Transient Recombinant Protein Production in Glycoengineered Nicotiana benthamiana Cell Suspension Culture
<p>Callus generation. (<b>A</b>) Aseptically grown ΔXTFT <span class="html-italic">N. benthamiana</span> plants; (<b>B</b>) Explant from ΔXTFT <span class="html-italic">N. benthamiana</span> plant on semi-solid media; (<b>C</b>) ΔXTFT <span class="html-italic">N. benthamiana</span> callus formed from dedifferentiation of explants and grown on semi-solid media; (<b>D</b>) ΔXTFT <span class="html-italic">N. benthamiana</span> cells in suspension culture.</p> "> Figure 2
<p>Morphology of ΔXTFT <span class="html-italic">N. benthamiana</span> cell suspension culture. Scale bars indicate 20 µm. (<b>A</b>,<b>B</b>) Same field of view; (<b>B</b>) Nuclear staining with DAPI; (<b>C</b>) Cells stained with Evans blue; (<b>D</b>) Cells treated with 70% ethanol for 3 h prior to Evans blue staining.</p> "> Figure 3
<p>Growth of ΔXTFT <span class="html-italic">N. benthamiana</span> cell suspension culture in a 1 L shake flask with 200 mL culture volume. The average value and standard deviation from triplicate samples are shown.</p> "> Figure 4
<p>CMG2-Fc expression after 7 days of co-culture quantified by an enzyme-linked immunosorbent assay (ELISA) for varying <span class="html-italic">Agrobacterium</span> to <span class="html-italic">N. benthamiana</span> mass ratios. Co-culture was performed in 3 separate flasks for each mass ratio target level. Linear regression trendlines are shown for both the cell-associated (solid line) and extracellular (dotted line) samples.</p> "> Figure 5
<p>(<b>A</b>) Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and (<b>B</b>) immunoblot analysis of crude CMG2-Fc cell-associated samples. Lane <b>M</b>, molecular weight marker; lane <b>1</b>, mock addition crude extract; lane <b>2</b>, co-culture crude extract; lane <b>3</b>, five-fold concentrated mock addition crude extract; lane <b>4</b>, five-fold concentrated co-culture crude extract; lane <b>5</b>, 250 ng CMG2-Fc standard; lane <b>6</b>, 150 ng CMG2-Fc standard; lane <b>7</b>, 100 ng CMG2-Fc standard.</p> "> Figure 6
<p>CMG2-Fc expression quantified by ELISA after media reduction during co-culture for two mass ratios of <span class="html-italic">Agrobacterium</span> to plant cells: (<b>A</b>) 11.5 ± 1.5 (average ± standard deviation) mg dry weight <span class="html-italic">Agrobacterium/</span>g dry weight plant cell and (<b>B</b>) 23.2 ± 3.5 mg dry weight <span class="html-italic">Agrobacterium/</span>g dry weight plant cell. Error bars represent the standard deviation from triplicate flasks.</p> "> Figure 7
<p>Distribution of N-glycans on CMG2-Fc produced transiently in ΔXTFT <span class="html-italic">N. benthamiana</span> cell culture (glycoengineered) and through agroinfiltration of wild type <span class="html-italic">N. benthamiana</span> plants (wild type). Labels on the <span class="html-italic">x</span>-axis represent the number of monosaccharides in N-linked glycans in the following order: hexose (mannose, glucose and galactose), N-acetylglucosamine, fucose and xylose.</p> ">
Abstract
:1. Introduction
2. Results
2.1. Generation of ΔXTFT N. benthamiana Cell Suspension Cultures
2.2. Characterization of ΔXTFT N. benthamiana Cell Suspension Cultures
2.3. Effect of Varying Agrobacterium Amount and Media Volume During Co-Culture
2.4. Analysis of N-Glycan Distribution on CMG2-Fc
3. Discussion and Future Work
4. Materials and Methods
4.1. ΔXTFT N. benthamiana Callus Generation and Maintenance
4.2. Preparation and Maintenance of ΔXTFT N. benthamiana Cell Suspension Cultures
4.3. Characterization of ΔXTFT N. benthamiana Cell Suspension Cultures
4.4. Co-Cultivation of ΔXTFT N. benthamiana and Agrobacterium tumefaciens in Suspension Culture
4.5. Extraction of CMG2-Fc for Co-Culture Parameter Experiments
4.6. Purification of CMG2-Fc
4.7. Quantification of CMG2-Fc
4.8. Gel Electrophoresis and Immunoblotting
4.9. Site Specific N-linked Glycosylation Analysis
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Chen, Q.; Lai, H.; Hurtado, J.; Stahnke, J.; Leuzinger, K.; Dent, M. Agroinfiltration as an effective and scalable strategy of gene delivery for production of pharmaceutical proteins. Adv. Tech. Biol. Med. 2013, 1, 103. [Google Scholar] [CrossRef] [PubMed]
- D’Aoust, M.-A.; Couture, M.M.J.; Charland, N.; Trépanier, S.; Landry, N.; Ors, F.; Vézina, L.-P. The production of hemagglutinin-based virus-like particles in plants: A rapid, efficient and safe response to pandemic influenza. Plant Biotechnol. J. 2010, 8, 607–619. [Google Scholar] [CrossRef] [PubMed]
- Holtz, B.R.; Berquist, B.R.; Bennett, L.D.; Kommineni, V.J.M.; Munigunti, R.K.; White, E.L.; Wilkerson, D.C.; Wong, K.-Y.I.; Ly, L.H.; Marcel, S. Commercial-scale biotherapeutics manufacturing facility for plant-made pharmaceuticals. Plant Biotechnol. J. 2015, 13, 1180–1190. [Google Scholar] [CrossRef] [PubMed]
- Kentucky Bioprocessing Company Website. Available online: https://www.kentuckybioprocessing.com/ (accessed on 28 January 2018).
