Whole Blood Transcriptome Analysis in Congenital Anemia Patients
<p>QuantSeq analysis in different congenital anemias. (<b>A</b>) General scheme of Quant 3′ mRNA–Sequencing procedure. (<b>B</b>–<b>E</b>) Heatmap and pie chart showing under- (blue) or overexpressed (red) genes between controls and transfusion-dependent thalassemia (TDT) (<b>B</b>), non-transfusion-dependent thalassemia (NTDT), (<b>C</b>), sickle cell disease (SCD), (<b>D</b>) and congenital sideroblastic anemia (CSA) patient. Heatmap is restricted to significant data according to Log2FC < −2 or >2, and adjusted <span class="html-italic">p</span>–value < 0.05.</p> "> Figure 2
<p>The CSA patient exhibits a distinct expression pattern in genes with respect to the rest of the congenital anemias. Heatmaps showing genes, which are significantly underexpressed (blue) or overexpressed (red) across different patient groups. The intensity of the colors indicates the level of expression of each representative gene. Groups studied correlate with those indicated in <a href="#ijms-25-11706-f001" class="html-fig">Figure 1</a> and pathways have been selected considering their importance in red blood cells, including erythropoiesis, iron metabolism, glycolysis, oxidative metabolism, and genes that codified erythrocyte membrane proteins.</p> "> Figure 3
<p>The CSA patient presents a different expression pattern of genes involved in erythropoiesis and iron metabolism. (<b>A</b>) Analysis of differential expressions of genes involved in erythropoiesis and heme group formation. Increase levels of <span class="html-italic">GATA1</span>, <span class="html-italic">HEMGN</span>, <span class="html-italic">ALAS2</span>, <span class="html-italic">SLC25A38</span>, <span class="html-italic">SLC25A37</span>, <span class="html-italic">ABCB10</span>, and <span class="html-italic">FECH</span> in all congenital anemias with respect to healthy control except the CSA patient. The increase in <span class="html-italic">ERFE</span> levels in all congenital anemias studied. (<b>B</b>) The <span class="html-italic">CDAN1</span> gene expression is significantly decreased in CSA patients. All graphs are represented in fold change with respect to control samples.</p> "> Figure 4
<p>BPGM gene expression correlates with SCD patients’ severity. (<b>A</b>) Graph with the representative fold change expression compared to healthy controls for the <span class="html-italic">BPGM</span> gene in TDT, NTDT, SCD, and CSA patients. (<b>B</b>) <span class="html-italic">BPGM</span> normalized gene expression in the 4 healthy controls and the 4 SCD patients, with a clear increase in <span class="html-italic">BPGM</span> gene expression in S2 and S4 patients that correlates with patients’ disease severity.</p> "> Figure 5
<p>A high expression gene profile related to oxidative metabolism in the majority of the congenital anemias compared to healthy donors. (<b>A</b>) Genes related to oxidative metabolism, <span class="html-italic">GLRX5, GPX1, GCLC</span>, and <span class="html-italic">PRDX2</span>, are upregulated in all congenital anemias with respect to healthy controls except in the CSA patient. (<b>B</b>) Significant fold change decrease in <span class="html-italic">SLC25A39</span> gene expression in the CSA patient. All graphs represent the fold change relative to healthy control individuals.</p> "> Figure 6
