Homogalacturonans and Hemicelluloses in the External Glands of Utricularia dichotoma Traps
<p>External gland distribution and structure. (<b>A</b>) Trap epidermis with external glands (arrows), treated with toluidine blue; the glands absorbed the dye; the bar is 100 µm. (<b>B</b>) The structure of the external gland, terminal cell (Tc), pedestal cell (Pc), and basal cell (Bc); the bar is 10 µm.</p> "> Figure 2
<p>Homogalacturonan distribution in the external gland (intense green color—signal of antibody, blue color—cellulose stained by Calcofluor White), terminal cell (Tc), pedestal cell (Pc), and basal cell (Bc). (<b>A</b>) A section through the external gland, labeled with JIM5; the bar is 10 µm. (<b>B</b>) The same section as in A, labeled with JIM5 and Calcofluor White; the bar is 10 µm. (<b>C</b>) A section through the external gland, labeled with JIM5; the bar is 10 µm. (<b>D</b>) A section through the external gland, labeled with LM19; the bar is 10 µm. (<b>E</b>) The same section as in (<b>D</b>), labeled with LM19 and Calcofluor White; the bar is 10 µm. (<b>F</b>) A section through the external gland, labeled with LM19; the bar is 10 µm. (<b>G</b>) A section through the external gland, labeled with CCRC-M38; the bar is 10 µm. (<b>H</b>) The same section as in (<b>G</b>), labeled with CCRC-M38 and Calcofluor White; the bar is 10 µm. (<b>I</b>) A section through the external gland, labeled with CCRC-M38; the bar is 10 µm.</p> "> Figure 3
<p>Homogalacturonan distribution in the external gland (intense green color—signal of antibody, blue color—cellulose stained by Calcofluor White), terminal cell (Tc), pedestal cell (Pc), and basal cell (Bc). (<b>A</b>) A section through the external gland, labeled with JIM7; the bar is 10 µm. (<b>B</b>) A section through the external gland, labeled with LM5; the bar is 10 µm. (<b>C</b>) A section through the external gland, labeled with LM5; the bar is 10 µm. (<b>D</b>) The same section as in (<b>C</b>), labeled with LM5 and Calcofluor White; the bar is 10 µm.</p> "> Figure 4
<p>Hemicellulose (xyloglucan) distribution in the external gland (intense green color—signal of antibody, blue color—cellulose stained by Calcofluor White), terminal cell (Tc), pedestal cell (Pc), and basal cell (Bc). (<b>A</b>) A section through the external gland, labeled with CCRC-M138; the bar is 10 µm. (<b>B</b>) The same section as in A, labeled with CCRC-M138 and Calcofluor White; the bar is 10 µm. (<b>C</b>) A section through the external gland, labeled with CCRC-M138; the bar is 10 µm. (<b>D</b>) A section through the external gland, labeled with CCRC-M1; the bar is 10 µm. (<b>E</b>,<b>F</b>) A section through the external gland and through the terminal cell, labeled with LM15; the bar is 10 µm.</p> "> Figure 5
<p>Hemicellulose (galactoxyloglucan) distribution in the external gland (intense green color—signal of antibody, blue color—cellulose stained by Calcofluor White), terminal cell (Tc), pedestal cell (Pc), and basal cell (Bc). (<b>A</b>) A section through the external gland, labeled with LM25; the bar is 10 µm. (<b>B</b>) The same section as in A, labeled with LM25 and Calcofluor White; the bar is 10 µm. (<b>C</b>) A section through the external gland, labeled with LM25, noting the cell wall ingrowths in the pedestal cell (arrow); the bar is 10 µm. (<b>D</b>) A section through the external gland, labeled with LM25; the bar is 10 µm.</p> "> Figure 6
