. 1974, 53, 96–103. [Google Scholar] [CrossRef]
- Xu, J.; Wang, X.; Zu, H.; Zeng, X.; Baldwin, I.T.; Lou, Y.; Li, R. Molecular dissection of rice phytohormone signaling involved in resistance to a piercing-sucking herbivore. New Phytol. 2021, 230, 1639–1652. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Luo, C.; Zhou, Z.; Wang, R.; Ling, F.; Xiao, L.; Lin, Y.; Chen, H. Gene expression and plant hormone levels in two contrasting rice genotypes responding to brown planthopper infestation. BMC Plant Biol. 2017, 17, 57. [Google Scholar] [CrossRef] [PubMed]
- Zhou, G.; Qi, J.; Ren, N.; Cheng, J.; Erb, M.; Mao, B.; Lou, Y. Silencing OsHI-LOX makes rice more susceptible to chewing herbivores, but enhances resistance to a phloem feeder. Plant J. 2009, 60, 638–648. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Xu, X.; Han, K.; Wang, Z.; Ma, W.; Lin, Y.; Hua, H. Isolation and functional analysis of OsAOS1 promoter for resistance to Nilaparvata lugens Stål infestation in rice. J. Cell. Physiol. 2022, 237, 1833–1844. [Google Scholar] [CrossRef]
- Chen, L.; Kuai, P.; Ye, M.; Zhou, S.; Lu, J.; Lou, Y. Overexpression of a Cytosolic 6-Phosphogluconate Dehydrogenase Gene Enhances the Resistance of Rice to Nilaparvata lugens. Plants 2020, 9, 1529. [Google Scholar] [CrossRef]
- Dai, Y.; Liu, D.; Guo, W.; Liu, Z.; Zhang, X.; Shi, L.; Zhou, D.; Wang, L.; Kang, K.; Wang, F.; et al. Poaceae-Specific b-1,3;1,4-D-Glucans Link Jasmonate Signalling to OsLecRK1-Mediated Defence Response during Rice-Brown Planthopper Interactions. Plant Biotechnol. J. 2023, 21, 1286–1300. [Google Scholar] [CrossRef]
- Wang, X.; Chen, Y.; Liu, S.; Fu, W.; Zhuang, Y.; Xu, J.; Lou, Y.; Baldwin, I.T.; Li, R.; Wang, X.; et al. Functional dissection of rice jasmonate receptors involved in development and defense. New Phytol. 2023, 238, 2144–2158. [Google Scholar] [CrossRef]
- Wang, M.; Yang, D.; Ma, F.; Zhu, M.; Shi, Z.; Miao, X. OsHLH61-OsbHLH96 influences rice defense to brown planthopper through regulating the pathogen-related genes. Rice 2019, 12, 9. [Google Scholar] [CrossRef]
- Lu, J.; Li, J.; Ju, H.; Liu, X.; Erb, M.; Wang, X.; Lou, Y. Contrasting Effects of Ethylene Biosynthesis on Induced Plant Resistance against a Chewing and a Piercing-Sucking Herbivore in Rice. Mol. Plant 2014, 7, 1670–1682. [Google Scholar] [CrossRef] [PubMed]
- Ma, F.; Li, Z.; Wang, S.; Li, K.; Tang, F.; Jia, J.; Zhao, Q.; Jing, P.; Yang, W.; Hua, C.; et al. The F-box protein OsEBF2 confers the resistance to the brown planthopper (Nilparvata lugens Stål). Plant Sci. 2023, 327, 111547. [Google Scholar] [CrossRef]
- Lu, J.; Ju, H.; Zhou, G.; Zhu, C.; Erb, M.; Wang, X.; Wang, P.; Lou, Y. An EAR-motif-containing ERF transcription factor affects herbivore-induced signaling, defense and resistance in rice. Plant J. 2011, 68, 583–596. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Qiu, Z.-Y.; He, J.; Xu, H.-S.; Wang, K.; Du, H.-Y.; Gao, D.; Zhao, W.-N.; Sun, Q.-G.; Wang, Y.-S.; et al. Phytochrome B Mediates Dim-Light-Reduced Insect Resistance by Promoting the Ethylene Pathway in Rice. Plant Physiol. 2023, 191, 1272–1287. [Google Scholar] [CrossRef]
