Association of Genetic Variants at the CDKN1B and CCND2 Loci Encoding p27Kip1 and Cyclin D2 Cell Cycle Regulators with Susceptibility and Clinical Course of Chronic Lymphocytic Leukemia
<p>Cumulative probability of progression to a higher Rai stage, lymph node and organ progression, and treatment-free survival in CLL patients stratified according to the <span class="html-italic">CDKN1B</span> and <span class="html-italic">CCND2</span> gene polymorphisms. (<b>a</b>–<b>c</b>): Cumulative probability of progression to a higher Rai stage-free survival in CLL patients divided according to the genetic variants of the <span class="html-italic">CDKN1B</span>rs36228499 (<b>a</b>) and <span class="html-italic">CDKN1B</span>rs2066827 (<b>b</b>) polymorphic sites as well as the <span class="html-italic">CCND2</span>rs3217901 polymorphic locus (<b>c</b>). (<b>d</b>,<b>e</b>): Cumulative probability of lymph node-free survival in CLL patients stratified according to the genetic variants of the <span class="html-italic">CDKN1B</span>rs34330 (<b>d</b>) and <span class="html-italic">CCND2</span>rs3217810 (<b>e</b>) polymorphic sites. (<b>f</b>): Cumulative probability of treatment-free survival in CLL patients divided according to the genetic variants of the <span class="html-italic">CCND2</span>rs3217810 polymorphic locus. The <span class="html-italic">p</span>-value was obtained using the log rank test.</p> "> Figure 2
<p>Association between genetic variants of the <span class="html-italic">CDKN1B</span>rs36228499 polymorphic locus and cyclin D2 expression in CLL patients. (<b>a</b>,<b>d</b>) The graphs show the mean fluorescence intensity (MFI) of cyclin D2 protein in PB CD19+CD5+ (<b>a</b>) and CD3+ (<b>d</b>) cells in A− and A+ carriers of the <span class="html-italic">CDKN1B</span>rs36228499 polymorphic site. The horizontal lines represent the median values. Differences between studied groups were evaluated using the Mann–Whitney U test. (**) signifies a statistically significant difference <span class="html-italic">p</span> < 0.01. (<b>b</b>,<b>c</b>,<b>e</b>,<b>f</b>): Cytometric analysis of cyclin D2 protein expression in CLL patients divided according to the genetic variants of the <span class="html-italic">CDKN1B</span>rs36228499 polymorphic locus. Histograms show cytometric analysis of cyclin D2 expression in PB CD19+CD5+ (<b>b</b>,<b>c</b>) and CD3+ (<b>e</b>,<b>f</b>) cells co-expressing cyclin D2 protein in A− and A+ carriers. PBMCs were gated using FSC/SSC profiles followed by gating on CD19+CD5+ (<b>b</b>,<b>c</b>) or CD3+ (<b>e</b>,<b>f</b>) to identify CD19+CD5+ and CD3+ cells for further analysis of cyclin D2 protein expression in PB CD19+CD5+ and CD3+ cells. Black line curves show cyclin D2-fluorescence of cells within PB CD19+CD5+ and CD3+ cells. Gray areas represent the isotype controls. The numbers located on the histograms represent the cyclin D2-dependent signal intensity (MFI).</p> ">
Abstract
:1. Introduction
2. Results
2.1. Patient Characteristics
2.2. CDKN1B and CCND2 Polymorphism Distribution and Susceptibility to CLL
2.3. CDKN1B and CCND2 Gene Polymorphisms and CLL Outcome
2.4. Functional Significance of CDKN1B and CCND2 Genetic Variants in CLL
3. Discussion
4. Materials and Methods
4.1. Patients
4.2. Genotyping Studies
4.2.1. CDKN1B and CCND2 Polymorphism Selection
4.2.2. DNA Extraction and Genotyping
4.3. Cytofluorometry Study
4.3.1. PBMC Isolation
4.3.2. Immunostaining of p27Kip1 Protein and Cyclin D2 and Flow Cytometric Analysis
4.3.3. Determination of Apoptosis (Assessed as Mitochondrial Membrane Potential [ΔΨm Low] Changes)
4.4. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rai, K.R.; Jain, P. Chronic lymphocytic leukemia (CLL)-Then and now. Am. J. Hematol. 2016, 91, 330–340. [Google Scholar] [CrossRef] [PubMed]
- Cerhan, J.R.; Slager, S.L. Familial predisposition and genetic risk factors for lymphoma. Blood 2015, 126, 2265–2273. [Google Scholar] [CrossRef] [PubMed]
- Hallek, M. Chronic lymphocytic leukemia: 2015 Update on diagnosis, risk stratification, and treatment. Am. J. Hematol. 2015, 90, 446–460. [Google Scholar] [CrossRef] [PubMed]
- Herishanu, Y.; Polliack, A. Chronic lymphocytic leukemia: A review of some new aspects of the biology, factors influencing prognosis and therapeutic options. Transfus. Apher. Sci. 2005, 32, 85–97. [Google Scholar] [CrossRef] [PubMed]
- Abbott, B.L. Chronic Lymphocytic Leukemia: Recent Advances in Diagnosis and Treatment. Oncologist 2006, 11, 21–30. [Google Scholar] [CrossRef]
- Chiorazzi, N.; Ferrarini, M. Evolving View of the in-Vivo Kinetics of Chronic Lymphocytic Leukemia B Cells. Hematology. Am. Soc. Hematol. Educ. Program. 2006, 512, 273–278. [Google Scholar] [CrossRef]
