[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Overexpression of a Xylanase Inhibitor Gene, OsHI-XIP, Enhances Resistance in Rice to Herbivores

  • Original Paper
  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

Xylanase inhibitors have been reported to play an important role in plant defense against fungal pathogens. However, little to nothing is known about their role in defense against herbivores. Here, we cloned a rice xylanase-inhibiting protein (XIP)-type gene OsHI-XIP whose encoding protein is located in the endoplasmic reticulum (ER). Transcriptional analysis revealed a low constitutive mRNA level of OsHI-XIP, while herbivore infestation, mechanical wounding, and treatment with jasmonic acid (JA), a signal that can be induced after infestation by the rice striped stem borer (SSB) Chilo suppressalis, result in an obvious increase in transcript levels. Overexpression of OsHI-XIP, which increased mRNA levels of the gene by 14.7- to 17.7-fold and 7.5- to 9.6-fold at 0 and 12 h, respectively, after SSB infestation, enhanced constitutive and SSB-induced xylanase inhibitor activity and reduced the larval performance of SSB. Moreover, overexpression of OsHI-XIP decreased the feeding and oviposion preferences of the rice brown planthopper (BPH) Nilaparvata lugens, but did not influence the growth and development of rice plants. The results suggest that the rice XIP-type xylanase inhibitor OsHI-XIP is involved in the resistance in rice to herbivores.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

BPH:

Brown planthopper

GH:

Glycoside hydrolase

JA:

Jasmonic acid

PGIPs:

Polygalacturonase inhibitors

PR proteins:

Pathogenesis-related proteins

QRT-PCR:

Quantitative real-time PCR

RT-PCR:

Reverse transcription-polymerase chain reaction

SA:

Salicylic acid

SSB:

Striped stem borer

TAXI:

Triticum aestivum xylanase inhibitor

TLXI:

Thaumatin-like xylanase inhibitor

TrypPIs:

Trypsin protease inhibitors

UTR:

Untranslated regions

XI:

Xylanase inhibitor

XIP:

Xylanase-inhibiting protein

WT:

Wild-type

References

  • Beaugrand J, Gebruers K, Ververken C, Fierens E, Croes E, Goddeeris B, Courtin CM, Delcour JA (2006) Antibodies against wheat xylanase inhibitors as tools for the selective identification of their homologues in other cereals. J Cereal Sci 44:59–67

    Article  CAS  Google Scholar 

  • Bostock RM (2005) Signal crosstalk and induced resistance: straddling the line between cost and benefit. Annu Rev Phytopathol 43:545–580

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. J Biochem 72:248–254

    CAS  Google Scholar 

  • Brennan YL, Callen WN, Christoffersen L, Dupree P, Goubet F, Healey S, Hernández M, Keller M, Li K, Palackal N, Sittenfeld A, Tamayo G, Wells S, Hazlewood GP, Mathur EJ, Short JM, Robertson DE, Steer BA (2004) Unusual microbial xylanases from insect guts. Appl Environ Microbiol 70:3609–3617

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Brito N, Espino JJ, Gonzalez C (2006) The endo-beta-1,4-xylanase xyn11A is required for virulence in Botrytis cinerea. Mol Plant Microbe Interact 19:25–32

    Article  CAS  PubMed  Google Scholar 

  • Chivasa S, Simon WJ, Yu XL, Yalpani N, Slabas AR (2005) Pathogen elicitor-induced changes in the maize extracellular matrix proteome. Proteomics 5:4894–4904

    Article  CAS  PubMed  Google Scholar 

  • Di CX, Zhang MX, Xu SJ, Cheng T, An LZ (2006) Role of polygalacturonase-inhibiting protein in plant defense. Crit Rev Microbiol 32:91–100

    Article  CAS  PubMed  Google Scholar 

  • Dornez E, Croes E, Gebruers K, De Coninck B, Cammue BPA, Delcour JA, Courtin CM (2010) Accumulated evidence substantiates a role for three classes of wheat xylanase inhibitors in plant defense. Crit Rev Plant Sci 29:244–264

    Article  CAS  Google Scholar 

  • Durand A, Hughes R, Roussel A, Flatman R, Henrissat B, Juge N (2005) Emergence of a subfamily of xylanase inhibitors within glycoside hydrolase family 18. FEBS J 272:745–1755