- Chen, L.; Cao, T.; Zhang, J.; Lou, Y. Overexpression of OsGID1 enhances the resistance of rice to the brown planthopper Nilaparvata lugens. Int. J. Mol. Sci. 2018, 19, 2744. [Google Scholar] [CrossRef]
- Zhang, J.; Luo, T.; Wang, W.; Cao, T.; Li, R.; Lou, Y. Silencing OsSLR1 enhances the resistance of rice to the brown planthopper Nilaparvata lugens. Plant Cell Environ. 2017, 40, 2147–2159. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, D.; Gao, D.; Zhao, W.; Du, H.; Qiu, Z.; Huang, J.; Wen, P.; Wang, Y.; Li, Q.; et al. Cytokinin Confers Brown Planthopper Resistance by Elevating Jasmonic Acid Pathway in Rice. Int. J. Mol. Sci. 2022, 23, 5946. [Google Scholar] [CrossRef]
- Li, J.; Liu, H.; Lv, X.; Wang, W.; Liang, X.; Chen, L.; Wang, Y.; Liu, J. A key ABA biosynthetic gene OsNCED3 is a positive regulator in resistance to Nilaparvata lugens in Oryza sativa. Front. Plant Sci. 2024, 15, 1359315. [Google Scholar] [CrossRef]
- Sun, L.; Li, J.; Liu, Y.; Noman, A.; Chen, L.; Liu, J. Transcriptome Profiling in Rice Reveals a Positive Role for OsNCED3 in Defense against the Brown Planthopper, Nilaparvata Lugens. BMC Genom. 2022, 23, 634. [Google Scholar] [CrossRef] [PubMed]
- Liao, G.; Li, J.; Fan, W.; Chen, L.; Liu, J.; Liao, G.; Li, J.; Fan, W.; Chen, L.; Liu, J. Drought stress reduces the feeding preference of Nilaparvata lugens due to the accumulation of abscisic acid and callose deposition in rice. J. Asia-Pac. Entomol. 2023, 26, 102014. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, M.; Zhou, S.; Lou, Y.; Lu, J. Silencing an E3 Ubiquitin Ligase Gene OsJMJ715 Enhances the Resistance of Rice to a Piercing-Sucking Herbivore by Activating ABA and JA Signaling Pathways. Int. J. Mol. Sci. 2021, 22, 13020. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Hao, F.; Hu, J.; Zhang, W.; Wan, L.; Zhu, L.; Tang, H.; He, G. Revealing Different Systems Responses to Brown Planthopper Infestation for Pest Susceptible and Resistant Rice Plants with the Combined Metabonomic and Gene-Expression Analysis. J. Proteome Res. 2010, 9, 6774–6785. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Liu, Y.; Yuan, D.; Duan, M.; Liu, Y.; Shen, Z.; Yang, C.; Qiu, Z.; Liu, D.; Wen, P.; et al. An R2R3 MYB Transcription Factor Confers Brown Planthopper Resistance by Regulating the Phenylalanine Ammonia-Lyase Pathway in Rice. Proc. Natl. Acad. Sci. USA 2020, 117, 271–277. [Google Scholar] [CrossRef]
- Ogawa, S.; Miyamoto, K.; Nemoto, K.; Sawasaki, T.; Yamane, H.; Nojiri, H.; Okada, K. OsMYC2, an essential factor for JA-inductive sakuranetin production in rice, interacts with MYC2-like proteins that enhance its transactivation ability. Sci. Rep. 2017, 7, 40175. [Google Scholar] [CrossRef]