- Messmer, B.T.; Messmer, D.; Allen, S.L.; Kolitz, J.E.; Kudalkar, P.; Cesar, D.; Murphy, E.J.; Koduru, P.; Ferrarini, M.; Zupo, S.; et al. In vivo measurements document the dynamic cellular kinetics of chronic lymphocytic leukemia B cells. J. Clin. Investig. 2005, 115, 755–764. [Google Scholar] [CrossRef]
- Chiorazzi, N. Cell proliferation and death: Forgotten features of chronic lymphocytic leukemia B cells. Best. Pract. Res. Clin. Haematol. 2007, 20, 399–413. [Google Scholar] [CrossRef]
- Hamblin, T.J.; Oscier, D.G. Chronic lymphocytic leukaemia: The nature of the leukaemic cell. Blood Rev. 1997, 11, 119–128. [Google Scholar] [CrossRef]
- Zenz, T.; Dohner, H.; Stilgenbauer, S. Genetics and risk-stratified approach to therapy in chronic lymphocytic leukemia. Best. Pract. Res. Clin. Haematol. 2007, 20, 439–453. [Google Scholar] [CrossRef]
- Hamblin, T.J.; Davis, Z.; Gardiner, A.; Oscier, D.G.; Stevenson, F.K. Unmutated Ig V(H) Genes Are Associated with a More Aggressive Form of Chronic Lymphocytic Leukemia. Blood 1999, 94, 1848–1854. [Google Scholar] [CrossRef] [PubMed]
- Rossi, D.; Khiabanian, H.; Spina, V.; Ciardullo, C.; Bruscaggin, A.; Fama, R.; Rasi, S.; Monti, S.; Deambrogi, C.; De Paoli, L.; et al. Clinical impact of small TP53 mutated subclones in chronic lymphocytic leukemia. Blood 2014, 123, 2139–2147. [Google Scholar] [CrossRef] [PubMed]
- Zenz, T.; Eichhorst, B.; Busch, R.; Denzel, T.; Habe, S.; Winkler, D.; Buhler, A.; Edelmann, J.; Bergmann, M.; Hopfinger, G.; et al. TP53 Mutation and Survival in Chronic Lymphocytic Leukemia. J. Clin. Oncol. 2010, 28, 4473–4479. [Google Scholar] [CrossRef] [PubMed]
- Baliakas, P.; Hadzidimitriou, A.; Sutton, L.A.; Rossi, D.; Minga, E.; Villamor, N.; Larrayoz, M.; Kminkova, J.; Agathangelidis, A.; Davis, Z.; et al. Recurrent mutations refine prognosis in chronic lymphocytic leukemia. Leukemia 2015, 29, 329–336. [Google Scholar] [CrossRef]
- Rossi, D.; Rasi, S.; Fabbri, G.; Spina, V.; Fangazio, M.; Forconi, F.; Marasca, R.; Laurenti, L.; Bruscaggin, A.; Cerri, M.; et al. Mutations of NOTCH1 are an independent predictor of survival in chronic lymphocytic leukemia. Blood 2012, 119, 521–529. [Google Scholar] [CrossRef]
- Rossi, D.; Rasi, S.; Spina, V.; Bruscaggin, A.; Monti, S.; Ciardullo, C.; Deambrogi, C.; Khiabanian, H.; Serra, R.; Bertoni, F.; et al. Integrated mutational and cytogenetic analysis identifies new prognostic subgroups in chronic lymphocytic leukemia. Blood 2013, 121, 1403–1412. [Google Scholar] [CrossRef]
- Rossi, D.; Fangazio, M.; Rasi, S.; Vaisitti, T.; Monti, S.; Cresta, S.; Chiaretti, S.; Del Giudice, I.; Fabbri, G.; Bruscaggin, A.; et al. Disruption of BIRC3 associates with fludarabine chemorefractoriness in TP53 wild-type chronic lymphocytic leukemia. Blood 2012, 119, 2854–2862. [Google Scholar] [CrossRef]
- Rossi, D.; Bruscaggin, A.; Spina, V.; Rasi, S.; Khiabanian, H.; Messina, M.; Fangazio, M.; Vaisitti, T.; Monti, S.; Chiaretti, S.; et al. Mutations of the SF3B1 splicing factor in chronic lymphocytic leukemia: Association with progression and fludarabine-refractoriness. Blood 2011, 118, 6904–6908. [Google Scholar] [CrossRef]
- Dohner, H.; Stilgenbauer, S.; Benner, A.; Leupolt, E.; Krober, A.; Bullinger, L.; Dohner, K.; Bentz, M.; Lichter, P. Genomic Aberrations And Survival In Chronic Lymphocytic Leukemia. N. Engl. J. Med. 2000, 343, 1910–1916. [Google Scholar] [CrossRef]
- Damle, R.N.; Wasil, T.; Fais, F.; Ghiotto, F.; Valetto, A.; Allen, S.L.; Buchbinder, A.; Budman, D.; Dittmar, K.; Kolitz, J.; et al. Ig V Gene Mutation Status and CD38 Expression as Novel Prognostic Indicators in Chronic Lymphocytic Leukemia. Blood 1999, 94, 1840–1847. [Google Scholar] [CrossRef]
- Crespo, M.; Bosch, F.; Villamor, N.; Bellosillo, B.; Colomer, D.; Rozman, M.; Marce, S.; Lopez-Guillermo, A.; Campo, E.; Montserrat, E. ZAP-70 Expression as a Surrogate for Immunoglobulin-Variable-Region Mutations in Chronic Lymphocytic Leukemia. N. Engl. J. Med. 2003, 348, 1764–1775. [Google Scholar] [CrossRef]
- Bulian, P.; Shanafelt, T.D.; Fegan, C.; Zucchetto, A.; Cro, L.; Nuckel, H.; Baldini, L.; Kurtova, A.V.; Ferrajoli, A.; Burger, J.A.; et al. CD49d Is the Strongest Flow Cytometry-Based Predictor of Overall Survival in Chronic Lymphocytic Leukemia. J. Clin. Oncol. 2014, 32, 897–904. [Google Scholar] [CrossRef] [PubMed]
- Hallek, M.; Wanders, L.; Ostwald, M.; Busch, R.; Senekowitsch, R.; Stern, S.; Schick, H.D.; Kuhn-Hallek, I.; Emmerich, B. Serum Beta(2)-Microglobulin and Serum Thymidine Kinase are Independent Predictors of Progression-Free Survival in Chronic Lymphocytic Leukemia and Immunocytoma. Leuk. Lymphoma 1996, 22, 439–447. [Google Scholar] [CrossRef] [PubMed]