    Article  Google Scholar 

  • Elliott GO, McLauchlan WR, Williamson G, Kroon PA (2003) A wheat xylanase inhibitor protein (XIP-I) accumulates in the grain and has homologues in other cereals. J Cereal Sci 37:187–194

    Article  CAS  Google Scholar 

  • Erb M, Meldau S, Howe GA (2012) Role of phytohormones in insect-specific plant reactions. Trends Plant Sci 17:250–259

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ferrari S, Vairo D, Ausubel FM, Cervone F, De Lorenzo G (2003) Arabidopsis polygalacturonase-inhibiting proteins (PGIP) are regulated by different signal transduction pathways during fungal infection. Plant Cell 15:93–106

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fierens E (2007) TLXI, a thaumatin-like xylanase inhibitor: isolation, characterisation and comparison with other wheat (Triticum aestivum L.) xylanase inhibiting proteins. Dissertation, KU Leuven

  • Fierens E, Rombouts S, Gebruers K, Goesaert H, Brijs K, Beaugrand J, Volckaert G, Van Campenhout S, Proost P, Courtin CM, Delcour JA (2007) TLXI, a novel type of xylanase inhibitor from wheat (Triticum aestivum) belonging to the thaumatin family. Biochem J 403:583–591

    Article  CAS  PubMed  Google Scholar 

  • Franco OL, Rigden DJ, Melo FR, Grossi-de-Sa MF (2002) Plant alpha-amylase inhibitors and their interaction with insect alpha-amylases -Structure, function and potential for crop protection. Eur J Biochem 269:397–412

    Article  CAS  PubMed  Google Scholar 

  • Goesaert H, Elliott G, Kroon PA, Gebruers K, Courtin CM, Robben J, Delcour JA, Juge N (2004) Occurrence of proteinaceous endoxylanase inhibitors in cereals. BBA Proteins Proteom 1696:193–202

    Article  CAS  Google Scholar 

  • Goesaert H, Gebruers K, Courtin CM, Delcour JA (2005) Purification and characterization of a XIP-type endoxylanase inhibitor from rice (Oryza sativa). J Enzym Inhib Med Chem 20:95–101

    Article  CAS  Google Scholar 

  • Grenier J, Potvin C, Trudel J, Asselin A (1999) Some thaumatin-like proteins hydrolyse polymeric beta-1,3-glucans. Plant J 19:473–480

    Article  CAS  PubMed  Google Scholar 

  • Hogenhout SA, Bos JIB (2011) Effector proteins that modulate plant-insect interactions. Curr Opin Plant Biol 14:422–428

    Article  CAS  PubMed  Google Scholar 

  • Igawa T, Ochiai-Fukuda T, Takahashi-Ando N, Ohsato S, Shibata T, Yamaguchi I, Kimura M (2004) New TAXI-type xylanase inhibitor genes are inducible by pathogens and wounding in hexaploid wheat. Plant Cell Physiol 45:1347–1360

    Article  CAS  PubMed  Google Scholar 

  • Igawa T, Tokai T, Kudo T, Yamaguchi I, Kimura M (2005) A wheat xylanase inhibitor gene, Xip-I, but not Taxi-I, significantly induced by biotic and abiotic signals that trigger plant defense. Biosci Biotech Biochem 69:1058–1063

    Article  CAS  Google Scholar 

  • Jeong MJ, Lee SK, Kim BG et al (2006) A rice (Oryza sativa L.) MAP kinase gene, OsMAPK44, is involved in response to abiotic stresses. Plant Cell Tissue Organ 85:151–160

    Article  CAS  Google Scholar 

  • Juge N, Delcour JA (2006) Proteinaceous xylanase inhibitors: structure, functions and evolution. Curr Enzym Inhib 2:29–35

    Article  CAS  Google Scholar 

  • Juge N, Svensson B (2006) Proteinaceous inhibitors of carbohydrate-active enzymes in cereals: implication in agriculture, cereal processing and nutrition. J Sci Food Agric 86:1573–1586

    Article  CAS  Google Scholar 

  • Juge N, Payanc F, Williamsona G (2004) XIP-I, a xylanase inhibitor protein from wheat: a novel protein function. BBA Proteins Proteom 1696:203–211

    Article  CAS  Google Scholar 

  • Koiwa H, Bressan RA, Hasegawa PM (1997) Regulation of protease inhibitors and plants defense. Trends Plant Sci 2:379–384