- Shi, S.; Zha, W.; Yu, X.; Wu, Y.; Li, S.; Xu, H.; Li, P.; Li, C.; Liu, K.; Chen, J.; et al. Integrated Transcriptomics and Metabolomics Analysis Provide Insight into the Resistance Response of Rice against Brown Planthopper. Front. Plant Sci. 2023, 14, 1213257. [Google Scholar] [CrossRef]
- Tong, X.; Qi, J.; Zhu, X.; Mao, B.; Zeng, L.; Wang, B.; Li, Q.; Zhou, G.; Xu, X.; Lou, Y.; et al. The rice hydroperoxide lyase OsHPL3 functions in defense responses by modulating the oxylipin pathway. Plant J. 2012, 71, 763–775. [Google Scholar] [CrossRef]
- Xiao, Y.; Wang, Q.; Erb, M.; Turlings, T.C.J.; Ge, L.; Hu, L.; Li, J.; Han, X.; Zhang, T.; Lu, J.; et al. Specific herbivore-induced volatiles defend plants and determine insect community composition in the field. Ecol. Lett. 2012, 15, 1130–1139. [Google Scholar] [CrossRef]
- Lu, H.; Luo, T.; Fu, H.; Wang, L.; Tan, Y.; Huang, J.; Wang, Q.; Ye, G.; Gatehouse, A.M.R.; Lou, Y.; et al. Resistance of Rice to Insect Pests Mediated by Suppression of Serotonin Biosynthesis. Nat. Plants 2018, 4, 338–344. [Google Scholar] [CrossRef]
- Alamgir, K.M.; Hojo, Y.; Christeller, J.T.; Fukumoto, K.; Isshiki, R.; Shinya, T.; Baldwin, I.T.; Galis, I. Systematic analysis of rice (Oryza sativa) metabolic responses to herbivory. Plant Cell Environ. 2015, 39, 453–466. [Google Scholar] [CrossRef]
- Xin, Z.; Wang, Q.; Yu, Z.; Hu, L.; Li, J.; Xiang, C.; Wang, B.; Lou, Y. Overexpression of a Xylanase Inhibitor Gene, OsHI-XIP, Enhances Resistance in Rice to Herbivores. Plant Mol. Biol. Rep. 2014, 32, 465–475. [Google Scholar] [CrossRef]
- De Zaeytijd, J.; Chen, P.; Scheys, F.; Subramanyam, K.; Dubiel, M.; De Schutter, K.; Smagghe, G.; Van Damme, E.J. Involvement of OsRIP1, a ribosome-inactivating protein from rice, in plant defense against Nilaparvata lugens. Phytochemistry 2020, 170, 112190. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.; Zhang, H.; Li, Z.; Huang, T.; Akihiro, T.; Xu, J.; Xu, H.; Lin, F. An amino acid transporter-like protein (OsATL15) facilitates the systematic distribution of thiamethoxam in rice for controlling the brown planthopper. Plant Biotechnol. J. 2022, 20, 1888–1901. [Google Scholar] [CrossRef] [PubMed]
- Begum, M.A.; Shi, X.-X.; Tan, Y.; Zhou, W.-W.; Hannun, Y.; Obeid, L.; Mao, C.; Zhu, Z.-R. Molecular Characterization of Rice OsLCB2a1 Gene and Functional Analysis of its Role in Insect Resistance. Front. Plant Sci. 2016, 7, 1789. [Google Scholar] [CrossRef]
- Shen, W.; Zhang, X.; Liu, J.; Tao, K.; Li, C.; Xiao, S.; Zhang, W.; Li, J.; Shen, W.; Zhang, X.; et al. Plant elicitor peptide signalling confers rice resistance to piercing-sucking insect herbivores and pathogens. Plant Biotechnol. J. 2022, 20, 991–1005. [Google Scholar] [CrossRef] [PubMed]
- Cheng, B.; Chen, F.; Wang, C.; Liu, X.; Yue, L.; Cao, X.; Wang, Z.; Xing, B. The molecular mechanisms of silica nanomaterials enhancing the rice (Oryza sativa L.) resistance to planthoppers (Nilaparvata lugens Stal). Sci. Total Environ. 2021, 767, 144967. [Google Scholar] [CrossRef]