- Burger, J.A.; Quiroga, M.P.; Hartmann, E.; Burkle, A.; Wierda, W.G.; Keating, M.J.; Rosenwald, A. High-level expression of the T-cell chemokines CCL3 and CCL4 by chronic lymphocytic leukemia B cells in nurselike cell cocultures and after BCR stimulation. Blood 2009, 113, 3050–3058. [Google Scholar] [CrossRef] [PubMed]
- Sivina, M.; Hartmann, E.; Kipps, T.J.; Rassenti, L.; Krupnik, D.; Lerner, S.; LaPushin, R.; Xiao, L.; Huang, X.; Werner, L.; et al. CCL3 (MIP-1α) plasma levels and the risk for disease progression in chronic lymphocytic leukemia. Blood 2011, 117, 1662–1669. [Google Scholar] [CrossRef] [PubMed]
- Caraballo, J.M.; Acosta, J.C.; Cortes, M.A.; Albajar, M.; Gomez-Casares, M.T.; Batlle-Lopez, A.; Cuadrado, M.A.; Onaindia, A.; Bretones, G.; Llorca, J.; et al. High p27 protein levels in chronic lymphocytic leukemia are associated to low Myc and Skp2 expression, confer resistance to apoptosis and antagonize Myc effects on cell cycle. Oncotarget 2014, 5, 4694–4708. [Google Scholar] [CrossRef]
- Ciszak, L.; Frydecka, I.; Wolowiec, D.; Szteblich, A.; Kosmaczewska, A. CTLA-4 affects expression of key cell cycle regulators of G0/G1 phase in neoplastic lymphocytes from patients with chronic lymphocytic leukaemia. Clin. Exp. Med. 2016, 16, 317–332. [Google Scholar] [CrossRef]
- Vrhovac, R.; Delmer, A.; Tang, R.; Marie, J.P.; Zittoun, R.; Ajchenbaum-Cymbalista, F. Prognostic Significance of the Cell Cycle Inhibitor p27Kip1 in Chronic B-Cell Lymphocytic Leukemia. Blood 1998, 91, 4694–4700. [Google Scholar] [CrossRef]
- Wolowiec, D.; Ciszak, L.; Kosmaczewska, A.; Bocko, D.; Teodorowska, R.; Frydecka, I.; Kuliczkowski, K. Cell cycle regulatory proteins and apoptosis in B-cell chronic lymphocytic leukemia. Haematologica 2001, 86, 1296–1304. [Google Scholar]
- Wolowiec, D.; Wojtowicz, M.; Ciszak, L.; Kosmaczewska, A.; Frydecka, I.; Potoczek, S.; Urbaniak-Kujda, D.; Kapelko-Slowik, K.; Kuliczkowski, K. High intracellular content of cyclin-dependent kinase inhibitor p27Kip1 in early- and intermediate stage B-cell chronic lymphocytic leukemia lymphocytes predicts rapid progression of the disease. Eur. J. Haematol. 2009, 82, 260–266. [Google Scholar] [CrossRef]
- Antosz, H.P.; Paterski, A.; Marzec-Kotarska, B.; Sajewicz, B.; Dmoszynska, A. Alterations in TP53, cyclin D2, c-Myc, p21WAF1/CIP1 and p27KIP1 expression associated with progression in B-CLL. Folia Histochem. Cytobiol. 2010, 48, 534–541. [Google Scholar]
- Koff, A.; Polyak, K. p27KIP1, an inhibitor of cyclin-dependent kinases. Prog. Cell Cycle Res. 1995, 1, 141–147. [Google Scholar] [PubMed]
- Sherr, C.J.; Roberts, J.M. Inhibitors of mammalian G1 cyclin-dependent kinases. Genes Dev. 1995, 9, 1149–1163. [Google Scholar] [CrossRef] [PubMed]
- Sherr, C.J. Mammalian G1 cyclins and cell cycle progression. Proc. Assoc. Am. Physicians 1995, 107, 181–186. [Google Scholar] [PubMed]
- Sherr, C.J. Cell cycle control and cancer. Harvey Lect. 2000, 96, 73–92. [Google Scholar]
- Abbastabar, M.; Kheyrollah, M.; Azizian, K.; Bagherlou, N.; Tehrani, S.S.; Maniati, M.; Karimian, A. Multiple functions of p27 in cell cycle, apoptosis, epigenetic modification and transcriptional regulation for the control of cell growth: A double-edged sword protein. DNA Repair 2018, 69, 63–72. [Google Scholar] [CrossRef]
- Bachs, O.; Gallastegui, E.; Orlando, S.; Bigas, A.; Morante-Redolat, J.M.; Serratosa, J.; Farinas, I.; Aligue, R.; Pujol, M.J. Role of p27Kip1 as a transcriptional regulator. Oncotarget 2018, 9, 26259–26278. [Google Scholar] [CrossRef]
- Sharma, S.S.; Pledger, W.J. The non-canonical functions of p27Kip1 in normal and tumor biology. Cell Cycle 2016, 15, 1189–1201. [Google Scholar] [CrossRef]
- Delmer, A.; Ajchenbaum-Cymbalista, F.; Tang, R.; Ramond, S.; Faussat, A.M.; Marie, J.P.; Zittoun, R. Overexpression of Cyclin D2 in Chronic B-Cell Malignancies. Blood 1995, 85, 2870–2876. [Google Scholar] [CrossRef]
- Kosmaczewska, A.; Ciszak, L.; Suwalska, K.; Wolowiec, D.; Frydecka, I. CTLA-4 overexpression in CD19+/CD5+ cells correlates with the level of cell cycle regulators and disease progression in B-CLL patients. Leukemia 2005, 19, 301–304. [Google Scholar] [CrossRef]
- Kosmaczewska, A.; Ciszak, L.; Szteblich, A.; Laba, A.; Wojtowicz, M.; Wolowiec, D.; Frydecka, I. Is Cyclin D2 a Marker of B-CLL Cell Activation? Oncol. Res. 2009, 18, 127–131. [Google Scholar] [CrossRef] [PubMed]
- Solvason, N.; Wu, W.W.; Parry, D.; Mahony, D.; Lam, E.W.; Glassford, J.; Klaus, G.G.; Sicinski, P.; Weinberg, R.; Liu, Y.J.; et al. Cyclin D2 is essential for BCR-mediated proliferation and CD5 B cell development. Int. Immunol. 2000, 12, 631–638. [Google Scholar] [CrossRef] [PubMed]