<p>The genes related to structural membrane protein expression are differentially expressed in the different congenital anemias. <span class="html-italic">SCL4A1, ANK1, EPB4.1, EPB4.2, SPTB, STOM</span> and <span class="html-italic">SPTA1</span> gene expression profiles are represented for TDT, NTDT, SCD, and CSA patients. A decrease in expression in all of these genes is observed in the CSA patient. All fold changes are relative to healthy control individuals.</p> "> Figure 7
<p>Dysregulated metabolic pathways in patients with congenital anemias (<b>A</b>–<b>E</b>). STRING analysis of interactions among upregulated genes in NTDT (<b>A</b>) and SCD (<b>C</b>) patients, and downregulated genes in NTDT (<b>B</b>), SCD (<b>D</b>), and CSA (<b>E</b>), compared to healthy controls. The table highlights metabolic pathways significantly impacted, accounting for the total number of genes involved in each network, their strength (Log10(genes implicated/total number of genes in the network)), and significance (<span class="html-italic">p</span>-values corrected for multiple testing within each category using the Benjamini–Hochberg procedure).</p> ">
Abstract
:1. Introduction
2. Results
2.1. Gene Profile Expression of Different Congenital Anemias with Respect to Healthy Donors
2.2. The CSA Patient Exhibits a Distinct Expression Pattern in Genes Related to Erythropoiesis and Iron Metabolism, Glycolysis, Oxidative Metabolism, and Erythrocyte Membranes
2.3. BPGM Expression Is Particularly Upregulated in Homozygous SCD Patients
2.4. The Majority of Congenital Anemias Show a High Expression Gene Profile Related to Oxidative Metabolism Compared to Healthy Donors
2.5. Significant Differences in Genes Related to Structural Membrane Protein Expression Between the Different Congenital Anemias
2.6. Other Pathways Altered in Each Congenital Anemia
3. Discussion
4. Materials and Methods
4.1. Study Design and Patient Cohort
4.2. Blood Samples Collection
4.3. RNA Extraction and Sequencing
4.4. Quality Control, Trimming, and Alignment to the Reference Genome
4.5. Analysis of Differential Expression
4.6. String Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Steinberg-Shemer, O.; Tamary, H. Impact of Next-Generation Sequencing on the Diagnosis and Treatment of Congenital Anemias. Mol. Diagn. Ther. 2020, 24, 397–407. [Google Scholar] [CrossRef] [PubMed]
- Taghavifar, F.; Hamid, M.; Shariati, G. Gene expression in blood from an individual with β-thalassemia: An RNA sequence analysis. Mol. Genet. Genom. Med. 2019, 7, e00740. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Villalobos, M.; Blanquer, M.; Moraleda, J.M.; Salido, E.J.; Perez-Oliva, A.B. New Insights Into Pathophysiology of β-Thalassemia. Front. Med. 2022, 9, 880752. [Google Scholar] [CrossRef] [PubMed]
- Desai, A.A.; Lei, Z.; Bahroos, N.; Maienschein-Cline, M.; Saraf, S.L.; Zhang, X.; Shah, B.N.; Nouraie, S.M.; Abbasi, T.; Patel, A.R.; et al. Association of circulating transcriptomic profiles with mortality in sickle cell disease. Blood J. Am. Soc. Hematol. 2017, 129, 3009–3016. [Google Scholar] [CrossRef]
- Van Beers, E.J.; Yang, Y.; Raghavachari, N.; Tian, X.; Allen, D.T.; Nichols, J.S.; Mendelsohn, L.; Nekhai, S.; Gordeuk, V.R.; Taylor, J.G.; et al. Iron, inflammation, and early death in adults with sickle cell disease. Circ. Res. 2015, 116, 298–306. [Google Scholar] [CrossRef]