- Chang, X.; He, W.; Xiao, N.; Li, J.; Han, L.; Chen, F. Effects of elevated CO2 and transgenic Bt rice on yeast-like endosymbiote and its host brown planthopper. J. Appl. Entomol. 2011, 135, 333–342. [Google Scholar] [CrossRef]
- Yu, L.; Chen, Y.; Zeng, X.; Lou, Y.; Baldwin, I.T.; Li, R. Brown planthoppers manipulate rice sugar transporters to benefit their own feeding. Curr. Biol. 2024, 34, 2990–2996.e4. [Google Scholar] [CrossRef]
- Wang, X.; Ren, X.; Zhu, L.; He, G. OsBi1, a rice gene, encodes a novel protein with a CBS-like domain and its expression is induced in responses to herbivore feeding. Plant Sci. 2004, 166, 1581–1588. [Google Scholar] [CrossRef]
- Wang, R.; Shen, W.; Liu, L.; Jiang, L.; Liu, Y.; Su, N.; Wan, J. A Novel Lipoxygenase Gene from Developing Rice Seeds Confers Dual Position Specificity and Responds to Wounding and Insect Attack. Plant Mol. Biol. 2008, 66, 401–414. [Google Scholar] [CrossRef]
- Chang, X.; Yang, M.; Li, H.; Wu, J.; Zhang, J.; Yin, C.; Ma, W.; Chen, H.; Zhou, F.; Lin, Y. Cloning of the Promoter of Rice Brown Planthopper Feeding-Inducible Gene OsTPS31 and Identification of Related Cis-Regulatory Elements. Pest. Manag. Sci. 2023, 79, 1809–1819. [Google Scholar] [CrossRef] [PubMed]
- Tao, Z.; Zhu, L.; Li, H.; Sun, B.; Liu, X.; Li, D.; Hu, W.; Wang, S.; Miao, X.; Shi, Z. ACL1-ROC4/5 Complex Reveals a Common Mechanism in Rice Response to Brown Planthopper Infestation and Drought. Nat. Commun. 2024, 15, 8107. [Google Scholar] [CrossRef] [PubMed]
- Kuai, P.; Lin, N.; Ye, M.; Ye, M.; Chen, L.; Chen, S.; Zu, H.; Hu, L.; Gatehouse, A.M.R.; Lou, Y. Identification and knockout of a herbivore susceptibility gene enhances planthopper resistance and increases rice yield. Nat. Food 2024, 5, 846–859. [Google Scholar] [CrossRef]
- Zeng, J.; Zhang, T.; Huangfu, J.; Li, R.; Lou, Y. Both Allene Oxide Synthases Genes Are Involved in the Biosynthesis of Herbivore-Induced Jasmonic Acid and Herbivore Resistance in Rice. Plants 2021, 10, 442. [Google Scholar] [CrossRef] [PubMed]
- Qi, J.; Li, J.; Han, X.; Li, R.; Wu, J.; Yu, H.; Hu, L.; Xiao, Y.; Lu, J.; Lou, Y. Jasmonic Acid Carboxyl Methyltransferase Regulates Development and Herbivory-induced Defense Response in Rice. J. Integr. Plant Biol. 2016, 58, 564–576. [Google Scholar] [CrossRef]
- Fonseca, S.; Chini, A.; Hamberg, M.; Adie, B.; Porzel, A.; Kramell, R.; Miersch, O.; Wasternack, C.; Solano, R. (+)-7-iso-Jasmonoyl-L-isoleucine is the endogenous bioactive jasmonate. Nat. Chem. Biol. 2009, 5, 344–350. [Google Scholar] [CrossRef]
- Sheard, L.B.; Tan, X.; Mao, H.; Withers, J.; Ben-Nissan, G.; Hinds, T.R.; Kobayashi, Y.; Hsu, F.; Sharon, M.; Browse, J.; et al. Jasmonate perception by inositol-phosphate-potentiated COI1–JAZ co-receptor. Nature 2010, 468, 400–405. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, X. Salicylic acid: Biosynthesis, perception, and contributions to plant immunity. Curr. Opin. Plant Biol. 2019, 50, 29–36. [Google Scholar] [CrossRef]