- Decker, T.; Schneller, F.; Hipp, S.; Miething, C.; Jahn, T.; Duyster, J.; Peschel, C. Cell cycle progression of chronic lymphocytic leukemia cells is controlled by cyclin D2, cyclin D3, cyclin-dependent kinase (cdk) 4 and the cdk inhibitor p27. Leukemia 2002, 16, 327–334. [Google Scholar] [CrossRef] [PubMed]
- Canbay, E.; Eraltan, I.Y.; Cercel, A.; Isbir, T.; Gazioglu, E.; Aydogan, F.; Cacina, C.; Cengiz, A.; Ferahman, M.; Zengin, E.; et al. CCND1 and CDKN1B Polymorphisms and Risk of Breast Cancer. Anticancer Res. 2010, 30, 3093–3098. [Google Scholar] [PubMed]
- Chen, J.; Killary, A.M.; Sen, S.; Amos, C.I.; Evans, D.B.; Abbruzzese, J.L.; Frazier, M.L. Polymorphisms of p21 and p27 jointly contribute to an earlier age at diagnosis of pancreatic cancer. Cancer Lett. 2008, 272, 32–39. [Google Scholar] [CrossRef]
- Kibel, A.S.; Suarez, B.K.; Belani, J.; Oh, J.; Webster, R.; Brophy-Ebbers, M.; Guo, C.; Catalona, W.J.; Picus, J.; Goodfellow, P.J. CDKN1A and CDKN1B polymorphisms and risk of advanced prostate carcinoma. Cancer Res. 2003, 63, 2033–2036. [Google Scholar]
- Landa, I.; Montero-Conde, C.; Malanga, D.; De Gisi, S.; Pita, G.; Leandro-Garcia, L.J.; Inglada-Perez, L.; Leton, R.; De Marco, C.; Rodriguez-Antona, C.; et al. Allelic variant at -79 (C > T) in CDKN1B (p27Kip1) confers an increased risk of thyroid cancer and alters mRNA levels. Endocr. Relat. Cancer 2010, 17, 317–328. [Google Scholar] [CrossRef]
- Li, G.; Sturgis, E.M.; Wang, L.E.; Chamberlain, R.M.; Spitz, M.R.; El-Naggar, A.K.; Hong, W.K.; Wei, Q. Association between the V109G Polymorphism of the p27 Gene and the Risk and Progression of Oral Squamous Cell Carcinoma. Clin. Cancer Res. 2004, 10, 3996–4002. [Google Scholar] [CrossRef]
- Pasquali, D.; Circelli, L.; Faggiano, A.; Pancione, M.; Renzullo, A.; Elisei, R.; Romei, C.; Accardo, G.; Coppola, V.R.; De Palma, M.; et al. CDKN1B V109G polymorphism a new prognostic factor in sporadic medullary thyroid carcinoma. Eur. J. Endocrinol. 2011, 164, 397–404. [Google Scholar] [CrossRef]
- Schondorf, T.; Eisele, L.; Gohring, U.J.; Valter, M.M.; Warm, M.; Mallmann, P.; Becker, M.; Fechteler, R.; Weisshaar, M.P.; Hoopmann, M. The V109G Polymorphism of the p27 Gene CDKN1B Indicates a Worse Outcome in Node-Negative Breast Cancer Patients. Tumour. Biol. 2004, 25, 306–312. [Google Scholar] [CrossRef]
- Wang, W.; Spitz, M.R.; Yang, H.; Lu, C.; Stewart, D.J.; Wu, X. Genetic Variants in Cell Cycle Control Pathway Confer Susceptibility to Lung Cancer. Clin. Cancer Res. 2007, 13, 5974–5981. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Sturgis, E.M.; Zhang, F.; Lei, D.; Liu, Z.; Xu, L.; Song, X.; Wei, Q.; Li, G. Genetic variants of p27 and p21 as predictors for risk of second primary malignancy in patients with index squamous cell carcinoma of head and neck. Mol. Cancer 2012, 11, 17. [Google Scholar] [CrossRef] [PubMed]
- Wei, F.; Xu, J.; Tang, L.; Shao, J.; Wang, Y.; Chen, L.; Guan, X. p27Kip1 V109G Polymorphism and Cancer Risk: A Systematic Review and Meta-Analysis. Cancer Biother. Radiopharm. 2012, 27, 665–671. [Google Scholar] [CrossRef] [PubMed]
- Xiang, H.; Li, H.; Ge, W.; Wu, W.; Gao, M.; Wang, W.; Hong, L.; Jiang, D.; Zhang, C. Association of CDKN1B gene polymorphisms with susceptibility to breast cancer: A meta-analysis. Mol. Biol. Rep. 2013, 40, 6371–6377. [Google Scholar] [CrossRef] [PubMed]
- Tomoda, K.; Kubota, Y.; Kato, J. Degradation of the cyclin-dependent-kinase inhibitor p27Kip1 is instigated by Jab1. Nature 1999, 398, 160–165. [Google Scholar] [CrossRef]
- Alvizo-Rodriguez, C.R.; Flores-Lopez, B.A.; Ayala-Madrigal, M.L.; Partida-Perez, M.; Macias-Gomez, N.M.; Peregrina-Sandoval, J.; Suarez-Villanueva, A.S.; Moreno-Ortiz, J.M.; Cervantes-Ortiz, S.; Maciel-Gutierre, V.M.; et al. Interaction of CCND2, CDKN1A, and POLD3 Variants in Mexican Patients with Colorectal Cancer. Turk. J. Gastroenterol. 2022, 33, 525–531. [Google Scholar] [CrossRef]
- Elwafa, R.A.H.A.; Bordiny, M.E.; Salama, M.; Fawzy, A.; Omar, O.M. Cyclin D2 gene variance and expression level in pediatric acute lymphoblastic leukemia. Pediatr. Blood Cancer 2023, 70, e30678. [Google Scholar] [CrossRef]
- Murali, A.; Nalinakumari, K.R.; Thomas, S.; Kannan, S. Association of Single Nucleotide Polymorphisms in Cell Cycle Regulatory Genes with Oral Cancer Susceptibility. Br. J. Oral Maxillofac. Surg. 2014, 52, 652–658. [Google Scholar] [CrossRef]
- Peters, U.; Jiao, S.; Schumacher, F.R.; Hutter, C.M.; Aragaki, A.K.; Baron, J.A.; Berndt, S.I.; Bezieau, S.; Brenner, H.; Butterbach, K.; et al. Identification of Genetic Susceptibility Loci for Colorectal Tumors in a Genome-Wide Meta-Analysis. Gastroenterology 2013, 144, 799–807. [Google Scholar] [CrossRef]
