Expression, Purification, and Biophysical Characterization of a Secreted Anthrax Decoy Fusion Protein in Nicotiana benthamiana
<p>Schematic representation of binary plasmid (pDP16.0707.07) coding for the rCMG2-Fc-Apo protein. RB: right border; LB: left border; 35S: Cauliflower Mosaic Virus (<span class="html-italic">CaMV</span>) promoter; <span class="html-italic">Ramy3D</span>: coding sequence for the rice α-amylase 3D gene signal peptide; Ω:Ω sequence; <span class="html-italic">rCMG2-Fc-Apo</span>: gene coding for the anthrax decoy fusion protein with intact glycosylation site on Fc region; <span class="html-italic">ocs</span>: octopine synthase terminator; mas5′ and mas3′: transcription initiation and termination sequences, respectively, from the mannopine synthase gene of <span class="html-italic">Agrobacterium tumefaciens</span>; KAN: gene coding for resistance to the antibiotic kanamycin, the arrows indicate transcription direction from 5′ to 3′ ends.</p> "> Figure 2
<p>Production kinetics of rCMG2-Fc-Apo protein. Transient production of the rCMG2-Fc-Apo protein on a leaf fresh weight (FW) basis in <span class="html-italic">Nicotiana benthamiana</span> plants was measured by ELISA. The p19 gene silencing suppressor was co-expressed to improve the rCMG2-Fc-Apo protein expression. At different time points post-infiltration, entire leaves from an infiltrated plant batch (three plants/batch/data point) were cut at the petioles and harvested and rCMG2-Fc-Apo levels were determined from combined leaf biomass. Error bars were determined from propagation of standard errors calculated from triplicate technical assays performed.</p> "> Figure 3
<p>Malate dehydrogenase enzymatic assay. Malate dehydrogenase (MDH) enzyme concentration in whole leaf extract and apoplast wash fluid was monitored by measuring depletion of NADH at 340 nm over 5 min at 25 °C and pH 7.4. The whole leaf extract was diluted for the data normalization to have an equal amount of biomass used for MDH assay samples obtained from the crude extract and the apoplast wash fluid. Error bars were determined from propagation of standard errors calculated from triplicate technical assays performed.</p> "> Figure 4
<p>SDS-PAGE, immunoblot, and non-reducing gel analysis. (<b>A</b>) Whole leaf extracts and (<b>B</b>) apoplast wash fluid. (<b>i</b>): SDS-PAGE of whole leaf extract. Lane 1 Precision Plus Protein<sup>TM</sup> Dual Color Standards (Bio-Rad); Lane 2 crude leaf extract (20 µg); Lane 3 purified rCMG2-Fc-Apo (500 ng); Lane 4 CMG2-Fc standard (500 ng); (<b>ii</b>): Immunoblot analysis of whole leaf extract. Lane 1 Precision Plus Protein<sup>TM</sup> Dual Color Standards (Bio-Rad); Lane 2 crude leaf extract (10 µg); Lane 3 purified rCMG2-Fc-Apo (100 ng); Lane 4 CMG2-Fc standard (100 ng); (<b>C</b>) Non-reducing gel. Lane 1 Precision Plus Protein<sup>TM</sup> Dual Color Standards (Bio-Rad); Lane 2 purified rCMG2-Fc-Apo from whole leaf extract (500 ng); Lane 3 purified rCMG2-Fc-Apo from apoplast wash fluid (500 ng); Lane 4 CMG2-Fc standard (500 ng).</p> "> Figure 5