    Article  Google Scholar 

  • Konishi H, Noda H, Tamura Y, Hattori M (2009) Proteomic analysis of the salivary glands of the rice brown planthopper, Nilaparvata lugens (Stål) (Homoptera: Delphacidae). Appl Entomol Zool 44:525–534

    Article  CAS  Google Scholar 

  • Levorson J, Chlan CA (1997) Plant chitinase consensus sequences. Plant Mol Biol Rep 15:122–133

    Article  CAS  Google Scholar 

  • Lou Y, Baldwin IT (2003) Manduca sexta recognition and resistance among allopolyploid Nicotiana host plants. Proc Natl Acad Sci USA 100:14581–14586

    Google Scholar 

  • Lu J, Ju H, Zhou G, Zhu C, Erb M, Wang X, Wang P, Lou Y (2011) An EAR-motif-containing ERF transcription factor affects herbivore-induced signaling, defense and resistance in rice. Plant J 68:583–596

    Article  CAS  PubMed  Google Scholar 

  • Mithofer A, Boland W (2012) Plant defense against herbivores: chemical aspects. Annu Rev Plant Biol 63:431–450

    Article  PubMed  Google Scholar 

  • Nelson BK, Cai X, Nebenführ A (2007) A multicolored set of in vivo organelle markers for co-localization studies in Arabidopsis and other plants. Plant J 51:1126–1136

    Article  CAS  PubMed  Google Scholar 

  • Padilla-Hurtado B, Flórez-Ramos C, Aguilera-Gálvez C, Medina-Olaya J, Ramírez-Sanjuan A, Rubio-Gómez J, Acuña-Zornosa R (2012) Cloning and expression of an endo-1,4-β-xylanase from the coffee berry borer, Hypothenemus hampei. BMC Res Notes 5:23

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Powell AL, van Kan J, ten Have A, Visser J, Greve LC, Bennett AB, Labavitch JM (2000) Transgenic expression of pear PGIP in tomato limits fungal colonization. Mol Plant Microbe Interact 139:942–950

    Article  Google Scholar 

  • Sá-Pereira P, Paveia H, Costa-Ferreira M, Aires-Barros M (2003) A new look at xylanases: an overview of purification strategies. Mol Biotechnol 24:257–281

    Article  PubMed  Google Scholar 

  • Sels J, Mathys J, Coninck BMA, Cammue BPA, De Bolle MFC (2008) Plant pathogenesis-related (PR) proteins: a focus on PR peptides. Plant Physiol Biochem 46:941–950

    Article  CAS  PubMed  Google Scholar 

  • Sorensen JF, Kragh KM, Sibbesen O, Delcour JA, Goesaert H, Svensson B, Tahir TA, Brufau J, Perez-Vendrell AM, Bellincampi D, D’Ovidio R, Camardella L, Giovane A, Bonnin E, Juge N (2004) Potential role of glycosidase inhibitors in industrial biotechnological applications. BBA Proteins Proteom 1696:275–287

    Article  CAS  Google Scholar 

  • Takahashi-Ando N, Inaba M, Ohsato S, Igawa T, Usami R, Kimura M (2007) Identification of multiple highly similar XIP-type xylanase inhibitor genes in hexaploid wheat. Biochem Biophys Res Commun 360:880–884

    Article  CAS  PubMed  Google Scholar 

  • Tokunaga T, Esaka M (2007) Induction of a novel XIP-type xylanase inhibitor by external ascorbic acid treatment and differential expression of XIP-family genes in rice. Plant Cell Physiol 48:700–714

    Article  CAS  PubMed  Google Scholar 

  • Tokunaga T, Miyata Y, Fujikawa Y, Esaka M (2008) RNAi-Mediated knockdown of the XIP-type endoxylanase inhibitor gene, OsXIP, has no effect on grain development and germination in rice. Plant Cell Physiol 49:1122–1127

    Article  CAS  PubMed  Google Scholar 

  • Van Dam NM, Horn M, Mares M, Baldwin IT (2001) Ontogeny constrains systemic protease inhibitor response in Nicotiana attenuata. J Chem Ecol 27:547–568

    Article  PubMed  Google Scholar 

  • Vasconcelos EA, Santana CG, Godoy CV, Seixas CD, Silva MS, Moreira LR, Oliveira-Neto OB, Price D, Fitches E, Filho EX, Mehta A, Gatehouse JA, Grossi-De-Sa MF (2011) A new chitinase-like xylanase inhibitor protein (XIP) from coffee (Coffea arabica) affects soybean Asian rust (Phakopsora pachyrhizi) spore germination. BMC Biotechnol 11:14