- Zhao, Y.; Cao, X.; Zhong, W.; Zhou, S.; Li, Z.; An, H.; Liu, X.; Wu, R.; Bohora, S.; Wu, Y.; et al. A viral protein orchestrates rice ethylene signaling to coordinate viral infection and insect vector-mediated transmission. Mol. Plant 2022, 15, 689–705. [Google Scholar] [CrossRef]
- Malik, G.; Chaturvedi, R.; Hooda, S. Role of Herbivore-Associated Molecular Patterns (HAMPs) in Modulating Plant Defenses. In Plant-Pest Interactions: From Molecular Mechanisms to Chemical Ecology; Singh, I.K., Singh, A., Eds.; Springer Singapore: Singapore, 2021; pp. 1–29. ISBN 978-981-15-2466-0. [Google Scholar]
- Huang, H.; Wang, Y.; Li, L.; Lu, H.; Lu, J.; Wang, X.; Ye, Z.; Zhang, Z.; He, Y.; Lu, G.; et al. Planthopper Salivary Sheath Protein LsSP1 Contributes to Manipulation of Rice Plant Defenses. Nat. Commun. 2018, 14, 737. [Google Scholar] [CrossRef]
- Ji, R.; Yu, H.; Fu, Q.; Chen, H.; Ye, W.; Li, S.; Lou, Y. Comparative Transcriptome Analysis of Salivary Glands of Two Populations of Rice Brown Planthopper, Nilaparvata lugens, That Differ in Virulence. PLoS ONE 2013, 8, e79612. [Google Scholar] [CrossRef]
- Liu, X.; Zhou, H.; Zhao, J.; Hua, H.; He, Y. Identification of the secreted watery saliva proteins of the rice brown planthopper, Nilaparvata lugens (Stål) by transcriptome and Shotgun LC–MS/MS approach. J. Insect Physiol. 2016, 89, 60–69. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Liu, C.; Huang, X.; Zhou, X.; Zhuo, J.; Zhang, C.; Bao, Y. Screening and Functional Analyses of Nilaparvata lugens Salivary Proteome. J. Proteome Res. 2016, 15, 1883–1896. [Google Scholar] [CrossRef] [PubMed]
- Shangguan, X.; Zhang, J.; Liu, B.; Zhao, Y.; Wang, H.; Wang, Z.; Guo, J.; Rao, W.; Jing, S.; Guan, W.; et al. A Mucin-Like Protein of Planthopper Is Required for Feeding and Induces Immunity Response in Plants. Plant Physiol. 2018, 176, 552–565. [Google Scholar] [CrossRef]
- Du, M.H.; Yan, X.C.; Lou, Y.G.; Cheng, J.A. Studies on active chemicals in the saliva of the rice brown planthopper (Nilaparvata lugens) that elicit the production of rice volatiles. J. Zhejiang Univ. 2005, 31, 237–244. [Google Scholar]
- Ji, R.; Ye, W.; Chen, H.; Zeng, J.; Li, H.; Yu, H.; Li, J.; Lou, Y. A Salivary Endo-β-1,4-Glucanase Acts as an Effector That Enables the Brown Planthopper to Feed on Rice. Plant Physiol. 2017, 173, 1920–1932. [Google Scholar] [CrossRef]
- Petrova, A.; Smith, C.M. Immunodetection of a brown planthopper (Nilaparvata lugens Stål) salivary catalase-like protein into tissues of rice, Oryza sativa. Insect Mol. Biol. 2014, 23, 13–25. [Google Scholar] [CrossRef]
- Fu, J.; Shi, Y.; Wang, L.; Tian, T.; Li, J.; Gong, L.; Zheng, Z.; Jing, M.; Fang, J.; Ji, R. Planthopper-Secreted Salivary Calmodulin Acts as an Effector for Defense Responses in Rice. Front. Plant Sci. 2022, 13, 841378. [Google Scholar] [CrossRef]