<p>Mass spectrometry analysis: (<b>A</b>) rCMG2-Fc-Apo purified from whole leaf extract (<b>B</b>) rCMG2-Fc-Apo purified from apoplast wash fluid. (<b>i</b>): Unique peptide QEQPSCR was identified from the <span class="html-italic">N</span>-terminal region of mature protein purified from whole leaf extract and apoplast wash fluid. The <span class="html-italic">b</span> ions shown on the spectrum extend from the <span class="html-italic">N</span>-terminus and <span class="html-italic">y</span> ions shown on the spectrum extend from the <span class="html-italic">C</span>-terminus of the tryptic peptides. The colors indicate the loss of ammonia or water from either <span class="html-italic">b</span> or <span class="html-italic">y</span> ions (green), doubly charged <span class="html-italic">b</span> ions (red) and doubly charged <span class="html-italic">y</span> ions (blue). (<b>ii</b>): Peptide coverage of rCMG2-Fc-Apo protein. The white color background indicates the uncovered region and yellow color background indicates the peptide coverage.</p> "> Figure 6
<p><span class="html-italic">N</span>-glycan distribution analysis of rCMG2-Fc-Apo purified from whole leaf extract (APO) and apoplast wash fluid (AWF). Different glycan structures observed at the <span class="html-italic">N</span>-linked glycosylation site on the Fc region. The abundance of each glycan structure is represented in a bar chart. The annotation on the <span class="html-italic">x</span>-axis represents <span class="html-italic">N</span>-glycan-number of Mannose and Galactose residues/number of GlucNAc residues/number of Fucose residues/number of Xylose residues.</p> ">
Abstract
:1. Introduction
2. Results
2.1. Gene Construct and Binary Vector Design for Recombinant CMG2-Fc-Apo (rCMG2-Fc-Apo) Protein
2.2. Production Kinetics of rCMG2-Fc-Apo Protein
2.3. Malate Dehydrogenase (MDH) Activity Assay
2.4. Protein Purification
2.5. Mass Spectrometry Analysis
2.6. N-Glycan Analysis
3. Discussion
4. Materials and Methods
4.1. Construction of Binary Vector to Express rCMG2-Fc-Apo Fusion Protein
4.2. Preparation of Nicotiana benthamiana Plants
4.3. Bacterial Preparation
4.4. Agroinfiltration and Plant Incubation
4.5. Extraction and Protein Purification
4.6. Apoplast Wash Fluid Recovery
4.7. Malate Dehydrogenase (MDH) Activity Assay
4.8. ELISA Analysis
4.9. SDS-PAGE and Immunoblot Analysis
4.10. Protein Identification by LC-MS/MS
4.11. Site Specific N-Glycan Analysis
5. Conclusions and Future Prospects
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Sari, T.; Koruk, S.T. Cutaneous anthrax in an unusual location: Case report. Infez. Med. 2015, 23, 370–373. [Google Scholar] [PubMed]
- Azarkar, Z.; Zare Bidaki, M. A case report of inhalation anthrax acquired naturally. BMC Res. Notes 2016, 9, 141. [Google Scholar] [CrossRef] [PubMed]
- Beyer, W.; Turnbull, P.C.B. Anthrax in animals. Mol. Asp. Med. 2009, 30, 481–489. [Google Scholar] [CrossRef] [PubMed]
- Dixon, T.C.; Meselson, M.; Guillemin, J.; Hanna, P.C. Anthrax. N. Engl. J. Med. 1999, 341, 815–826. [Google Scholar] [CrossRef] [PubMed]
- Sweeney, D.A.; Hicks, C.W.; Cui, X.; Li, Y.; Eichacker, P.Q. Anthrax infection. Am. J. Respir. Crit. Care Med. 2011, 184, 1333–1341. [Google Scholar] [CrossRef] [PubMed]