<p>Dye staining the external gland, terminal cell (Tc), pedestal cell (Pc), and basal cell (Bc). (<b>A</b>,<b>B</b>) A section through the external gland stained by Carbotrace 680 (red color); the bar is 10 µm. (<b>C</b>) A section through the external gland stained by Calcofluor White (blue color); the bar is 10 µm.</p> ">
Abstract
:1. Introduction
2. Results
2.1. Homogalacturonan Distribution
2.2. Hemicellulose Distribution
2.3. Histochemistry Staining (Dye Staining)
3. Discussion
4. Materials and Methods
4.1. Plant Materials
4.2. Histological and Immunochemical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Luetzelburg, P. Beiträge zur Kenntnis der Utricularien. Flora 1910, 100, 145–212. [Google Scholar] [CrossRef]
- Merl, E.M. Beiträge zur Kenntnis der Utricularien und Genliseen. Flora 1915, 108, 127–200. [Google Scholar]
- Lloyd, F.E. The range of structural and functional variation in the traps of Utricularia. Flora 1931, 25, 260–276. [Google Scholar] [CrossRef]
- Lloyd, F.E. The range of structural and functional variety in the traps of Utricularia and Polypompholyx. Flora 1932, 126, 303–328. [Google Scholar] [CrossRef]
- Lloyd, F.E. The Carnivorous Plants; Chronica Botanica Company: Waltham, MA, USA, 1942. [Google Scholar]
- Taylor, P. The Genus Utricularia: A Taxonomic Monograph; Her Majesty’s Stationery Office: London, UK, 1989; Volume 4, pp. 1–724. [Google Scholar]
- Płachno, B.J.; Adamec, L.; Kamińska, I. Relationship between trap anatomy and function in Australian carnivorous bladderworts (Utricularia) of the subgenus Polypompholyx. Aquat. Bot. 2015, 120, 290–296. [Google Scholar] [CrossRef]
- Hegner, R.W. The interrelations of protozoa and the utricles of Utricularia. Biol. Bull. 1926, 50, 239–270. [Google Scholar] [CrossRef]
- Harms, S. Prey selection in three species of the carnivorous aquatic plant Utricularia (bladderwort). Arch. Hydrobiol. 1999, 146, 449–470. [Google Scholar] [CrossRef]
- Mette, N.; Wilbert, N.; Barthlott, W. Food composition of aquatic bladderworts (Utricularia, Lentibulariaceae) in various habitats. Beitr. Biol. Pflanzen 2000, 72, 1–13. [Google Scholar]
- Seine, R.; Porembski, S.; Balduin, M.; Theisen, I.; Wilbert, N.; Barthlott, W. Different prey strategies of terrestrial and aquatic species in the carnivorous genus Utricularia (Lentibulariaceae). Bot. Jahrb. Syst. 2002, 124, 71–76. [Google Scholar] [CrossRef]
- Gordon, E.; Pacheco, S. Prey composition in the carnivorous plants Utricularia inflata and U. gibba (Lentibulariaceae) from Paria Peninsula, Venezuela. Rev. Biol. Trop. 2007, 55, 795–803. [Google Scholar] [CrossRef]
- Peroutka, M.; Adlassnig, W.; Volgger, M.; Lendl, T.; Url, W.G.; Lichtscheidl, I.K. Utricularia: A vegetarian carnivorous plant? Plant Ecol. 2008, 199, 153–162. [Google Scholar] [CrossRef]
- Płachno, B.J.; Wołowski, K.; Fleischmann, A.; Lowrie, A.; Łukaszek, M. Algae and prey associated with traps of the Australian carnivorous plant Utricularia volubilis (Lentibulariaceae: Utricularia subgenus Polypompholyx) in natural habitat and in cultivation. Aust. J. Bot. 2014, 62, 528–536. [Google Scholar] [CrossRef]
- Koller-Peroutka, M.; Lendl, T.; Watzka, M.; Adlassnig, W. Capture of algae promotes growth and propagation in aquatic Utricularia. Ann. Bot. 2015, 115, 227–236. [Google Scholar] [CrossRef]