- Tomoda, T.; Nouso, K.; Sakai, A.; Ouchida, M.; Kobayashi, S.; Miyahara, K.; Onishi, H.; Nakamura, S.; Yamamoto, K.; Shimizu, K. Genetic risk of hepatocellular carcinoma in patients with hepatitis C virus: A case control study. J. Gastroenterol. Hepatol. 2012, 27, 797–804. [Google Scholar] [CrossRef]
- Zhang, H.; Zhou, Y.; Rui, Y.; Wang, Y.; Li, J.; Rong, L.; Wang, M.; Tong, N.; Zhang, Z.; Chen, J.; et al. Association between the Polymorphism rs3217927 of CCND2 and the Risk of Childhood Acute Lymphoblastic Leukemia in a Chinese Population. PLoS ONE 2014, 9, e95059. [Google Scholar] [CrossRef] [PubMed]
- Bojarska-Junak, A.; Hus, I.; Olszewska-Bozek, K.; Chocholska, S.; Wasik-Szczepanek, E.; Tomczak, W.; Milczak, J.; Dmoszynska, A.; Rolinski, J. Analysis of ex vivo Apoptosis of B and T Cells from Peripheral Blood and Bone Marrow of Patients with Chronic Lymphocytic Leukemia. Acta Haematol. Polym. 2012, 43, 336–341. [Google Scholar] [CrossRef]
- Chen, J.; Li, D.; Killary, A.M.; Sen, S.; Amos, C.I.; Evans, D.B.; Abbruzzese, J.L.; Frazier, M.L. Polymorphisms of p16, p27, p73, and MDM2 Modulate Response and Survival of Pancreatic Cancer Patients Treated with Preoperative Chemoradiation. Ann. Surg. Oncol. 2009, 16, 431–439. [Google Scholar] [CrossRef] [PubMed]
- Conte, M.S.; Owens, C.D.; Belkin, M.; Creager, M.A.; Edwards, K.L.; Gasper, W.J.; Kenagy, R.D.; LeBoeuf, R.C.; Sobel, M.; Clowes, A. A single nucleotide polymorphism in the p27Kip1 gene is associated with primary patency of lower extremity vein bypass grafts. J. Vasc. Surg. 2013, 57, 1179–1185. [Google Scholar] [CrossRef]
- Figueiredo, J.C.; Knight, J.A.; Cho, S.; Savas, S.; Onay, U.V.; Briollais, L.; Goodwin, P.J.; McLaughlin, J.R.; Andrulis, I.L.; Ozcelik, H. Polymorphisms cMyc-N11S and p27-V109G and breast cancer risk and prognosis. BMC Cancer 2007, 7, 99. [Google Scholar] [CrossRef]
- Gayther, S.A.; Song, H.; Ramus, S.J.; Kjaer, S.K.; Whittemore, A.S.; Quaye, L.; Tyrer, J.; Shadforth, D.; Hogdall, E.; Hogdall, C.; et al. Tagging Single Nucleotide Polymorphisms in Cell Cycle Control Genes and Susceptibility to Invasive Epithelial Ovarian Cancer. Cancer Res. 2007, 67, 3027–3035. [Google Scholar] [CrossRef]
- Jin, X.; Kang, S.; Wang, N.; Xing, Y.P.; Li, Y. Single nucleotide polymorphisms in cell cycle regulator p21 and p27 genes are associated with susceptibility to epithelial ovarian cancer. Zhonghua Fu Chan Ke Za Zhi 2008, 43, 209–212. [Google Scholar]
- Kenagy, R.D.; Kikuchi, S.; Chen, L.; Wijelath, E.S.; Stergachis, A.B.; Stamatoyannopoulos, J.; Tang, G.L.; Clowes, A.W.; Sobel, M. A Single Nucleotide Polymorphism of Cyclin-Dependent Kinase Inhibitor 1B p27Kip1 Associated with Human Vein Graft Failure Affects Growth of Human Venous Adventitial Cells but not Smooth Muscle Cells. J. Vasc. Surg. 2018, 67, 309–317. [Google Scholar] [CrossRef]
- van Tiel, C.M.; Bonta, P.I.; Rittersma, S.Z.; Beijk, M.A.; Bradley, E.J.; Klous, A.M.; Koch, K.T.; Baas, F.; Jukema, J.W.; Pons, D.; et al. p27kip1 − 838C > A Single Nucleotide Polymorphism Is Associated with Restenosis Risk After Coronary Stenting and Modulates p27kip1 Promoter Activity. Circulation 2009, 120, 669–676. [Google Scholar] [CrossRef]
- Damle, R.N.; Calissano, C.; Chiorazzi, N. Chronic lymphocytic leukaemia: A disease of activated monoclonal B cells. Best. Pract. Res. Clin. Haematol. 2010, 23, 33–45. [Google Scholar] [CrossRef]
- Cai, H.; Xiang, Y.B.; Qu, S.; Long, J.; Cai, Q.; Gao, J.; Zheng, W.; Shu, X.O. Association of Genetic Polymorphisms in Cell-Cycle Control Genes and Susceptibility to Endometrial Cancer Among Chinese Women. Am. J. Epidemiol. 2011, 173, 1263–1271. [Google Scholar] [CrossRef] [PubMed]
- Capasso, M.; McDaniel, L.D.; Cimmino, F.; Cirino, A.; Formicola, D.; Russell, M.R.; Raman, P.; Cole, K.A.; Diskin, S.J. The functional variant rs34330 of CDKN1B is associated with risk of neuroblastoma. J. Cell Mol. Med. 2017, 21, 3224–3230. [Google Scholar] [CrossRef] [PubMed]
- Mao, X.; Liang, S.B.; Hurren, R.; Gronda, M.; Chow, S.; Xu, G.W.; Wang, X.; Beheshti, Z.R.; Jamal, N.; Messner, H.; et al. Cyproheptadine displays preclinical activity in myeloma and leukemia. Blood 2008, 112, 760–769. [Google Scholar] [CrossRef] [PubMed]
- Arnau-Collell, C.; Soares de Lima, Y.; Diaz-Gay, M.; Munoz, J.; Carballal, S.; Bonjoch, L.; Moreira, L.; Lozano, J.J.; Ocana, T.; Cuatrecasas, M.; et al. Colorectal cancer genetic variants are also associated with serrated polyposis syndrome susceptibility. J. Med. Genet. 2020, 57, 677–682. [Google Scholar] [CrossRef] [PubMed]