- Medicago Company Website. Available online: http://medicago.com/ (accessed on 28 January 2018).
- iBio CMO Company Website. Available online: https://www.ibiocmo.com/ (accessed on 28 January 2018).
- Icon Genetics Company Website. Available online: https://www.icongenetics.com/ (accessed on 28 January 2018).
- Fraunhofer Plant-Based Vaccine Factory—Pharmaceutical Technology. Available online: http://www.pharmaceutical-technology.com/projects/fraunhofernewplantba/ (accessed on 28 January 2018).
- Rademacher, T. Method for the Generation and Cultivation of a Plant Cell Pack. U.S. Patent Application 14/370,109, 20 November 2014. [Google Scholar]
- Huang, T.K.; McDonald, K.A. Bioreactor systems for in vitro production of foreign proteins using plant cell cultures. Biotechnol. Adv. 2012, 30, 398–409. [Google Scholar] [CrossRef] [PubMed]
- Tekoah, Y.; Shulman, A.; Kizhner, T.; Ruderfer, I.; Fux, L.; Nataf, Y.; Bartfeld, D.; Ariel, T.; Gingis-Velitski, S.; Hanania, U.; et al. Large-scale production of pharmaceutical proteins in plant cell culture—The Protalix experience. Plant Biotechnol. J. 2015, 13, 1199–1208. [Google Scholar] [CrossRef] [PubMed]
- Bosch, D.; Castilho, A.; Loos, A.; Schots, A.; Steinkellner, H. N-glycosylation of plant-produced recombinant proteins. Curr. Pharm. Des. 2013, 19, 5503–5512. [Google Scholar] [CrossRef] [PubMed]
- Strasser, R.; Altmann, F.; Steinkellner, H. Controlled glycosylation of plant-produced recombinant proteins. Curr. Opin. Biotechnol. 2014, 30, 95–100. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q. Glycoengineering of plants yields glycoproteins with polysialylation and other defined N-glycoforms. Proc. Natl. Acad. Sci. USA 2016, 113, 9404–9406. [Google Scholar] [CrossRef] [PubMed]
- Strasser, R.; Stadlmann, J.; Schähs, M.; Stiegler, G.; Quendler, H.; Mach, L.; Glössl, J.; Weterings, K.; Pabst, M.; Steinkellner, H. Generation of glyco-engineered Nicotiana benthamiana for the production of monoclonal antibodies with a homogeneous human-like N-glycan structure. Plant Biotechnol. J. 2008, 6, 392–402. [Google Scholar] [CrossRef] [PubMed]
- Zeitlin, L.; Pettitt, J.; Scully, C.; Bohorova, N.; Kim, D.; Pauly, M.; Hiatt, A.; Ngo, L.; Steinkellner, H.; Whaley, K.J.; et al. Enhanced potency of a fucose-free monoclonal antibody being developed as an Ebola virus immunoprotectant. Proc. Natl. Acad. Sci. USA 2011, 108, 20690–20694. [Google Scholar] [CrossRef] [PubMed]
- Qiu, X.G.; Wong, G.; Audet, J.; Bello, A.; Fernando, L.; Alimonti, J.B.; Fausther-Bovendo, H.; Wei, H.Y.; Aviles, J.; Hiatt, E.; et al. Reversion of advanced Ebola virus disease in nonhuman primates with ZMapp. Nature 2014, 514, 47–53. [Google Scholar] [CrossRef] [PubMed]
- Scobie, H.M.; Rainey, G.J.A.; Bradley, K.A.; Young, J.A.T. Human capillary morphogenesis protein 2 functions as an anthrax toxin receptor. Proc. Natl. Acad. Sci. USA 2003, 100, 5170–5174. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Crown, D.; Miller-Randolph, S.; Moayeri, M.; Wang, H.; Hu, H.; Morley, T.; Leppla, S.H. Capillary morphogenesis protein-2 is the major receptor mediating lethality of anthrax toxin in vivo. Proc. Natl. Acad. Sci. USA 2009, 106, 12424–12429. [Google Scholar] [CrossRef] [PubMed]