- de Freitas Dutra, V.; Leal, V.N.C.; Fernandes, F.P.; Souza, C.R.L.; Figueiredo, M.S.; Pontillo, A. Genetic contribution and functional impairment of inflammasome in sickle cell disease. Cytokine 2022, 149, 155717. [Google Scholar] [CrossRef]
- Gutiérrez, L.; Caballero, N.; Fernández-Calleja, L.; Karkoulia, E.; Strouboulis, J. Regulation of GATA1 levels in erythropoiesis. IUBMB Life 2020, 72, 89–105. [Google Scholar] [CrossRef]
- Dong, X.M.; Zhao, K.; Zheng, W.W.; Xu, C.W.; Zhang, M.J.; Yin, R.H.; Gao, R.; Tang, L.J.; Liu, J.F.; Chen, H.; et al. EDAG mediates Hsp70 nuclear localization in erythroblasts and rescues dyserythropoiesis in myelodysplastic syndrome. FASEB J. 2020, 34, 8416–8427. [Google Scholar] [CrossRef]
- Furuyama, K.; Kaneko, K. Iron metabolism in erythroid cells and patients with congenital sideroblastic anemia. Int. J. Hematol. 2018, 107, 44–54. [Google Scholar] [CrossRef]
- Grace, R.F.; Glader, B. Red Blood Cell Enzyme Disorders. Pediatr. Clin. 2018, 65, 579–595. [Google Scholar] [CrossRef]
- Van Wijk, R.; Van Solinge, W.W. The energy-less red blood cell is lost: Erythrocyte enzyme abnormalities of glycolysis. Blood 2005, 106, 4034–4042. [Google Scholar] [CrossRef] [PubMed]
- Alramadhani, D.; Aljahdali, A.S.; Abdulmalik, O.; Pierce, B.D.; Safo, M.K. Metabolic Reprogramming in Sickle Cell Diseases: Pathophysiology and Drug Discovery Opportunities. Int. J. Mol. Sci. 2022, 23, 7448. [Google Scholar] [CrossRef] [PubMed]
- Yuditskaya, S.; Suffredini, A.F.; Kato, G.J. The proteome of sickle cell disease: Insights from exploratory proteomic profiling. Expert. Rev. Proteom. 2010, 7, 833–848. [Google Scholar] [CrossRef] [PubMed]
- Kato, G.J.; Piel, F.B.; Reid, C.D.; Gaston, M.H.; Ohene-Frempong, K.; Krishnamurti, L.; Smith, W.R.; Panepinto, J.A.; Weatherall, D.J.; Costa, F.F.; et al. Sickle cell disease. Nat. Rev. Dis. Primers 2018, 4, 18010. [Google Scholar] [CrossRef]
- Asadov, C.; Alimirzoeva, Z.; Mammadova, T.; Aliyeva, G.; Gafarova, S.; Mammadov, J. β-Thalassemia intermedia: A comprehensive overview and novel approaches. Int. J. Hematol. 2018, 108, 5–21. [Google Scholar] [CrossRef]
- Farmakis, D.; Porter, J.; Taher, A.; Cappellini, M.D.; Angastiniotis, M.; Eleftheriou, A.; Alassaf, A.; Angastiniotis, M.; Angelucci, E.; Aydinok, Y.; et al. 2021 Thalassaemia International Federation Guidelines for the Management of Transfusion-dependent Thalassemia. Hemasphere 2022, 6, e732. [Google Scholar] [CrossRef]
- Wang, Y.; Yen, F.S.; Zhu, X.G.; Timson, R.C.; Weber, R.; Xing, C.; Liu, Y.; Allwein, B.; Luo, H.; Yeh, H.W.; et al. SLC25A39 is necessary for mitochondrial glutathione import in mammalian cells. Nature 2021, 599, 136–140. [Google Scholar] [CrossRef]
- Aljurf, M.; Ma, L.; Angelucci, E.; Lucarelli, G.; Snyder, L.M.; Kiefer, C.R.; Yuan, J.; Schrier, S.L. Abnormal Assembly of Membrane Proteins in Erythroid Progenitors of Patients with P-Thalassemia Major. Available online: http://ashpublications.org/blood/article-pdf/87/5/2049/623369/2049.pdf (accessed on 27 October 2024).
- Montserrat López Rubio Dra Marta Morado Arias Dra María Pilar Ricard Andrés Dra Ana Villegas Martínez D, Enfermedad De Células Falciformes G DE. COORDINADORAS TÍTULO ORIGINAL. Available online: https://www.sehh.es/images/stories/recursos/2022/02/28/2021-Guia-Enfermedad-de-Celulas-Falciformes.pdf (accessed on 27 October 2024).
