Stellate Trichomes in Dionaea muscipula Ellis (Venus Flytrap) Traps, Structure and Functions
<p>Distribution and morphology of the stellate trichomes of the <span class="html-italic">Dionaea muscipula</span> traps (<b>A</b>) <span class="html-italic">D. muscipula</span> plant. (<b>B</b>) Leaf morphology; trap petiole (tp), trap lobe (tl), bar 1 cm. (<b>C</b>) Stellate trichomes (arrow) on a young, non-opened trap surface, bar 250 µm. (<b>D</b>) Stellate trichomes (arrow) on a young, non-opened trap surface, bar 300 µm (scanning electron microscopy—SEM). (<b>E</b>) Stellate trichomes (arrow) on the external surface of a mature trap; note that that stellate trichomes have collapsed outer head cells, bar 300 µm (SEM). (<b>F</b>) Secretion on the surface of a stellate trichome from a young trap, bar 30 µm (SEM). (<b>G</b>) Positive result of the PAS reaction of the secretion between the trap lobes (star), stellate trichome (arrow), and bar 20 µm (light microscopy). (<b>H</b>) Section of a young, non-opened trap; note the secretion between the trap lobes (star) and stellate trichomes (arrow) on the marginal teeth (th), bar 25 µm.</p> "> Figure 2
<p>Structure of the stellate trichomes of the <span class="html-italic">Dionaea muscipula</span> traps. (<b>A</b>,<b>B</b>) A semi-thin section of a stellate trichome; outer head cell (Hc), internal head cell (star), stalk cell (Sc), basal cell (Bc) and an ordinary epidermal cell (Ep), bar 20 µm. (<b>C</b>) Section of a stellate trichome; autofluorescence of the cell walls, nuclei that had been treated with DAPI; note the strong autofluorescence of the cutinized cell walls (arrow), bar 20 µm. (<b>D</b>) Morphology of a stellate trichomes from a young trap, bar 50 µm. (<b>E</b>) Stellate trichomes with variable numbers of outer head cells from a young trap, bar 100 µm.</p> "> Figure 3
<p>Development and structure of the stellate trichomes of the <span class="html-italic">Dionaea muscipula</span> traps. (<b>A</b>) The two-celled stage of a trichome, basal cell (Bc) and apical cell (Ac), bar 300 nm (transmission electron microscopy-TEM). (<b>B</b>) Various stages in the development of stellate trichomes (arrows), bar 20 µm (light microscopy). (<b>C</b>,<b>D</b>) Ultrastructure of a stalk cell (Sc) and internal head cell (star); cell wall ingrowths (arrows), plasmodesma (red circle), and oleosome (O), bars 1000 nm each (TEM). (<b>E</b>) Ultrastructure of an outer head cell (Hc) and internal head cell (star), bar 100 nm. (<b>F</b>,<b>G</b>) A part of a section of an outer head cell; dictyosomes (D), vacuole (V), osmiophilic material (Os), cuticle (c) and cell wall (cw), bars 800 nm and 400 nm, respectively (TEM). (<b>H</b>) Ultrastructure of outer head cells; note the plasmodesma (red circle), bar 900 nm, (TEM). (<b>I</b>) Outer head cells, note the degenerating outer head cells (DC), bar 2000 nm, (TEM).</p> "> Figure 4