- Watson, A.; Keir, D. Information on which to base assessments of risk from environments contaminated with anthrax spores. Epidemiol. Infect. 1994, 113, 479–490. [Google Scholar] [CrossRef] [PubMed]
- Goel, A.K. Anthrax: A disease of biowarfare and public health importance. World J. Clin. Cases 2015, 3, 20–33. [Google Scholar] [CrossRef] [PubMed]
- Christopher, G.W.; Cieslak, T.J.; Pavlin, J.A.; Eitzen, E.M., Jr. Biological warfare. A historical perspective. JAMA 1997, 278, 412–417. [Google Scholar] [CrossRef] [PubMed]
- Davenport, M. After amerithrax: The state of modern biodefense. Chem. Eng. News 2016, 2016, 36–40. [Google Scholar]
- Swartz, M.N. Recognition and management of anthrax—An update. N. Engl. J. Med. 2001, 345, 1621–1626. [Google Scholar] [CrossRef] [PubMed]
- Carr, K.A.; Lybarger, S.R.; Anderson, E.C.; Janes, B.K.; Hanna, P.C. The role of Bacillus anthracis germinant receptors in germination and virulence. Mol. Microbiol. 2010, 75, 365–375. [Google Scholar] [CrossRef] [PubMed]
- Hanna, P. Anthrax pathogenesis and host response. Curr. Top. Microbiol. Immunol. 1998, 225, 13–35. [Google Scholar] [PubMed]
- Pannifer, A.D.; Wong, T.Y.; Schwarzenbacher, R.; Renatus, M.; Petosa, C.; Bienkowska, J.; Lacy, D.B.; Collier, R.J.; Park, S.; Leppla, S.H.; et al. Crystal structure of the anthrax lethal factor. Nature 2001, 414, 229–233. [Google Scholar] [CrossRef] [PubMed]
- Petosa, C.; Collier, R.J.; Klimpel, K.R.; Leppla, S.H.; Liddington, R.C. Crystal structure of the anthrax toxin protective antigen. Nature 1997, 385, 833–838. [Google Scholar] [CrossRef] [PubMed]
- Bradley, K.A.; Mogridge, J.; Mourez, M.; Collier, R.J.; Young, J.A. Identification of the cellular receptor for anthrax toxin. Nature 2001, 414, 225–229. [Google Scholar] [CrossRef] [PubMed]
- Scobie, H.M.; Rainey, G.J.; Bradley, K.A.; Young, J.A. Human capillary morphogenesis protein 2 functions as an anthrax toxin receptor. Proc. Natl. Acad. Sci. USA 2003, 100, 5170–5174. [Google Scholar] [CrossRef] [PubMed]
- Santelli, E.; Bankston, L.A.; Leppla, S.H.; Liddington, R.C. Crystal structure of a complex between anthrax toxin and its host cell receptor. Nature 2004, 430, 905–908. [Google Scholar] [CrossRef] [PubMed]
- Pimental, R.A.; Christensen, K.A.; Krantz, B.A.; Collier, R.J. Anthrax toxin complexes: Heptameric protective antigen can bind lethal factor and edema factor simultaneously. Biochem. Biophys. Res. Commun. 2004, 322, 258–262. [Google Scholar] [CrossRef] [PubMed]
- Deuquet, J.; Lausch, E.; Superti-Furga, A.; van der Goot, F.G. The dark sides of capillary morphogenesis gene 2. EMBO J. 2012, 31, 3–13. [Google Scholar] [CrossRef] [PubMed]
- Scobie, H.M.; Thomas, D.; Marlett, J.M.; Destito, G.; Wigelsworth, D.J.; Collier, R.J.; Young, J.A.; Manchester, M. A soluble receptor decoy protects rats against anthrax lethal toxin challenge. J. Infect. Dis. 2005, 192, 1047–1051. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Thomas, D.; Marlett, J.; Manchester, M.; Young, J.A. Efficient neutralization of antibody-resistant forms of anthrax toxin by a soluble receptor decoy inhibitor. Antimicrob. Agents Chemother. 2009, 53, 1210–1212. [Google Scholar] [CrossRef] [PubMed]