- Ceschin, S.; Bellini, A.; Salituro, A.; Traversetti, L.; Ellwood, N.T.W. Is the capture of invertebrate prey by the aquatic carnivorous plant Utricularia australis selective? Plant Biosyst. 2022, 156, 572–580. [Google Scholar] [CrossRef]
- Sydenham, P.H.; Findlay, G.P. Transport of solutes and water by resetting bladders of Utricularia. Aust. J. Plant Physiol. 1975, 2, 335–351. [Google Scholar] [CrossRef]
- Sasago, A.; Sibaoka, T. Water extrusion in the trap bladders of Utricularia vulgaris I: A possible pathway of water across the bladder wall. Bot. Mag. 1985, 98, 55–66. [Google Scholar] [CrossRef]
- Singh, A.K.; Prabhakar, S.P.; Sane, S.P. The biomechanics of fast prey capture in aquatic bladderworts. Biol. Lett. 2011, 7, 547–550. [Google Scholar] [CrossRef]
- Adamec, L.; Poppinga, S. Measurement of the critical negative pressure inside traps of aquatic carnivorous Utricularia species. Aquat. Bot. 2011, 133, 10–16. [Google Scholar] [CrossRef]
- Adamec, L. The smallest but fastest: Ecophysiological characteristics of traps of aquatic carnivorous Utricularia. Plant Signal Behav. 2011, 6, 640–646. [Google Scholar] [CrossRef]
- Vincent, O.; Weißkopf, C.; Poppinga, S.; Masselter, T.; Speck, T.; Joyeux, M.; Quilliet, C.; Marmottant, P. Ultra-fast underwater suction traps. Proc. R. Soc. B Biol. Sci. 2011, 278, 2909–2914. [Google Scholar] [CrossRef]
- Poppinga, S.; Weisskopf, C.; Westermeier, A.S.; Masselter, T.; Speck, T. Fastest predators in the plant kingdom: Functional morphology and biomechanics of suction traps found in the largest genus of carnivorous plants. AoB Plants 2015, 8, plv140. [Google Scholar] [CrossRef] [PubMed]
- Mano, H.; Hasebe, M. Rapid movements in plants. J. Plant Res. 2021, 134, 3–17. [Google Scholar] [CrossRef] [PubMed]
- Poppinga, S.; Daber, L.E.; Westermeier, A.S.; Kruppert, S.; Horstmann, M.; Tollrian, R.; Speck, T. Biomechanical analysis of prey capture in the carnivorous Southern bladderwort (Utricularia australis). Sci. Rep. 2017, 7, 1776. [Google Scholar] [CrossRef] [PubMed]
- Westermeier, A.S.; Fleischmann, A.; Müller, K.; Schäferhoff, B.; Rubach, C.; Speck, T.; Poppinga, C. Trap diversity and character evolution in carnivorous bladderworts (Utricularia, Lentibulariaceae). Sci. Rep. 2017, 7, 12052. [Google Scholar] [CrossRef]
- Reifenrath, K.; Theisen, I.; Schnitzler, J.; Porembski, S.; Barthlott, W. Trap architecture in carnivorous Utricularia (Lentibulariaceae). Flora 2006, 201, 597–605. [Google Scholar] [CrossRef]
- Płachno, B.J.; Świątek, P.; Adamec, L.; Carvalho, S.; Miranda, V.F.O. The Trap Architecture of Utricularia multifida and Utricularia westonii (subg. Polypompholyx). Front. Plant Sci. 2019, 10, 336. [Google Scholar] [CrossRef]
- Adamec, L. The comparison of mechanically stimulated and spontaneous firings in traps of aquatic carnivorous Utricularia species. Aquat. Bot. 2011, 94, 44–49. [Google Scholar] [CrossRef]
- Adamec, L. Functional characteristics of traps of aquatic carnivorous Utricularia species. Aquat. Bot. 2011, 95, 226–233. [Google Scholar]
- Vincent, O.; Marmottant, P. Carnivorous Utricularia: The buckling scenario. Plant Signal. Behav. 2011, 6, 1752–1754. [Google Scholar] [CrossRef]
- Vincent, O.; Roditchev, I.; Marmottant, P. Spontaneous firings of carnivorous aquatic Utricularia traps: Temporal patterns and mechanical oscillations. PLoS ONE 2011, 6, e20205. [Google Scholar] [CrossRef]
- Sydenham, P.H.; Findlay, G.P. The rapid movement of the bladder of Utricularia sp. Aust. J. biol. Sci. 1973, 26, 1115–1126. [Google Scholar] [CrossRef]