<p>AGPs detected in the stellate trichomes of the <span class="html-italic">Dionaea muscipula</span> traps. (<b>A</b>) AGPs (labeled with JIM14) that were detected in the young trichomes, bar 20 µm. (<b>B</b>) Schematic occurrence (green) of the AGPs (labeled with JIM14) that were detected in a young trichome. (<b>C</b>) AGPs (labeled with JIM14) that were detected in a mature trichome, bar 20 µm. (<b>D</b>) Schematic occurrence (green) of the AGPs (labeled with JIM14) that were detected in a mature trichome. (<b>E</b>) AGPs (labeled with JIM8) that were detected in a young trichomes, bar 20 µm. (<b>F</b>) Schematic occurrence (green) of the AGPs (labeled with JIM18) that were detected in a young trichome. (<b>G</b>) AGPs (labeled with JIM8) that were detected in a mature trichome, bar 20 µm. (<b>H</b>) Schematic occurrence (green) of the AGPs (labeled with JIM8) that were detected in a mature trichome. (<b>I</b>) AGPs (labeled with JIM13) that were detected in a young trichomes, bar 20 µm. (<b>J</b>) Schematic occurrence (green color) of the AGPs (labeled with JIM13) that were detected in a young trichome. (<b>K</b>) AGPs (labeled with JIM13) that were detected in a mature trichome, bar 20 µm. (<b>L</b>) Schematic occurrence (green) of the AGPs (labeled with JIM13) that were detected in a mature trichome.</p> "> Figure 5
<p>HGs that were detected in the stellate trichomes of the <span class="html-italic">Dionaea muscipula</span> traps. (<b>A</b>) HG (labeled with JIM5) that was detected in a young trichome, bar 20 µm. (<b>B</b>) Schematic occurrence (green) of the HG (labeled with JIM5) that was detected in a young trichome. (<b>C</b>) HG (labeled with JIM5) that was detected in a mature trichome (arrow), bar 20 µm. (<b>D</b>) Schematic occurrence (green) of the HG (labeled with JIM5) that was detected in a mature trichome. (<b>E</b>) HG (labeled with LM19) that was detected in the young trichomes, bar 20 µm. (<b>F</b>) Schematic occurrence (green) of the HG (labeled with LM19) that was detected in a young trichome. (<b>G</b>) HG (labeled with LM19) that was detected in a mature trichome (arrow), bar 20 µm. (<b>H</b>) Schematic occurrence (green) of the HG (labeled with LM19) that was detected in a mature trichome. (<b>I</b>) HG (labeled with JIM7) that was detected in a young trichome, bar 20 µm. (<b>J</b>) Schematic occurrence (green) of the HG (labeled with JIM7) that was detected in a young trichome. (<b>K</b>) HG (labeled with JIM7) that was detected in a mature trichome (arrow), bar 20 µm. (<b>L</b>) Schematic occurrence (green) of the HG (labeled with JIM7) that was detected in a mature trichome. (<b>M</b>) HG (labeled with LM5) that was detected in a young trichome, bar 20 µm. (<b>N</b>) Schematic occurrence (green) of the HG (labeled with LM5) that was detected in a young trichome. (<b>O</b>) HG (labeled with LM5) that was detected in a young trichome (on the right) and a mature trichome (on the left, arrow), bar 20 µm. (<b>P</b>) Schematic occurrence (green) of the HG (labeled with LM5) that was detected in a mature trichome.</p> "> Figure 6
<p>Xyloglucan that was detected in the stellate trichomes of the <span class="html-italic">Dionaea muscipula</span> traps. (<b>A</b>) Xyloglucan (labeled with LM15) that was detected in the young trichomes, bar 20 µm. (<b>B</b>) Schematic occurrence (green) of the xyloglucan (labeled with LM15) that was detected in a young trichome. (<b>C</b>) Xyloglucan (labeled with LM15) that was detected in a mature trichome, bar 20 µm. (<b>D</b>) Schematic occurrence (green) of the arabinogalactan proteins (labeled with LM15) that were detected in a mature trichome. (<b>E</b>) Xyloglucan (labeled with LM25) that was detected in the young trichomes, bar 20 µm. (<b>F</b>) Schematic occurrence (green) of the xyloglucan (labeled with LM25) that were detected in a young trichome. (<b>G</b>) Xyloglucan (labeled with LM25) that was detected in a mature trichome, bar 20 µm. (<b>H</b>) Schematic occurrence (green) of the xyloglucan (labeled with LM25) that was detected in a mature trichome.</p> ">