- Thomas, D.; Naughton, J.; Cote, C.; Welkos, S.; Manchester, M.; Young, J.A. Delayed toxicity associated with soluble anthrax toxin receptor decoy-ig fusion protein treatment. PLoS ONE 2012, 7, e34611. [Google Scholar] [CrossRef] [PubMed]
- Ashkenazi, A.; Chamow, S.M. Immunoadhesins as research tools and therapeutic agents. Curr. Opin. Immunol. 1997, 9, 195–200. [Google Scholar] [CrossRef]
- Koprowski, H. Vaccines and sera through plant biotechnology. Vaccine 2005, 23, 1757–1763. [Google Scholar] [CrossRef] [PubMed]
- Hopkins, R.J.; Howard, C.; Hunter-Stitt, E.; Kaptur, P.E.; Pleune, B.; Muse, D.; Sheldon, E.; Davis, M.; Strout, C.; Vert-Wong, K. Phase 3 trial evaluating the immunogenicity and safety of a three-dose biothrax(r) regimen for post-exposure prophylaxis in healthy adults. Vaccine 2014, 32, 2217–2224. [Google Scholar] [CrossRef] [PubMed]
- Malkevich, N.V.; Basu, S.; Rudge, T.L., Jr.; Clement, K.H.; Chakrabarti, A.C.; Aimes, R.T.; Nabors, G.S.; Skiadopoulos, M.H.; Ionin, B. Effect of anthrax immune globulin on response to biothrax (anthrax vaccine adsorbed) in New Zealand white rabbits. Antimicrob. Agents Chemother. 2013, 57, 5693–5696. [Google Scholar] [CrossRef] [PubMed]
- Tsai, C.W.; Morris, S. Approval of raxibacumab for the treatment of inhalation anthrax under the Us Food and Drug Administration “animal rule”. Front. Microbiol. 2015, 6, 1320. [Google Scholar] [CrossRef] [PubMed]
- Migone, T.S.; Subramanian, G.M.; Zhong, J.; Healey, L.M.; Corey, A.; Devalaraja, M.; Lo, L.; Ullrich, S.; Zimmerman, J.; Chen, A.; et al. Raxibacumab for the treatment of inhalational anthrax. N. Engl. J. Med. 2009, 361, 135–144. [Google Scholar] [CrossRef] [PubMed]
- Greig, S.L. Obiltoxaximab: First global approval. Drugs 2016, 76, 823–830. [Google Scholar] [CrossRef] [PubMed]
- Arzola, L.; Chen, J.; Rattanaporn, K.; Maclean, J.M.; McDonald, K.A. Transient co-expression of post-transcriptional gene silencing suppressors for increased in planta expression of a recombinant anthrax receptor fusion protein. Int. J. Mol. Sci. 2011, 12, 4975–4990. [Google Scholar] [CrossRef] [PubMed]
- Wycoff, K.L.; Belle, A.; Deppe, D.; Schaefer, L.; Maclean, J.M.; Haase, S.; Trilling, A.K.; Liu, S.; Leppla, S.H.; Geren, I.N.; et al. Recombinant anthrax toxin receptor-Fc fusion proteins produced in plants protect rabbits against inhalational anthrax. Antimicrob. Agents Chemother. 2011, 55, 132–139. [Google Scholar] [CrossRef] [PubMed]
- Capon, D.J.; Chamow, S.M.; Mordenti, J.; Marsters, S.A.; Gregory, T.; Mitsuya, H.; Byrn, R.A.; Lucas, C.; Wurm, F.M.; Groopman, J.E.; et al. Designing CD4 immunoadhesins for aids therapy. Nature 1989, 337, 525–531. [Google Scholar] [CrossRef] [PubMed]
- Czajkowsky, D.M.; Hu, J.; Shao, Z.; Pleass, R.J. Fc-fusion proteins: New developments and future perspectives. EMBO Mol. Med. 2012, 4, 1015–1028. [Google Scholar] [CrossRef] [PubMed]
- Beck, A.; Reichert, J.M. Therapeutic Fc-fusion proteins and peptides as successful alternatives to antibodies. MAbs 2011, 3, 415–416. [Google Scholar] [CrossRef] [PubMed]