- Karuppanan, K.; Duhra-Gill, S.; Kailemia, M.J.; Phu, M.L.; Lebrilla, C.B.; Dandekar, A.M.; Rodriguez, R.L.; Nandi, S.; McDonald, K.A. Expression, purification and biophysical characterization of a secreted anthrax decoy fusion protein in Nicotiana benthamiana. Int. J. Mol. Sci. 2017, 18, 89. [Google Scholar] [CrossRef] [PubMed]
- Wycoff, K.L.; Belle, A.; Deppe, D.; Schaefer, L.; Maclean, J.M.; Haase, S.; Trilling, A.K.; Liu, S.; Leppla, S.H.; Geren, I.N.; et al. Recombinant anthrax toxin receptor-Fc fusion proteins produced in plants protect rabbits against inhalational anthrax. Antimicrob. Agents Chemother. 2011, 55, 132–139. [Google Scholar] [CrossRef] [PubMed]
- Huang, T.K.; Plesha, M.A.; Falk, B.W.; Dandekar, A.M.; McDonald, K.A. Bioreactor strategies for improving production yield and functionality of a recombinant human protein in transgenic tobacco cell cultures. Biotechnol. Bioeng. 2009, 102, 508–520. [Google Scholar] [CrossRef] [PubMed]
- O’Neill, K.M.; Larsen, J.S.; Curtis, W.R. Scale-up of Agrobacterium-mediated transient protein expression in bioreactor-grown Nicotiana glutinosa plant cell suspension culture. Biotechnol. Prog. 2008, 24, 372–376. [Google Scholar] [CrossRef] [PubMed]
- Santos, R.B.; Abranches, R.; Fischer, R.; Sack, M.; Holland, T. Putting the spotlight back on plant suspension cultures. Front. Plant Sci. 2016, 7, 297. [Google Scholar] [CrossRef] [PubMed]
- Baldi, L.; Hacker, D.L.; Adam, M.; Wurm, F.M. Recombinant protein production by large-scale transient gene expression in mammalian cells: State of the art and future perspectives. Biotechnol. Lett. 2007, 29, 677–684. [Google Scholar] [CrossRef] [PubMed]
- Wurm, F.M.; de Jesus, M. Manufacture of recombinant therapeutic proteins using Chinese hamster ovary cells in large-scale bioreactors. In Biosimilars of Monoclonal Antibodies; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2016; pp. 327–353. [Google Scholar]
- Collens, J.I.; Lee, D.R.; Seeman, A.M.; Curtis, W.R. Development of auxotrophic Agrobacterium tumefaciens for gene transfer in plant tissue culture. Biotechnol. Prog. 2004, 20, 890–896. [Google Scholar] [CrossRef] [PubMed]
- Collens, J.I.; Mason, H.S.; Curtis, W.R. Agrobacterium-mediated viral vector-amplified transient gene expression in Nicotiana glutinosa plant tissue culture. Biotechnol. Prog. 2007, 23, 570–576. [Google Scholar] [CrossRef] [PubMed]
- Larsen, J.S.; Curtis, W.R. RNA viral vectors for improved Agrobacterium-mediated transient expression of heterologous proteins in Nicotiana benthamiana cell suspensions and hairy roots. BMC Biotechnol. 2012, 12, 21. [Google Scholar] [CrossRef] [PubMed]
- Andrews, L.B.; Curtis, W.R. Comparison of transient protein expression in tobacco leaves and plant suspension culture. Biotechnol. Prog. 2005, 21, 946–952. [Google Scholar] [CrossRef] [PubMed]
- Boivin, E.B.; Lepage, E.; Matton, D.P.; De Crescenzo, G.; Jolicoeur, M. Transient expression of antibodies in suspension plant cell suspension cultures is enhanced when co-transformed with the tomato bushy stunt virus p19 viral suppressor of gene silencing. Biotechnol. Prog. 2010, 26, 1534–1543. [Google Scholar] [CrossRef] [PubMed]
- Corbin, J.M.; Kailemia, M.J.; Cadieux, C.L.; Alkanaimsh, S.; Karuppanan, K.; Rodriguez, R.L.; Lebrilla, C.B.; Cerasoli, D.M.; McDonald, K.A.; Nandi, S. Purification, characterization and N-glycosylation of recombinant butyrylcholinesterase from transgenic rice cell suspension cultures. Biotechnol. Bioeng. 2018, 115, 1301–1310. [Google Scholar] [CrossRef] [PubMed]