- Kruck, M. Physiologische und zytologische Studien über die Utricularia blase. Bot. Arch. 1931, 33, 251–399. [Google Scholar]
- Nold, R.H. Die Funktion der Blase von Utricularia vulgaris (Ein Beitrag zur Elektrophysiologie der Drüsenfunktion). Beih. Bot. Cent. 1934, 52, 415–448. [Google Scholar]
- Fineran, B.A.; Lee, M.S.L. Organization of mature external glands on the trap and other organs of the bladderwort Utricularia monanthos. Protoplasma 1980, 103, 17–34. [Google Scholar] [CrossRef]
- Fineran, B.A. Glandular trichomes in Utricularia: A review of their structure and function. Isr. J. Bot. 1985, 34, 295–330. [Google Scholar]
- Fineran, B.A. Ontogeny of external glands in the bladderwort Utricularia monanthos. Protoplasma 1980, 105, 9–25. [Google Scholar] [CrossRef]
- Płachno, B.J.; Kapusta, M.; Stolarczyk, P.; Feldo, M.; Świątek, P. Cell Wall Microdomains in the External Glands of Utricularia dichotoma Traps. Int. J. Mol. Sci. 2024, 25, 6089. [Google Scholar] [CrossRef]
- Cheema, G.K.; Vijayaraghavan, M.R.; Kaur, I. A developmental and histochemical study of the bladder of Utricularia stellaris. Aquat. Bot. 1992, 43, 267–281. [Google Scholar] [CrossRef]
- Lin, S.; Miao, Y.; Huang, H.; Zhang, Y.; Huang, L.; Cao, J. Arabinogalactan Proteins: Focus on the Role in Cellulose Synthesis and Deposition during Plant Cell Wall Biogenesis. Int. J. Mol. Sci. 2022, 23, 6578. [Google Scholar] [CrossRef]
- Griffiths, J.S.; North, H.M. Sticking to cellulose: Exploiting Arabidopsis seed coat mucilage to understand cellulose biosynthesis and cell wall polysaccharide interactions. New Phytol. 2017, 21, 959–966. [Google Scholar] [CrossRef]
- Chanliaud, E.; Burrows, K.M.; Jeronimidis, G.; Gidley, M.J. Mechanical properties of primary plant cell wall analogues. Planta 2002, 215, 989–996. [Google Scholar] [CrossRef] [PubMed]
- Braybrook, S.A.; Jönsson, H. Shifting foundations: The mechanical cell wall and development. Curr. Opin. Plant Biol. 2016, 29, 115–120. [Google Scholar] [CrossRef] [PubMed]
- Scheller, H.V.; Ulvskov, P. Hemicelluloses. Ann. Rev. Plant Biol. 2010, 61, 263–289. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://www.ebbabiotech.com/collections/carbotrace (accessed on 1 August 2024).
- Petrova, A.; Gorshkova, T.; LKozlova, L. Gradients of Cell Wall Nano-Mechanical Properties Along and Across Elongating Primary Roots of Maize. J. Exp. Bot. 2020, 72, 1764–1781. [Google Scholar] [CrossRef] [PubMed]
- Petrova, A.; Sibgatullina, G.; Gorshkova, T.; Kozlova, L. Dynamics of cell wall polysaccharides during the elongation growth of rye primary roots. Planta 2022, 255, 108. [Google Scholar] [CrossRef]
- Zitzmann, F.L.; Ward, E.; Matharu, A.S. Use of Carbotrace 480 as a Probe for Cellulose and Hydrogel Formation from Defibrillated Microalgae. Gels 2022, 8, 383. [Google Scholar] [CrossRef]
- Płachno, B.J.; Kapusta, M.; Stolarczyk, P.; Świątek, P.; Strzemski, M.; Miranda, V.F.O. Immunocytochemical analysis of the wall ingrowths in the digestive gland transfer cells in Aldrovanda vesiculosa L. (Droseraceae). Cells 2022, 11, 2218. [Google Scholar] [CrossRef]
- Płachno, B.J.; Kapusta, M.; Stolarczyk, P.; Wójciak, M.; Świątek, P. Immunocytochemical analysis of bifid trichomes in Aldrovanda vesiculosa L. Traps. Int. J. Mol. Sci. 2023, 24, 3358. [Google Scholar] [CrossRef]