- Ye, W.; Yu, H.; Jian, Y.; Zeng, J.; Ji, R.; Chen, H.; Lou, Y. A salivary EF-hand calcium-binding protein of the brown planthopper Nilaparvata lugens functions as an effector for defense responses in rice. Sci. Rep. 2017, 7, 40498. [Google Scholar] [CrossRef]
- Huang, H.; Liu, C.; Cai, Y.; Zhang, M.; Bao, Y.; Zhang, C. A salivary sheath protein essential for the interaction of the brown planthopper with rice plants. Insect Biochem. Mol. Biol. 2015, 66, 77–87. [Google Scholar] [CrossRef]
- Liu, H.; Wang, C.; Qiu, C.-L.; Shi, J.-H.; Sun, Z.; Hu, X.-J.; Liu, L.; Wang, M.-Q. A Salivary Odorant-Binding Protein Mediates Nilaparvata lugens Feeding and Host Plant Phytohormone Suppression. Int. J. Mol. Sci. 2021, 22, 4988. [Google Scholar] [CrossRef]
- Huang, H.-J.; Liu, C.-W.; Xu, H.-J.; Bao, Y.-Y.; Zhang, C.-X. Mucin-like protein, a saliva component involved in brown planthopper virulence and host adaptation. J. Insect Physiol. 2017, 98, 223–230. [Google Scholar] [CrossRef]
- Huang, J.; Zhang, N.; Shan, J.; Peng, Y.; Guo, J.; Zhou, C.; Shi, S.; Zheng, X.; Wu, D.; Guan, W.; et al. Salivary Protein 1 of Brown Planthopper Is Required for Survival and Induces Immunity Response in Plants. Front. Plant Sci. 2020, 11, 571280. [Google Scholar] [CrossRef] [PubMed]
- Gao, H.; Zou, J.; Lin, X.; Zhang, H.; Yu, N.; Liu, Z. Nilaparvata lugens salivary protein NlG14 triggers defense response in plants. J. Exp. Bot. 2022, 73, 7477–7487. [Google Scholar] [CrossRef]
- Yang, H.; Zhang, X.; Li, H.; Ye, Y.; Li, Z.; Han, X.; Hu, Y.; Zhang, C.; Jiang, Y. Heat Shock 70 kDa Protein Cognate 3 of Brown Planthopper Is Required for Survival and Suppresses Immune Response in Plants. Insects 2022, 13, 299. [Google Scholar] [CrossRef]
- Gao, H.; Lin, X.; Yuan, X.; Zou, J.; Zhang, H.; Zhang, Y.; Liu, Z.; Gao, H.; Lin, X.; Yuan, X.; et al. The salivary chaperone protein NlDNAJB9 of Nilaparvata lugens activates plant immune responses. J. Exp. Bot. 2023, 74, 6874–6888. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Cai, X.; Wu, H.; Wan, Y.; Wei, S.; Xu, H.; Liu, X.; Cai, X.; Wu, H.; Wan, Y.; et al. Salivary proteins NlSP5 and NlSP7 are required for optimal feeding and fitness of the brown planthopper, Nilaparvata lugens. Pest. Manag. Sci. 2024, 80, 4297–4305. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Wang, X.; Lu, J.; Lu, H.; Ye, Z.; Xu, Z.; Zhang, C.; Chen, J.; Li, J.; Zhang, C.; et al. Cross-kingdom RNA interference mediated by insect salivary microRNAs may suppress plant immunity. Proc. Natl. Acad. Sci. USA 2024, 121, e2318783121. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Qian, W.; Song, W.; Zhao, T.; Yang, Y.; Wang, W.; Wei, L.; Zhao, D.; Li, Y.; Perrimon, N.; et al. A salivary gland-secreted peptide regulates insect systemic growth. Cell Rep. 2022, 38, 110397. [Google Scholar] [CrossRef]