Abstract
:1. Introduction
2. Results
2.1. Trichome Structure
2.2. AGP Distribution
2.3. Homogalacturonan Distribution
2.4. Hemicellulose Distribution
2.5. Cell Viability Test
3. Discussion
4. Materials and Methods
4.1. Plant Material
4.2. Histological and Immunochemical Analysis
4.3. Morphological Observations
4.4. Head Cell Viability Test
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Król, E.; Płachno, B.J.; Adamec, L.; Stolarz, M.; Dziubińska, H.; Trebacz, K. Quite a few reasons for calling carnivores ‘the most wonderful plants in the world’. Ann Bot. 2012, 109, 47–64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Freund, M.; Graus, D.; Fleischmann, A.; Gilbert, K.J.; Lin, Q.; Renner, T.; Stigloher, C.; Albert, V.A.; Hedrich, R.; Fukushima, K. The digestive systems of carnivorous plants. Plant Physiol. 2022, 190, 44–59. [Google Scholar] [CrossRef] [PubMed]
- Adlassnig, W.; Koller-Peroutka, M.; Bauer, S.; Koshkin, E.; Lendl, T.; Lichtscheidl, I.K. Endocytotic uptake of nutrients in carnivorous plants. Plant J. 2012, 71, 303–313. [Google Scholar] [CrossRef] [PubMed]
- Scherzer, S.; Shabala, L.; Hedrich, B.; Fromm, J.; Bauer, H.; Munz, E.; Jakob, P.; Al-Rascheid, K.A.S.; Kreuzer, I.; Becker, D.; et al. Insect haptoelectrical stimulation of Venus flytrap triggers exocytosis in gland cells. Proc. Natl. Acad. Sci. USA 2017, 114, 4822–4827. [Google Scholar] [CrossRef] [Green Version]
- Gergely, Z.R.; Martinez, D.E.; Donohoe, B.S.; Mogelsvang, S.; Herder, R.; Staehelin, L.A. 3D electron tomographic and biochemical analysis of ER, Golgi and trans Golgi network membrane systems in stimulated Venus flytrap (Dionaea muscipula) glandular cells. J. Biol. Res.-Thessalon. 2018, 25, 15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boulogne, C.; Gillet, C.; Hughes, L.; Bars, R.L.E.; Canette, A.; Hawes, C.R.; Satiat-Jeunemaitre, B. Functional organisation of the endomembrane network in the digestive gland of the Venus flytrap: Revisiting an old story with a new microscopy toolbox. J. Microsc. 2020, 28, 86–103. [Google Scholar] [CrossRef] [PubMed]
- Lichtscheidl, I.; Lancelle, S.; Weidinger, M.; Adlassnig, W.; Koller-Peroutka, M.; Bauer, S.; Krammer, S.; Hepler, P.K. Gland cell responses to feeding in Drosera capensis, a carnivorous plant. Protoplasma 2021, 258, 1291–1306. [Google Scholar] [CrossRef]
- Fenner, C.A. Beiträge zur Kenntnis der Anatomie, Entwicklungsgeschichte und Biologie des Laubblätter und Drüsen einiger Insektivoren. Flora 1904, 93, 335–434. [Google Scholar]
- Lloyd, F.E. The Carnivorous Plants; Chronica Botanica Company: Waltham, MA, USA, 1942. [Google Scholar]
- Juniper, B.E.; Robbins, R.J.; Joel, D.M. The Carnivorous Plants; Academic Press: London, UK, 1989. [Google Scholar]
- Vogel, S. Remarkable nectaries: Structure, ecology, organophyletic perspectives II Nectarioles. Flora 1998, 193, 1–29. [Google Scholar] [CrossRef]
- Fineran, B.A.; Lee, M.S.L. Organization of mature external glands on the trap and other organs of the bladderwort Utricularia monanthos. Protoplasma 1980, 103, 17–34. [Google Scholar] [CrossRef]