- Driver, K.E.; Song, H.; Lesueur, F.; Ahmed, S.; Barbosa-Morais, N.L.; Tyrer, J.P.; Ponder, B.A.; Easton, D.F.; Pharoah, P.D.; Dunning, A.M. Association of single-nucleotide polymorphisms in the cell cycle genes with breast cancer in the British population. Carcinogenesis 2008, 29, 333–341. [Google Scholar] [CrossRef]
- Ma, H.; Jin, G.; Hu, Z.; Zhai, X.; Chen, W.; Wang, S.; Wang, X.; Qin, J.; Gao, J.; Liu, J.; et al. Variant genotypes of CDKN1A and CDKN1B are associated with an increased risk of breast cancer in Chinese women. Int. J. Cancer 2006, 119, 2173–2178. [Google Scholar] [CrossRef]
- Whiffin, N.; Hosking, F.J.; Farrington, S.M.; Palles, C.; Dobbins, S.E.; Zgaga, L.; Lloyd, A.; Kinnersley, B.; Gorman, M.; Tenesa, A.; et al. Identification of susceptibility loci for colorectal cancer in a genome-wide meta-analysis. Hum. Mol. Genet. 2014, 23, 4729–4737. [Google Scholar] [CrossRef]
- Song, H.; Hogdall, E.; Ramus, S.J.; Dicioccio, R.A.; Hogdall, C.; Quaye, L.; McGuire, V.; Whittemore, A.S.; Shah, M.; Greenberg, D.; et al. Effects of Common Germ-Line Genetic Variation in Cell Cycle Genes on Ovarian Cancer Survival. Clin. Cancer Res. 2008, 14, 1090–1095. [Google Scholar] [CrossRef]
- Chen, J.; Amos, C.I.; Merriman, K.W.; Wei, Q.; Sen, S.; Killary, A.M.; Frazier, M.L. Genetic variants of p21 and p27 and pancreatic cancer risk in non-Hispanic whites: A case-control study. Pancreas 2010, 39, 1–4. [Google Scholar] [CrossRef]
- Huang, S.P.; Yu, C.C.; Liu, C.C.; Wu, T.T.; Huang, C.H.; Wu, M.T. CDKN1B V109G Polymorphism Frequency and Prostate Cancer Risk in Taiwan. Urol. Int. 2008, 81, 36–40. [Google Scholar] [CrossRef]
- Jia, Z.M.; Liu, Y.; Cui, S.Y. Lack of association between cyclin-dependent kinase inhibitor 1B rs2066827 polymorphism and breast cancer susceptibility. Tumour. Biol. 2014, 35, 5527–5531. [Google Scholar] [CrossRef] [PubMed]
- Ma, H.; Chen, J.; Pan, S.; Dai, J.; Jin, G.; Hu, Z.; Shen, H.; Shu, Y. Potentially functional polymorphisms in cell cycle genes and the survival of non-small cell lung cancer in a Chinese population. Lung Cancer 2011, 73, 32–37. [Google Scholar] [CrossRef] [PubMed]
- Ye, Y.; Yang, H.; Grossman, H.B.; Dinney, C.; Wu, X.; Gu, J. Genetic Variants in Cell Cycle Control Pathway Confer Susceptibility to Bladder Cancer. Cancer 2008, 112, 2467–2474. [Google Scholar] [CrossRef] [PubMed]
- Fukazawa, T.; Yanagawa, T.; Kikuchi, S.; Yabe, I.; Sasaki, H.; Hamada, T.; Miyasaka, K.; Gomi, K.; Tashiro, K. CTLA-4 gene polymorphism may modulate disease in Japanese multiple sclerosis patients. J. Neurol. Sci. 1999, 171, 49–55. [Google Scholar] [CrossRef] [PubMed]
- Karabon, L.; Kosmaczewska, A.; Bilinska, M.; Pawlak, E.; Ciszak, L.; Jedynak, A.; Jonkisz, A.; Noga, L.; Pokryszko-Dragan, A.; Koszewicz, M.; et al. The CTLA-4 gene polymorphisms are associated with CTLA-4 protein expression levels in multiple sclerosis patients and with susceptibility to disease. Immunology 2009, 128, e787–e796. [Google Scholar] [CrossRef]
- Thompson, C.M.; Hocking, A.M.; Honari, S.; Muffley, L.A.; Ga, M.; Gibran, N.S. Genetic Risk Factors for Hypertrophic Scar Development. J. Burn Care Res. 2013, 34, 477–482. [Google Scholar] [CrossRef]
- Yu, G.P.; Xiao, Q.Y.; Shi, Z.Q.; Tang, L.S.; Ma, X.P.; Zhang, L.Y.; Chen, H.T.; Wang, W.J.; Zhang, P.Y.; Ding, D.L.; et al. Genetic polymorphisms in apoptosis-related genes and the prognosis of hepatocellular carcinoma. Am. J. Cancer Res. 2015, 5, 3249–3259. [Google Scholar]
- Ricciardi, M.R.; Petrucci, M.T.; Gregorj, C.; Ariola, C.; Lemoli, R.M.; Fogli, M.; Mauro, F.R.; Cerretti, R.; Foa, R.; Mandelli, F.; et al. Reduced susceptibility to apoptosis correlates with kinetic quiescence in disease progression of chronic lymphocytic leukaemia. Br. J. Haematol. 2001, 113, 391–399. [Google Scholar] [CrossRef]
- Kiaii, S.; Kokhaei, P.; Mozaffari, F.; Rossmann, E.; Pak, F.; Moshfegh, A.; Palma, M.; Hansson, L.; Mashayekhi, K.; Hojjat-Farsangi, M.; et al. T cells from indolent CLL patients prevent apoptosis of leukemic B cells in vitro and have altered gene expression profile. Cancer Immunol. Immunother. 2013, 62, 51–63. [Google Scholar] [CrossRef]
- Xu, Z.; Kaplan, N.L.; Taylor, J.A. TAGster: Efficient Selection of LD Tag SNPs in Single or Multiple Populations. Bioinformatics 2007, 23, 3254–3255. [Google Scholar] [CrossRef]
- Koressaar, T.; Remm, M. Enhancements and modifications of primer design program Primer3. Bioinformatics 2007, 23, 1289–1291. [Google Scholar] [CrossRef] [PubMed]
- Untergasser, A.; Cutcutache, I.; Koressaar, T.; Ye, J.; Faircloth, B.C.; Remm, M.; Rozen, S.G. Primer3—New capabilities and interfaces. Nucleic Acids Res. 2012, 40, e115. [Google Scholar] [CrossRef] [PubMed]