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • von Dahl CC, Winz RA, Halitschke R, Kühnemann F, Gase K, Baldwin IT (2007) Tuning the herbivore-induced ethylene burst: the role of transcript accumulation and ethylene perception in Nicotiana attenuata. Plant J 51:293–307

    Article  Google Scholar 

  • Wang X, Zhou G, Xiang C, Du M, Cheng J, Liu S, Lou Y (2008) Beta-glucosidase treatment and infestation by the rice brown planthopper Nilaparvata lugens elicit similar signaling pathways in rice plants. Chin Sci Bull 53(1):53–57

    Google Scholar 

  • Wroblewski T, Tomczak A, Michelmore R (2005) Optimization of Agrobacterium-mediated transient assays of gene expression in lettuce, tomato and Arabidopsis. Plant Biotechnol J 3:259–273

    Article  CAS  PubMed  Google Scholar 

  • Yoshida S, Forno DA, Cock JH, Gomez KA (1976) Laboratory Manual for Physiological Studies of Rice. Manila, Philippines

  • Young TE, Meeley RB, Gallie DR (2004) ACC synthase expression regulates leaf performance and drought tolerance in maize. Plant J 40:813–825

    Article  CAS  PubMed  Google Scholar 

  • Zhou G, Qi J, Ren N, Cheng J, Erb M, Mao B, Lou YG (2009) Silencing OsHI-LOX makes rice more susceptible to chewing herbivores, but enhances resistance to a phloem feeder. Plant J 60:638–648

    Google Scholar 

  • Zhou G, Wang X, Yan F, Wang X, Li R, Cheng J, Lou Y (2011) Genome-wide transcriptional changes and defence-related chemical profiling of rice in response to infestation by the rice striped stem borer Chilo suppressalis. Physiol Plant 143:21–40

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Emily Wheeler for editorial assistance. The study was jointly sponsored by the National Basic Research Program of China (2010CB126200), the Innovation Research Team Program of the National Natural Science Foundation of China (31021003), the National Program of Transgenic Variety Development of China (2011ZX08001-001), and the China Agriculture Research System (CARS-01-21).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yonggen Lou.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1

Specific probes and primers for QRT-PCR of OsHI-XIP and OsACT. (DOC 31 kb)

Figure S1

Schematic of the expression vector of pCAMBIA-XIP::EGFP (a), pCAMBIA-WAK2::EGFP (b) and pCAMBIA-XIP (c) used for transformation in this study. (DOC 407 kb)

Figure S2

Growth phenotype and DNA gel-blot analysis of three oe-xip lines. (a,b) Growth phenotype of oe-xip lines and WT line at 30-d-old (a) and maturity stage (b). (c) DNA gel-blot analysis of three oe-xip lines (oe-22, oe-23, and oe-24). (DOC 2120 kb)

Figure S3

cDNA and deduced amino acid sequence of a rice XIP gene OsHI-XIP. The start and stop codes are shown in red boxes. (DOC 234 kb)

Figure S4

Mean transcript levels (+ SE, n=5) of OsHI-XIP in rice stems that were treated with 1-aminocyclopropanecarboxylic acid (ACC, a) or H2O2 (b). Transcript levels were analyzed by quantitative RT-PCR. (DOC 91 kb)

Figure S5

JA levels and TrypPI activity in oe-xip lines and WT plants at different times after SSB larvae feeding. (a) Mean levels (+SE, = 5) of JA in stems of oe-xip lines and WT plants when they were individually infested by a third-instar SSB larva for 0, 1.5, and 3 h. (b) Mean levels (+ SE, n=5) of trypsin proteinase inhibitors (TrypPIs) in stems of oe-xip lines and WT line when they were individually infested by a third-instar SSB larva for 3 days (SSB) or kept untreated (Con). (DOC 164 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xin, Z., Wang, Q., Yu, Z. et al. Overexpression of a Xylanase Inhibitor Gene, OsHI-XIP, Enhances Resistance in Rice to Herbivores. Plant Mol Biol Rep 32, 465–475 (2014). https://doi.org/10.1007/s11105-013-0661-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-013-0661-5

Keywords

Navigation