- Fineran, B.A. Ontogeny of external glands in the bladderwort Utricularia monanthos. Protoplasma 1980, 105, 9–25. [Google Scholar] [CrossRef]
- Dipalma, J.R.; Micheal, R.; Dipalma, M. Touch Receptor of Venus Flytrap. Dionaea Muscipula. Sci. 1966, 152, 539–540. [Google Scholar]
- Stanescu, I.; Toma, C.; Gostin, I. Cyto-histological aspects in the modified leaf of Dionaea muscipula Ellis. Rom. J. Biol. Plant Biol. 2009, 53, 3–10. [Google Scholar]
- Hedrich, R.; Neher, E. Venus flytrap: How an excitable, carnivorous plant works. Trends. Plant Sci. 2018, 23, 220–234. [Google Scholar] [CrossRef] [PubMed]
- Palfalvi, G.; Hackl, T.; Terhoeven, N.; Shibata, T.F.; Nishiyama, T.; Ankenbrand, M.; Becker, D.; Förster, F.; Freund, M.; Iosip, A.; et al. Genomes of the Venus Flytrap and close relatives unveil the roots of plant carnivory. Curr. Biol. 2020, 30, 2312–2320. [Google Scholar] [CrossRef]
- Hedrich, R.; Fukushima, K. On the origin of carnivory: Molecular physiology and evolution of plants on an animal diet. Ann. Rev. Plant Biol. 2021, 72, 133–153. [Google Scholar] [CrossRef] [PubMed]
- Adamec, L.; Matušíková, I.; Pavlovič, A. Recent ecophysiological, biochemical and evolutional insights into plant carnivory. Ann. Bot. 2021, 128, 241–259. [Google Scholar] [CrossRef]
- Scherzer, S.; Böhm, J.; Huang, S.; Iosip, A.; Kreuzer, I.; Becker, D.; Heckmann, M.; Al-Rasheid, K.A.S.; Dreyer, I.; Hedrich, R. A unique inventory of ion transporters poises the Venus flytrap to fast-propagating action potentials and calcium waves. Curr. Biol. 2022, 32, 4255–4263.e5. [Google Scholar] [CrossRef]
- Scherzer, S.; Huang, S.; Iosip, A.; Kreuzer, I.; Becker, D.; Heckmann, M.; Al-Rasheid, K.A.S.; Dreyer, I.; Hedrich, R. Ether anesthetics prevents touch-induced trigger hair calcium-electrical signals excite the Venus flytrap. Sci. Rep. 2022, 12, 2851. [Google Scholar] [CrossRef]
- Scala, J.; Schwab, D.; Simmons, E. The fine structure of the digestive gland of Venus’s-flytrap. Am. J. Bot. 1968, l55, 649–657. [Google Scholar] [CrossRef]
- Robins, R.J.; Juniper, B.E. The secretory cycle of Dionaea muscipula Ellis, I. The fine structure and the effect of stimulation on the fine structure of the digestive gland cells. New Phytol. 1980, 86, 279–296. [Google Scholar] [CrossRef]
- Płachno, B.J.; Kapusta, M.; Stolarczyk, P.; Świątek, P.; Strzemski, M.; Miranda, V.F.O. Immunocytochemical analysis of the wall ingrowths in the digestive gland transfer cells in Aldrovanda vesiculosa L. (Droseraceae). Cells 2022, 11, 2218. [Google Scholar] [CrossRef] [PubMed]
- Płachno, B.J.; Kapusta, M.; Stolarczyk, P.; Świątek, P. Arabinogalactan proteins in the digestive glands of Dionaea muscipula J. Ellis Traps. Cells 2022, 11, 586. [Google Scholar] [CrossRef] [PubMed]
- Naidoo, Y.; Heneidak, S. Morphological investigation of glandular hairs on Drosera capensis leaves with an ultrastructural study of the sessile glands. Botany 2013, 91, 234–241. [Google Scholar] [CrossRef]
- Fineran, B.A.; Lee, M.S.L. Transfer cells in traps of the carnivorous plant Utricularia monanthos. J. Ultrastruct. Res. 1974, 48, 162–166. [Google Scholar] [CrossRef]
- Fineran, B.A.; Lee, M.S.L. Organization of quadrifid and bifid hairs in the trap of Utricularia monanthos. Protoplasma 1975, 84, 43–70. [Google Scholar] [CrossRef]