- Gong, J.; Bhatia, U.; Traganos, F.; Darzynkiewicz, Z. Expression of cyclins A, D2 and D3 in individual normal mitogen stimulated lymphocytes and in MOLT-4 leukemic cells analyzed by multiparameter flow cytometry. Leukemia 1995, 9, 893–899. [Google Scholar] [PubMed]
- Ly, J.D.; Grubb, D.R.; Lawen, A. The mitochondrial membrane potential (∆ψm) in apoptosis; an update. Apoptosis 2003, 8, 115–128. [Google Scholar] [CrossRef]
Parameters | CLL Patients (n = 47) | Frequency (%) |
---|---|---|
Age in years | 72. 8 ± 9.46 | |
Gender | ||
Female | 21 | 44.7 |
Male | 26 | 55.3 |
Rai stage | ||
0 | 22 | 46.8 |
1 | 8 | 17.0 |
2 | 3 | 6.4 |
3 | 2 | 4.3 |
4 | 5 | 10.6 |
Binet stage | ||
A | 35 | 74.5 |
B | 5 | 10.6 |
C | 2 | 4.3 |
IgHV status | ||
Unmutated | 16 | 34.0 |
Mutated | 23 | 48.9 |
Undetermined | 8 | 17.1 |
Disease progression Yes/no | ||
Doubling of the lymphocyte count | 14/33 | 29.8/70.2 |
Progression to a higher Rai stage | 7/40 | 14.9/85.1 |
Lymph node and organ progression | 16/31 | 34.0/66.0 |
Indications for cytostatic treatment | 15/32 | 31.9/68.1 |
Follow-up period (months) | 110.0 (1–228) | |
Morphological indicators | ||
WBC count (1 × 109/L) | 48.28 ± 34.25 | |
Lymphocyte count (1 × 109/L) | 41.06 ± 32.05 | |
Hb level (g/dL) | 12.94 ± 1.78 | |
Platelet count (1 × 109/L) | 151.3 ± 53.27 | |
Biochemical indicators | ||
LDH (U/L) | 202.62 ± 72.31 | |
β2-microglobulin (mg/L) | 3.35 ± 1.55 |
Polymorphic Site | CLL Patients n (%) | Controls n (%) | χ2 Test | OR (95%CI) | p-Value |
---|---|---|---|---|---|
CDKN1Brs36228499 | |||||
CC | 85 (29.7) | 114 (40.3) | χ2 = 8.78 p = 0.0124 | Reference | |
CA | 132 (46.2) | 122 (43.1) | 1.45 (1.00–2.11) | 0.05 | |
AA | 69 (24.1) | 47 (16.6) | 1.97 (1.24–3.14) | 0.004 | |
HWE | p = 0.2106 | p = 0.1451 | |||
C allele | 302 (52.8) | 350 (61.8) | χ2 = 9.50 p = 0.0018 | Reference | |
A allele | 270 (47.2) | 216 (38.2) | 1.45 (1.14–3.14) | 0.002 | |
Dominant model | |||||
A− carriers (CC) | 85 (29.7) | 114 (40.3) | χ2 = 6.98 p = 0.0083 | Reference | |
A+ carriers (AA + CA) | 201 (70.3) | 169 (59.7) | 1.60 (1.13–2.26) | 0.008 | |
CDKN1Brs34330 | |||||
CC | 188 (65.7) | 205 (72.4) | χ2 = 4.84 p = 0.0888 * | Reference | |
CT | 84 (29.4) | 72 (25.4) | 1.27 (0.88–1.85) | 0.2000 | |
TT | 14 (4.9) | 6 (2.1) | 2.54 (0.96–6.76) | 0.0500 | |
HWE | p = 0.2544 | p = 0.9127 | |||
C allele | 460 (80.4) | 482 (85.2) | χ2 = 4.48 p = 0.0343 | Reference | |
T allele | 112 (19.6) | 84 (14.8) | 1.40 (1.02–1.91) | 0.0300 | |
Dominant model | |||||
T− carriers (CC) | 188 (65.7) | 205 (72.4) | χ2 = 2.99 p = 0.0837 * | Reference | |
T+ carriers (TT + CT) | 98 (34.3) | 78 (27.6) | 1.37 * (0.96–1.96) | 0.08 * | |
CDKN1Brs2066827 | |||||
TT | 191 (66.8) | 206 (72.8) | χ2 = 2.47 p = 0.2909 | Reference | |
TG | 83 (29.0) | 68 (24.0) | 1.32 (0.90–1.92) | 0.15 | |
GG | 12 (4.2) | 9 (3.2) | 1.44 (0.59–3.49) | 0.42 | |
HWE | p = 0.4386 | p = 0.2552 | |||
T allele | 465 (81.3) | 480 (84.8) | χ2 = 2.49 p = 0.1145 | Reference | |
G allele | 107 (18.7) | 86 (15.2) | 1.28 (0.94–1.75) | 0.11 | |
Dominant model | |||||
G− carriers (TT) | 191 (66.8) | 206 (72.8) | χ2 = 2.44 p = 0.1187 | Reference | |
G+ carriers (GG + TG) | 95 (33.2) | 77 (27.2) | 1.33 (0.93–1.91) | 0.12 |
Polymorphic Site | CLL Patients n (%) | Controls n (%) | χ2 Test | OR (95%CI) | p-Value |
---|---|---|---|---|---|
CCND2rs3217933 | |||||
TT | 189 (66.1)) | 181 (64.0) | χ2 = 0.59 p = 0.7458 | Reference | |
TC | 82 (28.7) | 89 (31.4) | 0.88 (0.61–1.27) | 0.70 | |
CC | 15 (5.2) | 13 (4.6) | 1.11 (0.51–2.39) | 0.80 | |
HWE | p = 0.1297 | p = 0.6287 | |||
T allele | 460 (80.4) | 451 (79.9) | χ2 = 0.10 p = 0.7556 | Reference | |
C allele | 112 (19.6) | 115 (20.3) | 0.95 (0.71–1.28) | 0.76 | |
Dominant model | |||||
C− carriers (TT) | 189 (66.1) | 181 (64.0) | χ2 = 0.283 p = 0.5949 | Reference | |
C+ carriers (CC + TC) | 97 (33.9) | 102 (36.0) | 0.91 (0.65–1.29) | 0.59 | |
CCND2rs3217901 | |||||
AA | 123 (43.0) | 100 (35.3) | χ2 = 4.06 p = 0.1314 | Reference | |
AG | 120 (42.0) | 141 (49.8) | 0.69 (0.48–0.99) | 0.04 | |
GG | 43 (15.0) | 42 (14.8) | 1.20 (0.73–1.98) | 0.47 | |
HWE | p = 0.1297 | p = 0.4993 | |||
A allele | 366 (64.0) | 341 (60.2) | χ2 = 1.69 p = 0.1936 | Reference | |
G allele | 206 (36.0) | 225 (39.8) | 0.85 (0.67–1.08) | 0.19 | |
Dominant model | |||||
G− carriers (AA) | 123 (43.0) | 100 (35.3) | χ2 = 3.51 p = 0.0609 * | Reference | |
G+ carriers (GG + AG) | 163 (57.0) | 183 (64.7) | 0.72 * (0.52–1.02) | 0.08 * | |
CCND2rs3217810 | |||||
CC | 214 (74.8) | 233 (82.3) | χ2 = 5.37 p = 0.0683 * | Reference | |
CT | 63 (22.0) | 46 (16.3) | 1.49 * (0.98–2.28) | 0.06 * | |
TT | 9 (3.1) | 4 (1.4) | 2.45 (0.74–8.07) | 0.22 | |
HWE | p = 0.1122 | p = 0.2552 | |||