- Wilken, L.R.; Nikolov, Z.L. Recovery and purification of plant-made recombinant proteins. Biotechnol. Adv. 2012, 30, 419–433. [Google Scholar] [CrossRef] [PubMed]
- Pillay, P.; Schluter, U.; van Wyk, S.; Kunert, K.J.; Vorster, B.J. Proteolysis of recombinant proteins in bioengineered plant cells. Bioengineered 2014, 5, 15–20. [Google Scholar] [CrossRef] [PubMed]
- Jefferis, R. Isotype and glycoform selection for antibody therapeutics. Arch. Biochem. Biophys. 2012, 526, 159–166. [Google Scholar] [CrossRef] [PubMed]
- Loos, A.; Gach, J.S.; Hackl, T.; Maresch, D.; Henkel, T.; Porodko, A.; Bui-Minh, D.; Sommeregger, W.; Wozniak-Knopp, G.; Forthal, D.N.; et al. Glycan modulation and sulfoengineering of anti-HIV-1 monoclonal antibody PG9 in plants. Proc. Natl. Acad. Sci. USA 2015, 112, 12675–12680. [Google Scholar] [CrossRef] [PubMed]
- Strasser, R.; Altmann, F.; Steinkellner, H. Controlled glycosylation of plant-produced recombinant proteins. Curr. Opin. Biotechnol. 2014, 30, 95–100. [Google Scholar] [CrossRef] [PubMed]
- Hamorsky, K.T.; Kouokam, J.C.; Jurkiewicz, J.M.; Nelson, B.; Moore, L.J.; Husk, A.S.; Kajiura, H.; Fujiyama, K.; Matoba, N. N-glycosylation of cholera toxin B subunit in Nicotiana benthamiana: Impacts on host stress response, production yield and vaccine potential. Sci. Rep. 2015, 5, 8003. [Google Scholar] [CrossRef] [PubMed]
- Kingsbury, N.J.; McDonald, K.A. Quantitative evaluation of E1 endoglucanase recovery from tobacco leaves using the vacuum infiltration-centrifugation method. BioMed Res. Int. 2014, 2014, 483596. [Google Scholar] [CrossRef] [PubMed]
© 2017 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karuppanan, K.; Duhra-Gill, S.; Kailemia, M.J.; Phu, M.L.; Lebrilla, C.B.; Dandekar, A.M.; Rodriguez, R.L.; Nandi, S.; McDonald, K.A. Expression, Purification, and Biophysical Characterization of a Secreted Anthrax Decoy Fusion Protein in Nicotiana benthamiana. Int. J. Mol. Sci. 2017, 18, 89. https://doi.org/10.3390/ijms18010089
Karuppanan K, Duhra-Gill S, Kailemia MJ, Phu ML, Lebrilla CB, Dandekar AM, Rodriguez RL, Nandi S, McDonald KA. Expression, Purification, and Biophysical Characterization of a Secreted Anthrax Decoy Fusion Protein in Nicotiana benthamiana. International Journal of Molecular Sciences. 2017; 18(1):89. https://doi.org/10.3390/ijms18010089
Chicago/Turabian StyleKaruppanan, Kalimuthu, Sifti Duhra-Gill, Muchena J. Kailemia, My L. Phu, Carlito B. Lebrilla, Abhaya M. Dandekar, Raymond L. Rodriguez, Somen Nandi, and Karen A. McDonald. 2017. "Expression, Purification, and Biophysical Characterization of a Secreted Anthrax Decoy Fusion Protein in Nicotiana benthamiana" International Journal of Molecular Sciences 18, no. 1: 89. https://doi.org/10.3390/ijms18010089
APA StyleKaruppanan, K., Duhra-Gill, S., Kailemia, M. J., Phu, M. L., Lebrilla, C. B., Dandekar, A. M., Rodriguez, R. L., Nandi, S., & McDonald, K. A. (2017). Expression, Purification, and Biophysical Characterization of a Secreted Anthrax Decoy Fusion Protein in Nicotiana benthamiana. International Journal of Molecular Sciences, 18(1), 89. https://doi.org/10.3390/ijms18010089