- Płachno, B.J.; Świątek, P.; Adamec, L.; Carvalho, S.; Miranda, V.F.O. The trap architecture of Utricularia multifida and Utricularia westonii (subg. Polypompholyx). Front. Plant. Sci. 2019, 10, 336. [Google Scholar] [CrossRef] [Green Version]
- Muravnik, L.E.; Vassilyev, A.E.; Potapova, Y.Y. Ultrastructural aspects of digestive gland functioning in Aldrovanda vesiculosa. Russ. J. Plant Physiol. 1995, 42, 5–13. [Google Scholar]
- Heslop-Harrison, Y.; Heslop-Harrison, J. The digestive glands of Pinguicula: Structure and cytochemistry. Ann. Bot. 1981, 47, 293–319. [Google Scholar] [CrossRef]
- Atsuzawa, K.; Kanaizumi, D.; Ajisaka, M.; Kamada, T.; Sakamoto, K.; Matsushima, H.; Kaneko, Y. Fine structure of Aldrovanda vesiculosa L: The peculiar lifestyle of an aquatic carnivorous plant elucidated by electron microscopy using cryo-techniques. Microscopy 2020, 69, 214–226. [Google Scholar] [CrossRef]
- Płachno, B.J.; Kozieradzka-Kiszkurno, M.; Świątek, P. Functional ultrastructure of Genlisea (Lentibulariaceae) digestive hairs. Ann. Bot. 2007, 100, 195–203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gunning, B.E.S.; Pate, J.S. Transfer cells. In Dynamic Aspects of Plant Ultrastructure; Robardsm, A.W., Ed.; McGraw-Hill: London, UK, 1974; pp. 441–476. [Google Scholar]
- .Offler, C.E.; McCurdy, D.W.; Patrick, J.W.; Talbot, M.J. Transfer Cells: Cells Specialized for a Special Purpose. Annu. Rev. Plant Biol. 2003, 54, 431–454. [Google Scholar] [CrossRef] [PubMed]
- Offler, C.E.; Patrick, J.W. Transfer cells: What regulates the development of their intricate wall labyrinths? New Phytol. 2020, 228, 427–444. [Google Scholar] [CrossRef] [PubMed]
- Těšitel, J.; Tesařová, M. Ultrastructure of hydathode trichomes of hemiparasitic Rhinanthus alectorolophus and Odontites vernus: How important is their role in physiology and evolution of parasitism in Orobanchaceae? Plant Biol. 2012, 15, 119–125. [Google Scholar] [CrossRef] [PubMed]
- Tozin, L.R.S.; Rodrigues, T.M. Revisiting hydropotes of Nymphaeaceae: Ultrastructural features associated with glandular functions. Acta Bot. Brasil. 2020, 34, 31–39. [Google Scholar] [CrossRef]
- Kordyum, E.; Mosyakin, S.; Ivanenko, G.; Ovcharenko, Y.; Brykov, V. Hydropotes of young and mature leaves in Nuphar lutea and Nymphaea alba (Nymphaeaceae): Formation, functions and phylogeny. Aquat. Bot. 2021, 169, 103342. [Google Scholar] [CrossRef]
- Bemm, F.; Becker, D.; Larisch, C.; Kreuzer, I.; Escalante-Perez, M.; Schulze, W.X.; Ankenbrand, M.; Van de Weyer, A.L.; Krol, E.; Al-Rasheid, K.A.; et al. Venus flytrap carnivorous lifestyle builds on herbivore defense strategies. Genome Res. 2016, 26, 812–825. [Google Scholar] [CrossRef] [Green Version]
- Muravnik, L.E. The Structural Peculiarities of the Leaf Glandular Trichomes: A Review. In Plant Cell and Tissue Differentiation and Secondary Metabolites; Reference Series in Phytochemistry; Ramawat, K.G., Ekiert, H.M., Goyal, S., Eds.; Springer: Berlin/Heidelberg, Germany, 2020. [Google Scholar]
- Rahman-Soad, A.; Dávila-Lara, A.; Paetz, C.; Mithöfer, A. Plumbagin, a potent naphthoquinone from Nepenthes plants with growth inhibiting and larvicidal activities. Molecules 2021, 26, 825. [Google Scholar] [CrossRef]