- Hanania, U.; Ariel, T.; Tekoah, Y.; Fux, L.; Sheva, M.; Gubbay, Y.; Weiss, M.; Oz, D.; Azulay, Y.; Turbovski, A.; et al. Establishment of a tobacco BY2 cell line devoid of plant-specific xylose and fucose as a platform for the production of biotherapeutic proteins. Plant Biotechnol. J. 2017, 15, 1120–1129. [Google Scholar] [CrossRef] [PubMed]
- Mercx, S.; Smargiasso, N.; Chaumont, F.; De Pauw, E.; Boutry, M.; Navarre, C. Inactivation of the β(1,2)-xylosyltransferase and the α(1,3)-fucosyltransferase genes in Nicotiana tabacum BY-2 cells by a multiplex CRISPR/Cas9 strategy results in glycoproteins without plant-specific glycans. Front. Plant Sci. 2017, 8, 403. [Google Scholar] [CrossRef] [PubMed]
- Kallolimath, S.; Castilho, A.; Strasser, R.; Grünwald-Gruber, C.; Altmann, F.; Strubl, S.; Galuska, C.E.; Zlatina, K.; Galuska, S.P.; Werner, S.; et al. Engineering of complex protein sialylation in plants. Proc. Natl. Acad. Sci. USA 2016, 113, 9498–9503. [Google Scholar] [CrossRef] [PubMed]
- Murashige, T.; Skoog, F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol. Plant. 1962, 15, 473–497. [Google Scholar] [CrossRef]
- Arzola, L.; Chen, J.; Rattanaporn, K.; Maclean, J.M.; McDonald, K.A. Transient co-expression of post-transcriptional gene silencing suppressors for increased in planta expression of a recombinant anthrax receptor fusion protein. Int. J. Mol. Sci. 2011, 12, 4975–4990. [Google Scholar] [CrossRef] [PubMed]
- Huang, T.K. Development of Plant Cell Suspension Cultures as a Bioproduction Platform for Recombinant Human Therapeutic Proteins. Ph.D. Thesis, University of California, Davis, CA, USA, 2009. [Google Scholar]
Initial Biomass Concentration 1 (g Dry Weight/L) | Maximum Biomass Concentration 1 (g Dry Weight/L) | Maximum Specific Growth Rate 2 (day−1) | Yield Coefficient 2 (g Dry Weight Biomass/g glucose) |
---|---|---|---|
0.9 ± 0.2 | 7.4 ± 0.5 | 0.113 ± 0.004 | 0.55 ± 0.04 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sukenik, S.C.; Karuppanan, K.; Li, Q.; Lebrilla, C.B.; Nandi, S.; McDonald, K.A. Transient Recombinant Protein Production in Glycoengineered Nicotiana benthamiana Cell Suspension Culture. Int. J. Mol. Sci. 2018, 19, 1205. https://doi.org/10.3390/ijms19041205
Sukenik SC, Karuppanan K, Li Q, Lebrilla CB, Nandi S, McDonald KA. Transient Recombinant Protein Production in Glycoengineered Nicotiana benthamiana Cell Suspension Culture. International Journal of Molecular Sciences. 2018; 19(4):1205. https://doi.org/10.3390/ijms19041205
Chicago/Turabian StyleSukenik, Sara C., Kalimuthu Karuppanan, Qiongyu Li, Carlito B. Lebrilla, Somen Nandi, and Karen A. McDonald. 2018. "Transient Recombinant Protein Production in Glycoengineered Nicotiana benthamiana Cell Suspension Culture" International Journal of Molecular Sciences 19, no. 4: 1205. https://doi.org/10.3390/ijms19041205
APA StyleSukenik, S. C., Karuppanan, K., Li, Q., Lebrilla, C. B., Nandi, S., & McDonald, K. A. (2018). Transient Recombinant Protein Production in Glycoengineered Nicotiana benthamiana Cell Suspension Culture. International Journal of Molecular Sciences, 19(4), 1205. https://doi.org/10.3390/ijms19041205