C allele | 491 (85.8) | 512 (90.5) | χ2 = 5.81 p = 0.0160 | Reference | |
T allele | 81 (14.2) | 54 (9.5) | 1.56 (1.09–2.26) | 0.02 | |
Dominant model | |||||
T− carriers (CC) | 214 (74.8) | 233 (82.3) | χ2 = 4.76 p = 0.0291 | Reference | |
T+ carriers (TT + CT) | 72 (25.2) | 50 (17.7) | 1.57 (1.05–2.35) | 0.03 |
CDKN1B rs36228499 | CDKN1B rs34330 | CDKN1B rs2066827 | CCND2 rs3217933 | CCND2 rs3217901 | CCND2 rs3217810 | CLL Patients | Controls | χ2 Test | OR (95%CI) | p-Value |
---|---|---|---|---|---|---|---|---|---|---|
A | C | T | T | A | C | 111.21 (0.194) | 77.08 (0.136) | χ2 = 8.91 p = 0.0029 | 1.65 (1.19–2.29) | 0.0029 |
C | C | G | T | A | C | 26.38 (0.046) | 2.68 (0.005) | χ2 = 20.51 p = 0.000006 | 10.64 (3.01–37.65) | 0.000006 |
C | C | T | C | G | C | 14.22 (0.025) | 25.12 (0.044) | χ2 = 2.95 p= 0.086 * | 0.562 * (0.29–1.09) | 0.0859 * |
C | C | T | T | A | C | 104.04 (0.182) | 142.55 (0.252) | χ2 = 7.50 p = 0.006 | 0.66 (0.49–0.89) | 0.0062 |
C | C | T | T | A | T | 17.79 (0.031) | 8.42 (0.015) | χ2 = 3.66 p = 0.0558 * | 2.21 * (0.96–5.07) | 0.0558 * |
C | C | T | T | G | C | 29.95 (0.052) | 53.11 (0.094) | χ2 = 6.67 p = 0.0098 | 0.54 (0.34–0.87) | 0.0098 |
Genotype | Clinical Impact | |
---|---|---|
CLL Risk | CLL Course | |
CDKN1Brs36228499 | ||
CC | - | Aggressive |
AA + CA | Increased | Stable |
CDKN1Brs34330 | ||
CC | - | Aggressive |
CT + TT | Increased | Stable |
CDKN1Brs2066827 | ||
TT | - | Aggressive |
TG + GG | Increased * | Stable |
CCND2rs3217933 | ||
TT | No | No |
CC + TC | No | No |
CCND2rs3217901 | ||
AA | - | Stable |
AG | Decreased | Aggressive |
GG | No | Stable |
CCND2rs3217810 | ||
CC | - | Stable |
CT + TT | Increased | Aggressive |
Polymorphic Site | CD19+CD5+ Cells | CD3+ Cells | Apoptotic Cells (%) | |||
---|---|---|---|---|---|---|
p27Kip1+ | Cyclin D2+ | p27Kip1+ | Cyclin D2+ | CD19+ | CD3+ | |
CDKN1Brs36228499 | ||||||
A− carriers (CC) | 2880.50 (2627.00–3590.00) | 204.50 (183.50–229.00) | 3793.00 (3197.00–4938.00) | 245.00 (237.00–256.00) | 4.35 (3.07–12.07) | 11.34 (5.65–26.05) |
A+ carriers (CA + AA) | 3129.00 (2150.00–4263.00) | 237.00 (204.00–288.00) | 3807.00 (3039.00–4710.00) | 295.00 (265.50–349.00) | 3.67 (2.48–8.34) | 9.69 (3.84–15.88) |
p-Value | 0.8610 | 0.0516 * | 0.8696 | 0.0027 | 0.3141 | 0.4244 |
CDKN1Brs34330 | ||||||
T− carriers (CC) | 3129.00 (1902,00–4142.00) | 237.00 (204.00–288.00) | 3167.00 (2722.00–4094.00) | 294.50 (263.00–322.00) | 3.67 (2.44–5.87) | 14.17 (4.89–17.10) |
T+ carriers (CT + TT) | 2780.50 (2469.50–4420.50) | 218.50 (191.50–249.00) | 3921.00 (3252.00–5240.00) | 266.00 (246.00–338.00) | 3.95 (2.81–14.66) | 8.94 (3.88–15.91) |
p-Value | 0.4877 | 0.1360 | 0.0105 | 0.6620 | 0.1870 | 0.5773 |
CDKN1Brs2066827 | ||||||
G− carriers (TT) | 3183.50 (2385.00–4183.50) | 220.00 (192.00–272.00) | 3802.50 (3069.50–4824.00) | 268.50 (243.00–331.50) | 4.07 (2.71–10.64) | 11.36 (4.55–19.67) |
G+ carriers (TG + GG) | 2745.00 (2150.00–4616.00) | 237.00 (207.00–271.00) | 3579.00 (2926.00–4510.00) | 269.00 (261.00–307.00) | 3.29 (2.43–7.34) | 10.52 (3.44–15.88) |
p-Value | 0.5286 | 0.6603 | 0.7612 | 0.8337 | 0.2373 | 0.5212 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ciszak, L.; Kosmaczewska, A.; Pawlak, E.; Frydecka, I.; Szteblich, A.; Wołowiec, D. Association of Genetic Variants at the CDKN1B and CCND2 Loci Encoding p27Kip1 and Cyclin D2 Cell Cycle Regulators with Susceptibility and Clinical Course of Chronic Lymphocytic Leukemia. Int. J. Mol. Sci. 2024, 25, 11705. https://doi.org/10.3390/ijms252111705
Ciszak L, Kosmaczewska A, Pawlak E, Frydecka I, Szteblich A, Wołowiec D. Association of Genetic Variants at the CDKN1B and CCND2 Loci Encoding p27Kip1 and Cyclin D2 Cell Cycle Regulators with Susceptibility and Clinical Course of Chronic Lymphocytic Leukemia. International Journal of Molecular Sciences. 2024; 25(21):11705. https://doi.org/10.3390/ijms252111705
Chicago/Turabian StyleCiszak, Lidia, Agata Kosmaczewska, Edyta Pawlak, Irena Frydecka, Aleksandra Szteblich, and Dariusz Wołowiec. 2024. "Association of Genetic Variants at the CDKN1B and CCND2 Loci Encoding p27Kip1 and Cyclin D2 Cell Cycle Regulators with Susceptibility and Clinical Course of Chronic Lymphocytic Leukemia" International Journal of Molecular Sciences 25, no. 21: 11705. https://doi.org/10.3390/ijms252111705
APA StyleCiszak, L., Kosmaczewska, A., Pawlak, E., Frydecka, I., Szteblich, A., & Wołowiec, D. (2024). Association of Genetic Variants at the CDKN1B and CCND2 Loci Encoding p27Kip1 and Cyclin D2 Cell Cycle Regulators with Susceptibility and Clinical Course of Chronic Lymphocytic Leukemia. International Journal of Molecular Sciences, 25(21), 11705. https://doi.org/10.3390/ijms252111705