- Dávila-Lara, A.; Rahman-Soad, A.; Reichelt, M.; Mithöfer, A. Carnivorous Nepenthes x ventrata plants use a naphthoquinone as phytoanticipin against herbivory. PLoS ONE 2021, 16, e0258235. [Google Scholar] [CrossRef]
- Smith, C.M. Development of Dionaea muscipula. II. Germination of seed and development of seedling to maturity. Bot. Gaz. 1931, 91, 377–394. [Google Scholar] [CrossRef]
- Seifert, G.J.; Roberts, K. The biology of arabinogalactan proteins. Ann. Rev. Plant Biol. 2007, 58, 137–161. [Google Scholar] [CrossRef] [PubMed]
- Vaughn, K.C.; Talbot, M.J.; Offler, C.E.; Mc Curdy, D.W. Wall ingrowths in epidermal transfer cells of Vicia faba cotyledons are modified primary walls marked by localized accumulations of arabinogalactan proteins. Plant Cell Physiol. 2007, 48, 159–168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dahiya, P.; Brewin, N.J. Immunogold localization of callose and other cell wall components in pea nodule transfer cells. Protoplasma 2000, 214, 210–218. [Google Scholar] [CrossRef]
- Ligrone, R.; Vaughn, K.C.; Rascio, N. A cytochemical and immunocytochemical analysis of the wall labyrinth apparatus in leaf transfer cells in Elodea canadensis. Ann. Bot. 2011, 107, 717–722. [Google Scholar] [CrossRef]
- Henry, J.S.; Lopez, R.A.; Renzaglia, K.S. Differential localization of cell wall polymers across generations in the placenta of Marchantia polymorpha. J. Plant Res. 2020, 133, 911–924. [Google Scholar] [CrossRef]
- Henry, J.S.; Renzaglia, K.S. The placenta of Physcomitrium patens: Transfer cell wall polymers compared across the three bryophyte groups. Diversity 2021, 13, 378. [Google Scholar] [CrossRef]
- Henry, J.S.; Ligrone, R.; Vaughn, K.C.; Lopez, R.A.; Renzaglia, K.S. Cell wall polymers in the Phaeoceros placenta reflect developmental and functional differences across generations. Bryophyt. Divers. Evol. 2021, 43, 265–283. [Google Scholar] [CrossRef]
- McCartney, L.; Ormerod, A.; Gidley, M.; Knox, J.P. Temporal and spatial regulation of pectic (1 → 4)-β-D galactan in cell walls of developing pea cotyledons: Implication for mechanical properties. Plant J. 2000, 22, 105–113. [Google Scholar] [CrossRef]
- McCartney, L.; Steele-King, C.G.; Jordan, E.; Knox, J.P. Cell wall pectin (1–4) β-D-galactan marks the acceleration of cell elongation in the Arabidopsis seedling root meristem. Plant J. 2003, 33, 447–454. [Google Scholar] [CrossRef]
- Marcus, S.E.; Verhertbruggen, Y.; Hervé, C.; Ordaz-Ortiz, J.J.; Farkas, V.; Pedersen, H.L.; Willats, W.G.; Knox, J.P. Pectic homogalacturonan masks abundant sets of xyloglucan epitopes in plant cell walls. BMC Plant Biol. 2008, 8, 60. [Google Scholar] [CrossRef] [Green Version]
- Ridley, M.A.; O’Neill, D.; Mohnen. Pectins: Structure, biosynthesis, and oligogalacturonide-related signaling. Phytochemistry 2001, 57, 929–967. [Google Scholar] [CrossRef] [PubMed]
- Braybrook, S.A.; Hofte, H.; Peaucelle, A. Probing the mechanical contributions of the pectin matrix: Insights for cell growth. Plant Signal. Behav. 2012, 7, 1037–1041. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Knox, J.P.; Day, S.; Roberts, K. A set of cell surface glycoproteins forms an early position, but not cell type, in the root apical meristem of Daucus carota L. Development 1989, 106, 47–56. [Google Scholar] [CrossRef]