- Płachno, B.J.; Kapusta, M.; Stolarczyk, P.; Świątek, P. Arabinogalactan proteins in the digestive glands of Dionaea muscipula J. Ellis Traps. Cells 2022, 11, 586. [Google Scholar] [CrossRef]
- Płachno, B.J.; Kapusta, M.; Stolarczyk, P.; Świątek, P. Stellate trichomes in Dionaea muscipula Ellis (Venus Flytrap) Traps, Structure and Functions. Int. J. Mol. Sci. 2023, 24, 553. [Google Scholar] [CrossRef]
- Płachno, B.J.; Kapusta, M.; Stolarczyk, P.; Świątek, P.; Lichtscheidl, I. Differences in the Occurrence of Cell Wall Components between Distinct Cell Types in Glands of Drosophyllum lusitanicum. Int. J. Mol. Sci. 2023, 24, 15045. [Google Scholar] [CrossRef] [PubMed]
- Kordyum, E.; Mosyakin, S.; Ivanenko, G.; Ovcharenko, Y.; Brykov, V. Hydropotes of young and mature leaves in Nuphar lutea and Nymphaea alba (Nymphaeaceae): Formation, functions and phylogeny. Aquat. Bot. 2021, 169, 103342. [Google Scholar] [CrossRef]
- Jobson, R.W.; Baleeiro, P.C. Radiations of fairy-aprons (Utricularia dichotoma, Lentibulariaceae) in Australia and New Zealand: Molecular evidence and proposal of new subspecies. Aust. Syst. Bot. 2020, 33, 278–310. [Google Scholar] [CrossRef]
- Paul Knox, PhD, University of Leeds. Available online: https://www.kerafast.com/cat/799/paul-knox-phd (accessed on 13 November 2023).
- Knox, J.P.; Day, S.; Roberts, K. A set of cell surface glycoproteins forms an early marker of cell position, but not cell type, in the root apical meristem of Daucus carota L. Development 1989, 106, 47–56. [Google Scholar] [CrossRef]
- Verhertbruggen, Y.; Marcus, S.E.; Haeger, A.; Ordaz-Ortiz, J.J.; Knox, J.P. An extended set of monoclonal antibodies to pectic homogalacturonan. Carbohydr. Res. 2009, 28, 1858–1862. [Google Scholar] [CrossRef]
- Pattathil, S.; Avci, U.; Baldwin, D.; Swennes, A.G.; McGill, J.A.; Popper, Z.; Bootten, T.; Albert, A.; Davis, R.H.; Chennareddy, C.; et al. A comprehensive toolkit of plant cell wall glycan-directed monoclonal antibodies. Plant Physiol. 2010, 153, 514–525. [Google Scholar] [CrossRef]
- McCartney, L.; Marcus, S.E.; Knox, J.P. Monoclonal antibodies to plant cell wall xylans and arabinoxylans. J. Histochem. Cytochem. 2005, 53, 543–546. [Google Scholar] [CrossRef]
- Marcus, S.E.; Verhertbruggen, Y.; Hervé, C.; Ordaz-Ortiz, J.J.; Farkas, V.; Pedersen, H.L.; Willats, W.G.; Knox, J.P. Pectic homogalacturonan masks abundant sets of xyloglucan epitopes in plant cell walls. BMC Plant Biol. 2008, 22, 60. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Płachno, B.J.; Kapusta, M.; Feldo, M.; Świątek, P. Homogalacturonans and Hemicelluloses in the External Glands of Utricularia dichotoma Traps. Int. J. Mol. Sci. 2024, 25, 13124. https://doi.org/10.3390/ijms252313124
Płachno BJ, Kapusta M, Feldo M, Świątek P. Homogalacturonans and Hemicelluloses in the External Glands of Utricularia dichotoma Traps. International Journal of Molecular Sciences. 2024; 25(23):13124. https://doi.org/10.3390/ijms252313124
Chicago/Turabian StylePłachno, Bartosz J., Małgorzata Kapusta, Marcin Feldo, and Piotr Świątek. 2024. "Homogalacturonans and Hemicelluloses in the External Glands of Utricularia dichotoma Traps" International Journal of Molecular Sciences 25, no. 23: 13124. https://doi.org/10.3390/ijms252313124
APA StylePłachno, B. J., Kapusta, M., Feldo, M., & Świątek, P. (2024). Homogalacturonans and Hemicelluloses in the External Glands of Utricularia dichotoma Traps. International Journal of Molecular Sciences, 25(23), 13124. https://doi.org/10.3390/ijms252313124