- El Hoss, S.; Cochet, S.; Godard, A.; Yan, H.; Dussiot, M.; Frati, G.; Boutonnat-Faucher, B.; Laurance, S.; Renaud, O.; Joseph, L.; et al. Fetal hemoglobin rescues ineffective erythropoiesis in sickle cell disease. Haematologica 2021, 106, 2707–2719. [Google Scholar] [CrossRef]
- El Nemer, W.; Godard, A.; El Hoss, S. Ineffective erythropoiesis in sickle cell disease: New insights and future implications. Curr. Opin. Hematol. 2021, 28, 171–176. [Google Scholar] [CrossRef]
- Zanette, D.L.; Santiago, R.P.; Leite, I.P.R.; Santana, S.S.; da Guarda, C.; Maffili, V.V.; Ferreira, J.R.D.; Adanho, C.S.A.; Yahouedehou, S.C.M.A.; Menezes, I.L.; et al. Differential gene expression analysis of sickle cell anemia in steady and crisis state. Ann. Hum. Genet. 2019, 83, 310–317. [Google Scholar] [CrossRef]
- Noy-Lotan, S.; Dgany, O.; Marcoux, N.; Atkins, A.; Kupfer, G.M.; Bosques, L.; Gottschalk, C.; Steinberg-Shemer, O.; Motro, B.; Tamary, H. Cdan1 Is Essential for Primitive Erythropoiesis. Front. Physiol. 2021, 12, 685242. [Google Scholar] [CrossRef] [PubMed]
- Dgany, O.; Avidan, N.; Delaunay, J.; Krasnov, T.; Shalmon, L.; Shalev, H.; Eidelitz-Markus, T.; Kapelushnik, J.; Cattan, D.; Pariente, A.; et al. Congenital dyserythropoietic anemia type I is caused by mutations in codanin-1. Am. J. Hum. Genet. 2002, 71, 1467–1474. [Google Scholar] [CrossRef]
- Cyrklaff, M.; Srismith, S.; Nyboer, B.; Burda, K.; Hoffmann, A.; Lasitschka, F.; Adjalley, S.; Bisseye, C.; Simpore, J.; Mueller, A.K.; et al. Oxidative insult can induce malaria-protective trait of sickle and fetal erythrocytes. Nat. Commun. 2016, 7, 13401. [Google Scholar] [CrossRef] [PubMed]
- Eaton, W.A.; Bunn, H.F. Treating sickle cell disease by targeting HbS polymerization. Blood 2017, 129, 2719–2726. [Google Scholar] [CrossRef] [PubMed]
- Rees, D.C.; Williams, T.N.; Gladwin, M.T. Sickle-cell disease. Lancet 2010, 376, 2018–2031. [Google Scholar] [CrossRef]
- Kuypers, F.A.; Cappellini, M.D.; Vichinsky, E. Membrane Lipid Alterations in Hemoglobinopathies RBCs and Hemoglobinopathies. Available online: http://ashpublications.org/hematology/article-pdf/2007/1/68/646220/068_073ash.pdf (accessed on 27 October 2024).
- Reiter, C.D.; Wang, X.; Tanus-Santos, J.E.; Hogg, N.; Cannon, R.O.; Schechter, A.N.; Gladwin, M.T. Cell-free hemoglobin limits nitric oxide bioavailability in sickle-cell disease. Nat. Med. 2002, 8, 1383–1389. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sanchez-Villalobos, M.; Campos Baños, E.; Martínez-Balsalobre, E.; Navarro-Ramirez, V.; Videla, M.A.B.; Pinilla, M.; Guillén-Navarro, E.; Salido-Fierrez, E.; Pérez-Oliva, A.B. Whole Blood Transcriptome Analysis in Congenital Anemia Patients. Int. J. Mol. Sci. 2024, 25, 11706. https://doi.org/10.3390/ijms252111706
Sanchez-Villalobos M, Campos Baños E, Martínez-Balsalobre E, Navarro-Ramirez V, Videla MAB, Pinilla M, Guillén-Navarro E, Salido-Fierrez E, Pérez-Oliva AB. Whole Blood Transcriptome Analysis in Congenital Anemia Patients. International Journal of Molecular Sciences. 2024; 25(21):11706. https://doi.org/10.3390/ijms252111706
Chicago/Turabian StyleSanchez-Villalobos, Maria, Eulalia Campos Baños, Elena Martínez-Balsalobre, Veronica Navarro-Ramirez, María Asunción Beltrán Videla, Miriam Pinilla, Encarna Guillén-Navarro, Eduardo Salido-Fierrez, and Ana Belén Pérez-Oliva. 2024. "Whole Blood Transcriptome Analysis in Congenital Anemia Patients" International Journal of Molecular Sciences 25, no. 21: 11706. https://doi.org/10.3390/ijms252111706
APA StyleSanchez-Villalobos, M., Campos Baños, E., Martínez-Balsalobre, E., Navarro-Ramirez, V., Videla, M. A. B., Pinilla, M., Guillén-Navarro, E., Salido-Fierrez, E., & Pérez-Oliva, A. B. (2024). Whole Blood Transcriptome Analysis in Congenital Anemia Patients. International Journal of Molecular Sciences, 25(21), 11706. https://doi.org/10.3390/ijms252111706