- Gao, H.; Zhang, H.; Yuan, X.; Lin, X.; Zou, J.; Yu, N.; Liu, Z. Knockdown of the Salivary Protein Gene NlG14 Caused Displacement of the Lateral Oviduct Secreted Components and Inhibited Ovulation in Nilaparvata Lugens. Viruses 1999, 19, e1010704. [Google Scholar] [CrossRef]
- Li, J.; Li, S.; Li, J.; Tan, X.; Zhao, Z.; Jiang, L.; Hoffmann, A.A.; Fang, J.; Ji, R. Egg-associated secretions from the brown planthopper (Nilaparvata lugens) activate rice immune responses. Insect Sci. 2024, 31, 1135–1149. [Google Scholar] [CrossRef] [PubMed]
- Zeng, J.; Ye, W.; Hu, W.; Jin, X.; Kuai, P.; Xiao, W.; Jian, Y.; Turlings, T.C.J.; Lou, Y. The N-terminal Subunit of Vitellogenin in Planthopper Eggs and Saliva Acts as a Reliable Elicitor That Induces Defenses in Rice. New Phytol. 2023, 238, 1230–1244. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Li, X.; Ouyang, Y.; Guo, Q.; You, M.; Lin, S. Effects of rice ragged stunt virus on the growth, development and reproduction of the brown planthopper Nilaparvata lugens. J. Plant Prot. 2024, 51, 377–382. [Google Scholar]
- Lin, S.; Li, X.; Liu, J.; Ou-yang, Y.; Zhang, B.; Zhao, S.; Chai, X.; Ma, Y.; Liu, J.; Lin, S.; et al. The immune response mechanism of Nilaparvata lugens against a combined infection of rice ragged stunt virus and Metarhizium anisopliae. Pest. Manag. Sci. 2024, 80, 1193–1205. [Google Scholar] [CrossRef]
- Xie, H.; Gan, P.; Lü, S.; Tang, T.; Li, C.; Chen, C.; Guan, X.; Zhu, Z.; Ye, Y.; Huang, X.; et al. Development of marker-free transgenic rice exhibiting stable and enhanced resistance to Rice ragged stunt virus and Rice grassy stunt virus via RNA interference. Plant Biotechnol. J. 2024, 22, 2327–2329. [Google Scholar] [CrossRef]
- Guo, J.; Chen, R.; Du, B.; Zhu, L.; He, G. Progress in exploitation and utilization of brown planthopper resistance gene in rice. Sci. Sin. Vitae 2022, 52, 1326–1334. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, L.; Liu, Y.; Dai, H.; He, J.; Kang, H.; Pan, G.; Huang, J.; Qiu, Z.; Wang, Q.; et al. Marker Assisted Pyramiding of Two Brown Planthopper Resistance Genes, Bph3 and Bph27 (t), into Elite Rice Cultivars. Rice 2016, 9, 27. [Google Scholar] [CrossRef]
- Zhang, Y.; Qin, G.; Ma, Q.; Wei, M.; Yang, X.; Ma, Z.; Liang, H.; Liu, C.; Li, Z.; Liu, F.; et al. Identification of Major Locus Bph35 Resistance to Brown Planthopper in Rice. Rice Sci. 2020, 27, 237–245. [Google Scholar] [CrossRef]
- Tan, H.Q.; Palyam, S.; Gouda, J.; Kumar, P.P.; Chellian, S.K. Identification of two QTLs, BPH41 and BPH42, and their respective gene candidates for brown planthopper resistance in rice. Sci. Rep. 2022, 12, 18538. [Google Scholar] [CrossRef]
- Wang, H.; Ye, S.; Mou, T. Molecular Breeding of Rice Restorer Lines and Hybrids for Brown Planthopper (BPH) Resistance Using the Bph14 and Bph15 Genes. Rice 2016, 9, 53. [Google Scholar] [CrossRef]