- Pennell, R.I.; Knox, J.P.; Scofield, G.N.; Selvendran, R.R.; Roberts, K. A family of abundant plasma membrane-associated glycoproteins related to the arabinogalactan proteins is unique to flowering plants. J. Cell Biol. 1989, 108, 1967–1977. [Google Scholar] [CrossRef]
- Pennell, R.I.; Janniche, L.; Kjellbom, P.; Scofield, G.N.; Peart, J.M.; Roberts, K. Developmental regulation of a plasma membrane arabinogalactan protein epitope in oilseed rape flowers. Plant Cell 1991, 3, 1317–1326. [Google Scholar] [CrossRef]
- Knox, J.P.; Linstead, P.J.; Cooper, J.P.C.; Roberts, K. Developmentally regulated epitopes of cell surface arabinogalactan proteins and their relation to root tissue pattern formation. Plant J. 1991, 1, 317–326. [Google Scholar] [CrossRef]
- Verhertbruggen, Y.; Marcus, S.E.; Haeger, A.; Ordaz-Ortiz, J.J.; Knox, J.P. An extended set of monoclonal antibodies to pectic homogalacturonan. Carbohydr. Res. 2009, 344, 1858–1862. [Google Scholar] [CrossRef]
- McCartney, L.; Marcus, S.E.; Knox, J.P. Monoclonal antibodies to plant cell wall xylans and arabinoxylans. J. Histochem. Cytochem. 2005, 53, 543–546. [Google Scholar] [CrossRef]
- Humphrey, C.; Pittman, G. A simple methylene blue-azure II-basic fuchsin for epoxy-embedded tissue sections. Stain. Technol. 1974, 49, 9–14. [Google Scholar] [CrossRef]
- Wędzony, M. Fluorescence Microscopy for Botanists; Department of Plant Physiology Monographs 5: Kraków, Poland, 1996. (In Polish) [Google Scholar]
- Jensen, W.A. Botanical Histochemistry–Principles and Practice; W. H. Freeman and Company: Berkeley, CA, USA, 1962. [Google Scholar]
- Mazia, D.; Brewer, P.A.; Alfert, M. The cytochemical staining and measurement of protein with mercuric bromophenol blue. Biol. Bull. 1953, 104, 57–67. [Google Scholar] [CrossRef]
- Reynolds, E.S. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J. Cell Biol. 1963, 17, 208–212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lustofin, K.; Świątek, P.; Stolarczyk, P.; Miranda, V.F.O.; Płachno, B.J. Do food trichomes occur in Pinguicula (Lentibulariaceae) flowers? Ann. Bot. 2020, 126, 1039–1048. [Google Scholar] [CrossRef] [PubMed]
- Jones, K.; Kim, D.W.; Park, J.S.; Kang, C.H. Live-cell fluorescence imaging to investigate the dynamics of plant cell death during infection by the rice blast fungus Magnaporthe oryzae. BMC Plant Biol. 2016, 16, 69. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Płachno, B.J.; Kapusta, M.; Stolarczyk, P.; Świątek, P. Stellate Trichomes in Dionaea muscipula Ellis (Venus Flytrap) Traps, Structure and Functions. Int. J. Mol. Sci. 2023, 24, 553. https://doi.org/10.3390/ijms24010553
Płachno BJ, Kapusta M, Stolarczyk P, Świątek P. Stellate Trichomes in Dionaea muscipula Ellis (Venus Flytrap) Traps, Structure and Functions. International Journal of Molecular Sciences. 2023; 24(1):553. https://doi.org/10.3390/ijms24010553
Chicago/Turabian StylePłachno, Bartosz J., Małgorzata Kapusta, Piotr Stolarczyk, and Piotr Świątek. 2023. "Stellate Trichomes in Dionaea muscipula Ellis (Venus Flytrap) Traps, Structure and Functions" International Journal of Molecular Sciences 24, no. 1: 553. https://doi.org/10.3390/ijms24010553
APA StylePłachno, B. J., Kapusta, M., Stolarczyk, P., & Świątek, P. (2023). Stellate Trichomes in Dionaea muscipula Ellis (Venus Flytrap) Traps, Structure and Functions. International Journal of Molecular Sciences, 24(1), 553. https://doi.org/10.3390/ijms24010553