- Yang, D.; Xiong, L.; Mou, T.; Mi, J. Improving the resistance of the rice PTGMS line Feng39S by pyramiding blast, bacterial blight, and brown planthopper resistance genes. Crop J. 2022, 10, 1187–1197. [Google Scholar] [CrossRef]
- Zhang, A.; Liu, Y.; Wang, F.; Xie, Y.; Kong, D.; Nie, Y.; Zhang, F.; Bi, J.; Yu, X.; Liu, G. Pyramiding and evaluation of brown planthopper resistance genes in water-saving and drought-resistance restorer line. Acta Agron. Sin. 2019, 45, 1764–1769. [Google Scholar]
- Du, B.; Chen, R.; Guo, J.; He, G. Current Understanding of the Genomic, Genetic, and Molecular Control of Insect Resistance in Rice. Mol. Breed. 2020, 40, 24. [Google Scholar] [CrossRef]
- Deng, Z.; Qin, P.; Liu, K.; Jiang, N.; Yan, T.; Zhang, X.; Fu, C.; He, G.; Wang, K.; Yang, Y. The Development of Multi-Resistant Rice Restorer Lines and Hybrid Varieties by Pyramiding Resistance Genes against Blast and Brown Planthopper. Agronomy-Basel 2024, 14, 878. [Google Scholar] [CrossRef]
- Liu, M.; Fan, F.; He, S.; Guo, Y.; Chen, G.; Li, N.; Li, N.; Yuan, H.; Si, F.; Yang, F.; et al. Creation of Elite Rice with High-Yield, Superior-Quality and High Resistance to Brown Planthopper Based on Molecular Design. Rice 2022, 15, 149–176. [Google Scholar] [CrossRef]
- Ye, Y.; Tang, J.; Lin, C.; Deng, Z.; Liang, S.; Su, R.; Huang, X. Breeding of green and high-quality two-line hybrid rice B Liangyou 164. Fujian J. Agric. Sci. 2022, 37, 17–24. [Google Scholar] [CrossRef]
- Liu, M.; Hong, G.; Li, H.; Bing, X.; Chen, Y.; Jing, X.; Gershenzon, J.; Lou, Y.; Baldwin, I.T.; Li, R. Sakuranetin Protects Rice from Brown Planthopper Attack by Depleting Its Beneficial Endosymbionts. Proc. Natl. Acad. Sci. USA 2023, 120, e2305007120. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ye, Y.; Xiong, S.; Guan, X.; Tang, T.; Zhu, Z.; Zhu, X.; Hu, J.; Wu, J.; Zhang, S. Insight into Rice Resistance to the Brown Planthopper: Gene Cloning, Functional Analysis, and Breeding Applications. Int. J. Mol. Sci. 2024, 25, 13397. https://doi.org/10.3390/ijms252413397
Ye Y, Xiong S, Guan X, Tang T, Zhu Z, Zhu X, Hu J, Wu J, Zhang S. Insight into Rice Resistance to the Brown Planthopper: Gene Cloning, Functional Analysis, and Breeding Applications. International Journal of Molecular Sciences. 2024; 25(24):13397. https://doi.org/10.3390/ijms252413397
Chicago/Turabian StyleYe, Yangdong, Shangye Xiong, Xin Guan, Tianxin Tang, Zhihong Zhu, Xiao Zhu, Jie Hu, Jianguo Wu, and Shuai Zhang. 2024. "Insight into Rice Resistance to the Brown Planthopper: Gene Cloning, Functional Analysis, and Breeding Applications" International Journal of Molecular Sciences 25, no. 24: 13397. https://doi.org/10.3390/ijms252413397
APA StyleYe, Y., Xiong, S., Guan, X., Tang, T., Zhu, Z., Zhu, X., Hu, J., Wu, J., & Zhang, S. (2024). Insight into Rice Resistance to the Brown Planthopper: Gene Cloning, Functional Analysis, and Breeding Applications. International Journal of Molecular Sciences, 25(24), 13397. https://doi.org/10.3390/ijms252413397